Mechanical and Biocompatibility Properties of Calcium Phosphate Bioceramics Derived from Salmon Fish Bone Wastes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of sCaP
2.2. Mechanical Properties
2.3. Characterization of the sCaP
2.4. In Vitro Biocompatibility Investigation
2.4.1. MTT Cytotoxicity Assay
2.4.2. SEM Investigations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chen, P.Y.; Wang, S.F.; Chien, R.R.; Tu, C.S.; Feng, K.C.; Chen, C.S.; Hung, K.Y.; Schmidt, V.H. Evolution of the microstructural and mechanical properties of hydroxyapatite bioceramics with varying sintering temperature. Ceram. Int. 2019, 1. [Google Scholar] [CrossRef]
- Kim, S.K. Marine Biomaterials: Characterization, Isolation and Applications; CRC Press: Cleveland, OH, USA, 2013; ISBN 9781466505650. [Google Scholar]
- Venkatesan, J.; Lowe, B.; Manivasagan, P.; Kang, K.H.; Chalisserry, E.P.; Anil, S.; Kim, D.G.; Kim, S.K. Isolation and characterization of nano-hydroxyapatite from salmon fish bone. Materials 2015, 8, 5426–5439. [Google Scholar] [CrossRef] [PubMed]
- Dorozhkin, S.V. Calcium orthophosphates in nature, biology and medicine. Materials 2009, 2, 399–498. [Google Scholar] [CrossRef] [Green Version]
- Boutinguiza, M.; Pou, J.; Comesaña, R.; Lusquiños, F.; De Carlos, A.; León, B. Biological hydroxyapatite obtained from fish bones. Mater. Sci. Eng. C 2012, 32, 478–486. [Google Scholar] [CrossRef]
- Liaset, B.; Julshamn, K.; Espe, M. Chemical composition and theoretical nutritional evaluation of the produced fractions from enzymic hydrolysis of salmon frames with ProtamexTM. Process Biochem. 2003, 38, 1747–1759. [Google Scholar] [CrossRef]
- Granito, R.N.; Renno, A.C.M.; de Almeida, M.C.; Ruiz, P.L.M.; Ribeiro, D.A.; Yamamura, H. Hydroxyapatite from fish for bone tissue engineering: A promising approach. Int. J. Mol. Cell. Med. 2018, 7, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Shi, P.; Liu, M.; Fan, F.; Yu, C.; Lu, W.; Du, M. Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. Mater. Sci. Eng. C 2018, 90, 706–712. [Google Scholar] [CrossRef]
- Deb, P.; Barua, E.; Deoghare, A.B.; Lala, S. Das Development of bone scaffold using Puntius conchonius fish scale derived hydroxyapatite: Physico-mechanical and bioactivity evaluations. Ceram. Int. 2019, 45, 10004–10012. [Google Scholar] [CrossRef]
- Gunduz, O.; Gode, C.; Ahmad, Z.; Gökçe, H.; Yetmez, M.; Kalkandelen, C.; Sahin, Y.M.; Oktar, F.N. Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications. J. Mech. Behav. Biomed. Mater. 2014. [Google Scholar] [CrossRef]
- Kokubo, T.; Takadama, H. Simulated Body fluid (SBF) as a Standard tool to test the bioactivity of implants. In Handbook of Biomineralization: Biological Aspects and Structure Formation; Wiley: Hoboken, NJ, USA, 2008; Volume 3, pp. 97–109. [Google Scholar]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Deniz, D.Y.; Kahraman, M.V.; Erdem Kuruca, S.; Suleymanoglu, M.; Gungor, A. 4-Vinylbenzene Boronic Acid-Hydroxy Apatite/Polyvinyl Alcohol Based Nanofiber Scaffold Synthesized by UV-Activated Reactive Electrospinning. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 727–732. [Google Scholar] [CrossRef]
- Meejoo, S.; Maneeprakorn, W.; Winotai, P. Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating. Thermochim. Acta 2006, 447, 115–120. [Google Scholar] [CrossRef]
- Chen, Y.J.; Pao, J.L.; Chen, C.S.; Chen, Y.C.; Chang, C.C.; Hung, F.M.; Chang, C.H. Evaluation of New Biphasic Calcium Phosphate Bone Substitute: Rabbit Femur Defect Model and Preliminary Clinical Results. J. Med. Biol. Eng. 2017, 37, 85–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, M.A.; Monteiro, F.J.; Santos, J.D. Glass-reinforced hydroxyapatite composites: Fracture toughness and hardness dependence on microstructural characteristics. Biomaterials 1999, 20, 2085–2090. [Google Scholar] [CrossRef]
- Yazdanpanah, Z.; Bahrololoom, M.E.; Hashemi, B. Evaluating morphology and mechanical properties of glass-reinforced natural hydroxyapatite composites. J. Mech. Behav. Biomed. Mater. 2015, 41, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, S.; Natasha, A.N.; Tan, C.Y.; Bang, L.T.; Ramesh, S.; Ching, C.Y.; Chandran, H. Direct conversion of eggshell to hydroxyapatite ceramic by a sintering method. Ceram. Int. 2016, 42, 7824–7829. [Google Scholar] [CrossRef]
- Engineering, M. Comparison of Microstructural and Mechanical Properties of Hydroxyapatite-Al2O3 Composites with Commercial Inert Glass (CIG) Addition. Acta Phys. Pol. A 2015, 127, 1094–1096. [Google Scholar] [CrossRef]
- Dorozhkin, S.V. Calcium orthophosphate-based bioceramics. Materials 2013, 6, 3840–3942. [Google Scholar] [CrossRef] [Green Version]
- Goto, T.; Sasaki, K. Effects of trace elements in fish bones on crystal characteristics of hydroxyapatite obtained by calcination. Ceram. Int. 2014, 40, 10777–10785. [Google Scholar] [CrossRef]
- Beltcheva, M.; Metcheva, R.; Peneva, V.; Marinova, M.; Yankov, Y.; Chikova, V. Heavy metals in Antarctic notothenioid fish from South Bay, Livingston Island, South Shetlands (Antarctica). Biol. Trace Elem. Res. 2011, 141, 150–158. [Google Scholar] [CrossRef]
- Ooi, C.Y.; Hamdi, M.; Ramesh, S. Properties of hydroxyapatite produced by annealing of bovine bone. Ceram. Int. 2007, 33, 1171–1177. [Google Scholar] [CrossRef]
- Jamil, M.; Elouahli, A.; Abida, F.; Khallok, H.; Gourri, E.; Kheribech, A.; Hatim, Z. Development of Triphasic Hydroxyapatite/(α and β)-Tricalcium Phosphate Based Composites by Sintering Powder of Calcium-Apatite in the Presence of Montmorillonite. J. Inorg. Organomet. Polym. Mater. 2020, 30, 2489–2498. [Google Scholar] [CrossRef]
- Pazarçeviren, A.E.; Tezcaner, A.; Keskin, D.; Kolukısa, S.T.; Sürdem, S.; Evis, Z. Boron-doped Biphasic Hydroxyapatite/β-Tricalcium Phosphate for Bone Tissue Engineering. Biol. Trace Elem. Res. 2020. [Google Scholar] [CrossRef]
- Riaz, T.; Zeeshan, R.; Zarif, F.; Ilyas, K.; Muhammad, N.; Safi, S.Z.; Rahim, A.; Rizvi, S.A.A.; Rehman, I.U. FTIR analysis of natural and synthetic collagen. Appl. Spectrosc. Rev. 2018, 53, 703–746. [Google Scholar] [CrossRef]
- Zhu, Q.; Ablikim, Z.; Chen, T.; Cai, Q.; Xia, J.; Jiang, D.; Wang, S. The preparation and characterization of HA/β-TCP biphasic ceramics from fish bones. Ceram. Int. 2017, 43, 12213–12220. [Google Scholar] [CrossRef]
- Berzina-Cimdina, L.; Borodajenko, N. Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy. Infrared Spectrosc. Mater. Sci. Eng. Technol. 2012. [Google Scholar] [CrossRef] [Green Version]
98-008-2984 | 98-005-2691 | 98-007-7966 | 98-006-0425 | 98-004-9808 | 98-004-0602 | 98-005-2686 | |
---|---|---|---|---|---|---|---|
TCP (Ortho-Phosphate) (%) | HA (%) | HA (%) | HA (%) | HA (%) | HA (%) | HA (%) | |
sCaP | 34.6 | 44.6 | 20.8 | ||||
1000 °C | 38.1 | 37.2 | 24.7 | ||||
1100 °C | 41 | 59 | |||||
1200 °C | 45.6 | 53.2 | 1.1 | ||||
1300 °C | 46.5 | 0.4 | 53.1 |
Sintering Temperature (°C) | Element Composition (Atomic%) | ||||
---|---|---|---|---|---|
Ca | O | P | Mg | Ca/P Ratio | |
800 | 28.68 | 52.41 | 17.58 | 1.50 | 1.63 |
1000 | 37.12 | 51.14 | 21.40 | 1.58 | 1.73 |
1100 | 35.86 | 60.28 | 21.41 | 1.60 | 1.67 |
1200 | 27.71 | 50.73 | 18.19 | 1.72 | 1.52 |
1300 | 30.05 | 48.18 | 19.65 | 1.93 | 1.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bas, M.; Daglilar, S.; Kuskonmaz, N.; Kalkandelen, C.; Erdemir, G.; Kuruca, S.E.; Tulyaganov, D.; Yoshioka, T.; Gunduz, O.; Ficai, D.; et al. Mechanical and Biocompatibility Properties of Calcium Phosphate Bioceramics Derived from Salmon Fish Bone Wastes. Int. J. Mol. Sci. 2020, 21, 8082. https://doi.org/10.3390/ijms21218082
Bas M, Daglilar S, Kuskonmaz N, Kalkandelen C, Erdemir G, Kuruca SE, Tulyaganov D, Yoshioka T, Gunduz O, Ficai D, et al. Mechanical and Biocompatibility Properties of Calcium Phosphate Bioceramics Derived from Salmon Fish Bone Wastes. International Journal of Molecular Sciences. 2020; 21(21):8082. https://doi.org/10.3390/ijms21218082
Chicago/Turabian StyleBas, Merve, Sibel Daglilar, Nilgun Kuskonmaz, Cevriye Kalkandelen, Gokce Erdemir, Serap E. Kuruca, Dilshat Tulyaganov, Tomohiko Yoshioka, Oguzhan Gunduz, Denisa Ficai, and et al. 2020. "Mechanical and Biocompatibility Properties of Calcium Phosphate Bioceramics Derived from Salmon Fish Bone Wastes" International Journal of Molecular Sciences 21, no. 21: 8082. https://doi.org/10.3390/ijms21218082
APA StyleBas, M., Daglilar, S., Kuskonmaz, N., Kalkandelen, C., Erdemir, G., Kuruca, S. E., Tulyaganov, D., Yoshioka, T., Gunduz, O., Ficai, D., & Ficai, A. (2020). Mechanical and Biocompatibility Properties of Calcium Phosphate Bioceramics Derived from Salmon Fish Bone Wastes. International Journal of Molecular Sciences, 21(21), 8082. https://doi.org/10.3390/ijms21218082