Next Article in Journal
Isolation of Four Lytic Phages Infecting Klebsiella pneumoniae K22 Clinical Isolates from Spain
Previous Article in Journal
Crocetin Extracted from Saffron Shows Antitumor Effects in Models of Human Glioblastoma
Previous Article in Special Issue
Assessment of Radio-Induced Damage in Endothelial Cells Irradiated with 40 kVp, 220 kVp, and 4 MV X-rays by Means of Micro and Nanodosimetric Calculations
Open AccessArticle

Impact of Target Oxygenation on the Chemical Track Evolution of Ion and Electron Radiation

1
Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
2
Institut für Festkörperphysik, TUDarmstadt, 64289 Darmstadt, Germany
3
Trento Institute for Fundamental Physics and Applications (TIFPA), National Institute for Nuclear Physics, (INFN), 3812 Povo, Italy
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2020, 21(2), 424; https://doi.org/10.3390/ijms21020424
Received: 3 December 2019 / Revised: 4 January 2020 / Accepted: 7 January 2020 / Published: 9 January 2020
(This article belongs to the Special Issue Radiation Damage in Biomolecules and Cells)
The radiosensitivity of biological systems is strongly affected by the system oxygenation. On the nanoscopic scale and molecular level, this effect is considered to be strongly related to the indirect damage of radiation. Even though particle track radiolysis has been the object of several studies, still little is known about the nanoscopic impact of target oxygenation on the radical yields. Here we present an extension of the chemical module of the Monte Carlo particle track structure code TRAX, taking into account the presence of dissolved molecular oxygen in the target material. The impact of the target oxygenation level on the chemical track evolution and the yields of all the relevant chemical species are studied in water under different irradiation conditions: different linear energy transfer (LET) values, different oxygenation levels, and different particle types. Especially for low LET radiation, a large production of two highly toxic species ( HO 2 and O 2 ), which is not produced in anoxic conditions, is predicted and quantified in oxygenated solutions. The remarkable correlation between the HO 2 and O 2 production yield and the oxygen enhancement ratio observed in biological systems suggests a direct or indirect involvement of HO 2 and O 2 in the oxygen sensitization effect. The results are in agreement with available experimental data and previous computational approaches. An analysis of the oxygen depletion rate in different radiation conditions is also reported. The radiosensitivity of biological systems is strongly affected by the system oxygenation. On the nanoscopic scale and molecular level, this effect is considered to be strongly related to the indirect damage of radiation. Even though particle track radiolysis has been the object of several studies, still little is known about the nanoscopic impact of target oxygenation on the radical yields. Here we present an extension of the chemical module of the Monte Carlo particle track structure code TRAX, taking into account the presence of dissolved molecular oxygen in the target material. The impact of the target oxygenation level on the chemical track evolution and the yields of all the relevant chemical species are studied in water under different irradiation conditions: different linear energy transfer (LET) values, different oxygenation levels, and different particle types. Especially for low LET radiation, a large production of two highly toxic species ( HO 2 and O 2 ), which is not produced in anoxic conditions, is predicted and quantified in oxygenated solutions. The remarkable correlation between the HO 2 and O 2 production yield and the oxygen enhancement ratio observed in biological systems suggests a direct or indirect involvement of HO 2 and O 2 in the oxygen sensitization effect. The results are in agreement with available experimental data and previous computational approaches. An analysis of the oxygen depletion rate in different radiation conditions is also reported. View Full-Text
Keywords: radiation track chemistry; chemical track structure; oxygen effect; oxygen depletion; ion beam therapy; ROS; superoxide anion radiation track chemistry; chemical track structure; oxygen effect; oxygen depletion; ion beam therapy; ROS; superoxide anion
Show Figures

Figure 1

MDPI and ACS Style

Boscolo, D.; Krämer, M.; Fuss, M.C.; Durante, M.; Scifoni, E. Impact of Target Oxygenation on the Chemical Track Evolution of Ion and Electron Radiation. Int. J. Mol. Sci. 2020, 21, 424.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop