Temperature Regulation of Primary and Secondary Seed Dormancy in Rosa canina L.: Findings from Proteomic Analysis
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Plant Material
3.2. Seed Germination
3.3. Proteome Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kendall, S.; Penfield, S. Maternal and zygotic temperature signalling in the control of seed dormancy and germination. Seed Sci. Res. 2012, 22, S23–S29. [Google Scholar] [CrossRef]
- Hilhorst, H.W.M. The regulation of secondary dormancy. The membrane hypothesis revisite. Seed Sci. Res. 1998, 8, 77–90. [Google Scholar] [CrossRef]
- Finch-Savage, W.E.; Leubner-Metzger, G. Seed dormancy and the control of germination. N. Phytol. 2006, 171, 501–523. [Google Scholar] [CrossRef] [PubMed]
- Footitt, S.; Huang, Z.; Clay, H.A.; Mead, A.; Finch-Savage, W.E. Temperature, light and nitrate sensing coordinate Arabidopsis seed dormancy cycling, resulting in winter and summer annual phenotypes. Plant. J. 2013, 74, 1003–1015. [Google Scholar] [CrossRef] [PubMed]
- Murphey, M.; Kovach, K.; Elnacash, T.; He, H.; Bentsink, L.; Donohue, K. DOG1-imposed dormancy mediates germination responses to temperature cues. Environ. Exp. Bot. 2015, 112, 33–43. [Google Scholar] [CrossRef]
- Soltani, E.; Baskin, J.M.; Baskin, C.C. A review of the relationship between primary and secondary dormancy, with reference to the volunteer crop weed oilseed rape (Brassica napus). Weed Res. 2019, 59, 5–14. [Google Scholar] [CrossRef]
- Footitt, S.; Douterelo-Soler, I.; Clay, H.; Finch-Savage, W.E. Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. Proc. Natl. Acad. Sci. USA 2011, 108, 20236–20241. [Google Scholar] [CrossRef]
- Holdsworth, M.J.; Bentsink, L.; Soppe, W.J.J. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. N. Phytol. 2008, 179, 33–54. [Google Scholar] [CrossRef]
- Staszak, A.M.; Rewers, M.; Sliwinska, E.; Klupczynska, E.A.; Pawlowski, T. DNA synthesis pattern, proteome, and ABA and GA signalling in developing seeds of Norway maple (Acer platanoides). Funct. Plant Biol. 2019, 46, 152–164. [Google Scholar] [CrossRef]
- Basbouss-Serhal, I.; Leymarie, J.; Bailly, C. Fluctuation of Arabidopsis seed dormancy with relative humidity and temperature during dry storage. J. Exp. Bot. 2016, 67, 119–130. [Google Scholar] [CrossRef]
- Chang, G.; Wang, C.; Kong, X.-X.; Chen, Q.; Yang, Y.; Hu, X. AFP2 as the novel regulator breaks high-temperature-induced seeds secondary dormancy through ABI5 and SOM in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 2018, 501, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Chiu, R.S.; Saleh, Y.; Gazzarrini, S. Inhibition of FUSCA3 degradation at high temperature is dependent on ABA signaling and is regulated by the ABA/GA ratio. Plant Signal. Behav. 2016, 11, e1247137. [Google Scholar] [CrossRef] [PubMed]
- Ibarra, S.E.; Tognacca, R.S.; Dave, A.; Graham, I.A.; Sánchez, R.A.; Botto, J.F. Molecular mechanisms underlying the entrance in secondary dormancy of Arabidopsis seeds. Plant Cell Environ. 2015, 39, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Kępczyński, J.; Bihun, M.; Kępczyñska, E. Implication of ethylene in the release of secondary dormancy in Amaranthus caudatus L. seeds by gibberellins or cytokinin. Plant Growth Regul. 2006, 48, 119–126. [Google Scholar] [CrossRef]
- Kępczyński, J.; Cembrowska-Lech, D.; Sznigir, P. Interplay between nitric oxide, ethylene, and gibberellic acid regulating the release of Amaranthus retroflexus seed dormancy. Acta Physiol. Plant 2017, 39, 254. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Liu, Y.; Zhao, J.; Fu, J.; Ren, X.; Wang, G.; Wang, J. Exogenous auxin regulates multi-metabolic network and embryo development, controlling seed secondary dormancy and germination in Nicotiana tabacum L. BMC Plant Biol. 2016, 16, 41. [Google Scholar] [CrossRef]
- Footitt, S.; Ölçer-Footitt, H.; Hambidge, A.J.; Finch-Savage, W.E. A laboratory simulation of Arabidopsis seed dormancy cycling provides new insight into its regulation by clock genes and the dormancy-related genes DOG1, MFT, CIPK23 and PHYA. Plant Cell Environ. 2017, 40, 1474–1486. [Google Scholar] [CrossRef]
- Née, G.; Obeng-Hinneh, E.; Sarvari, P.; Nakabayashi, K.; Soppe, W.J. Secondary dormancy in Brassica napus is correlated with enhanced BnaDOG1 transcript levels. Seed Sci. Res. 2015, 25, 221–229. [Google Scholar] [CrossRef]
- Chiang, G.C.K.; Barua, D.; Dittmar, E.; Kramer, E.M.; De Casas, R.R.; Donohue, K. Pleiotropy in the wild: The dormancy gene DOG1 exerts cascading control on life cycles. Evolution 2013, 67, 883–893. [Google Scholar] [CrossRef]
- Suszka, B.; Bujarska-Borkowska, B. After-ripening, germination of seeds and seedling emergence of Rosa canina L. “Schmids Ideal” in relation to other rootstock selection of this species. Arboretum Kórnickie 1989, 34, 113–134. [Google Scholar]
- Suszka, B.; Bujarska-Borkowska, B. Seed after-ripening, germination and seedling emergence of Rosa canina L. and some of its rootstock selection. Arboretum Kórnickie 1987, 32, 231–296. [Google Scholar]
- Hilhorst, H.W. Definitions and hypotheses of seed dormancy. In Seed Development, Dormancy and Germination; Bradford, K.J., Nonogaki, H., Eds.; Wiley-Blackwell: Oxford, UK, 2007; pp. 50–71. [Google Scholar]
- Edwards, B.; Burghardt, L.T.; Kovach, K.E.; Donohue, K. Canalization of seasonal phenology in the presence of developmental variation: Seed dormancy cycling in an annual weed. Integr. Comp. Biol. 2017, 57, 1021–1039. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, F.; Chu, J.; Yi, X.; Fan, W.; Tang, T.; Chen, G.; Guo, Q.; Zhao, X. A transcriptome analysis reveals a role for the indole GLS-linked auxin biosynthesis in secondary dormancy in rapeseed (Brassica napus L.). BMC Plant Biol. 2019, 19, 264. [Google Scholar] [CrossRef] [PubMed]
- Fei, H.; Tsang, E.; Cutler, A.J. Gene expression during seed maturation in Brassica napus in relation to the induction of secondary dormancy. Genomics 2007, 89, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhao, X.; Zhang, L.; Tang, T.; Lu, C.; Chen, G.; Wang, X.; Bu, C.; Zhao, X. RNA-seq profiling the transcriptome of secondary seed dormancy in canola (Brassica napus L.). Chin. Sci. Bull. 2014, 59, 4341–4351. [Google Scholar] [CrossRef]
- Ishihama, Y.; Oda, Y.; Tabata, T.; Sato, T.; Nagasu, T.; Rappsilber, J.; Mann, M. Exponentially modified Protein Abundance Index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell. Proteom. 2005, 4, 1265–1272. [Google Scholar] [CrossRef]
- Staszak, A.M.; Pawlowski, T.A. Forest tree research in post genomic era. Introduction to systems biology of broadleaves. Dendrobiology 2012, 68, 113–123. [Google Scholar]
- Pawlowski, T.; Bergervoet, J.; Bino, R.; Groot, S.P.C. Cell cycle activity and β-tubulin accumulation during dormancy breaking of Acer platanoides L. seeds. Biol. Plant. 2004, 48, 211–218. [Google Scholar] [CrossRef]
- Bentsink, L.; Koornneef, M. Seed dormancy and germination. Arab. Book 2008, 6, e0119. [Google Scholar] [CrossRef]
- Née, G.; Xiang, Y.; Soppe, W.J. The release of dormancy, a wake-up call for seeds to germinate. Curr. Opin. Plant. Biol. 2017, 35, 8–14. [Google Scholar] [CrossRef]
- Rodríguez, J.L.; De Diego, J.G.; Rodríguez, F.D.; Cervantes, E. Mitochondrial structures during seed germination and early seedling development in Arabidopsis thaliana. Biologia 2015, 70, 1019–1025. [Google Scholar] [CrossRef]
- Czarna, M.; Kolodziejczak, M.; Janska, H. Mitochondrial proteome studies in seeds during germination. Proteomes 2016, 4, 19. [Google Scholar] [CrossRef] [PubMed]
- Shotwell, M.A.; Afonso, C.; Davies, E.; Chesnut, R.S.; Larkins, B.A. Molecular characterization of oat seed globulins. Plant Physiol. 1988, 87, 698–704. [Google Scholar] [CrossRef] [PubMed]
- Prewein, C.; Endemann, M.; Reinöhl, V.; Salaj, J.; Sunderlikova, V.; Wilhelm, E. Physiological and morphological characteristics during development of pedunculate oak (Quercus robur L.) zygotic embryos. Trees 2006, 20, 53–60. [Google Scholar] [CrossRef]
- Gruis, D.F.; Selinger, D.A.; Curran, J.M.; Jung, R. Redundant proteolytic mechanisms process seed storage proteins in the absence of seed-type members of the vacuolar processing enzyme family of cysteine proteases. Plant Cell 2002, 14, 2863–2882. [Google Scholar] [CrossRef]
- Krasuska, U.; Ciacka, K.; Orzechowski, S.; Fettke, J.; Bogatek, R.; Gniazdowska, A. Modification of the endogenous NO level influences apple embryos dormancy by alterations of nitrated and biotinylated protein patterns. Planta 2016, 244, 877–891. [Google Scholar] [CrossRef]
- Kandasamy, M.K.; Gilliland, L.U.; McKinney, E.C.; Meagher, R.B. One plant actin isovariant, ACT7, is induced by auxin and required for normal callus formation. Plant Cell 2001, 13, 1541–1554. [Google Scholar] [CrossRef]
- Gallardo, K.; Le Signor, C.; Vandekerckhove, J.; Thompson, R.D.; Burstin, J. Proteomics of Medicago truncatula seed development establishes the time frame of diverse metabolic processes related to reserve accumulation. Plant Physiol. 2003, 133, 664–682. [Google Scholar] [CrossRef]
- Deng, Z.J.; Hu, X.F.; Ai, X.R.; Yao, L.; Deng, S.M.; Pu, X.; Song, S.Q. Dormancy release of Cotinus coggygria seeds under a pre-cold moist stratification: An endogenous abscisic acid/gibberellic acid and comparative proteomic analysis. N. For. 2016, 47, 105–118. [Google Scholar] [CrossRef]
- Díaz-Camino, C.; Conde, R.; Ovsenek, N.; Villanueva, M.A. Actin expression is induced and three isoforms are differentially expressed during germination in Zea mays. J. Exp. Bot. 2005, 56, 557–565. [Google Scholar] [CrossRef]
- De Farias, E.T.; Da Silva, E.A.A.; Toorop, P.E.; Bewley, J.D.; Hilhorst, H.W.M. Expression studies in the embryo and in the micropylar endosperm of germinating coffee (Coffea arabica cv. Rubi) seeds. Plant Growth Regul. 2015, 75, 575–581. [Google Scholar] [CrossRef][Green Version]
- Gilliland, L.U.; Pawloski, L.C.; Kandasamy, M.K.; Meagher, R.B. Arabidopsis actin gene ACT7 plays an essential role in germination and root growth. Plant J. 2003, 33, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Park, M.R.; Wang, Y.-H.; Hasenstein, K.H. Profiling gene expression in germinating Brassica roots. Plant. Mol. Biol. Rep. 2014, 32, 541–548. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wang, W.-Q.; Song, B.-Y.; Deng, Z.-J.; Wang, Y.; Liu, S.-J.; Møller, I.M.; Song, S.-Q. Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation. Plant Physiol. 2015, 167, 1332–1350. [Google Scholar] [CrossRef]
- Haferkamp, I.; Fernie, A.R.; Neuhaus, H.E. Adenine nucleotide transport in plants: Much more than a mitochondrial issue. Trends Plant Sci. 2011, 16, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Da Fonseca-Pereira, P.; Neri-Silva, R.; Cavalcanti, J.H.F.; Brito, D.S.; Weber, A.P.; Araújo, W.L.; Nunes-Nesi, A. Data-mining bioinformatics: Connecting adenylate transport and metabolic responses to stress. Trends Plant Sci. 2018, 23, 961–974. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, C.; Plocharski, B.; Haferkamp, I.; Leroch, M.; Ewald, R.; Bauwe, H.; Riemer, J.; Herrmann, J.M.; Neuhaus, H.E. From endoplasmic reticulum to mitochondria: Absence of the Arabidopsis ATP antiporter endoplasmic reticulum adenylate transporter1 perturbs photorespiration. Plant Cell 2013, 25, 2647–2660. [Google Scholar] [CrossRef] [PubMed]
- Leroch, M.; Neuhaus, H.E.; Kirchberger, S.; Zimmermann, S.; Melzer, M.; Gerhold, J.; Tjaden, J. Identification of a Novel adenine nucleotide transporter in the endoplasmic reticulum of Arabidopsis. Plant Cell 2008, 20, 438–451. [Google Scholar] [CrossRef]
- Fu, S.-F.; Chen, P.-Y.; Nguyen, Q.T.T.; Huang, L.-Y.; Zeng, G.-R.; Huang, T.-L.; Lin, C.-Y.; Huang, H. Transcriptome profiling of genes and pathways associated with arsenic toxicity and tolerance in Arabidopsis. BMC Plant Biol. 2014, 14, 94. [Google Scholar] [CrossRef]
- Palmieri, F.; Pierri, C.L.; De Grassi, A.; Nunes-Nesi, A.; Fernie, A.R. Evolution, structure and function of mitochondrial carriers: A review with new insights. Plant J. 2011, 66, 161–181. [Google Scholar] [CrossRef]
- Lo, Y.-S.; Cheng, N.; Hsiao, L.-J.; Annamalai, A.; Jauh, G.-Y.; Wen, T.-N.; Dai, H.; Chiang, K.-S. Actin in mung bean mitochondria and implications for its function. Plant Cell 2011, 23, 3727–3744. [Google Scholar] [CrossRef]
- Senior, A.E.; Nadanaciva, S.; Weber, J. The molecular mechanism of ATP synthesis by F1F0-ATP synthase. Biochim. Biophys. Acta Bioenerg. 2002, 1553, 188–211. [Google Scholar] [CrossRef]
- Zaynab, M.; Pan, D.; Noman, A.; Fatima, M.; Abbas, S.; Umair, M.; Sharif, Y.; Chen, S.-P.; Chen, W. Transcriptome approach to address low seed germination in Cyclobalanopsis gilva to save forest ecology. Biochem. Syst. Ecol. 2018, 81, 62–69. [Google Scholar] [CrossRef]
- He, M.; Zhu, C.; Dong, K.; Zhang, T.; Cheng, Z.; Li, J.; Yan, Y. Comparative proteome analysis of embryo and endosperm reveals central differential expression proteins involved in wheat seed germination. BMC Plant Biol. 2015, 15, 97. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, T. Proteomics of European beech (Fagus sylvatica L.) seed dormancy breaking: Influence of abscisic and gibberellic acids. Proteomics 2007, 7, 2246–2257. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, T. Proteome analysis of Norway maple (Acer platanoides L.) seeds dormancy breaking and germination: Influence of abscisic and gibberellic acids. BMC Plant Biol. 2009, 9, 48. [Google Scholar] [CrossRef]
- Pawlowski, T.; Staszak, A.M. Analysis of the embryo proteome of sycamore (Acer pseudoplatanus L.) seeds reveals a distinct class of proteins regulating dormancy release. J. Plant Physiol. 2016, 195, 9–22. [Google Scholar] [CrossRef]
- Wojtyla, Ł.; Kosmala, A.; Garnczarska, M. Lupine embryo axes under salinity stress. II. Mitochondrial proteome response. Acta Physiol. Plant 2013, 35, 2383–2392. [Google Scholar] [CrossRef][Green Version]
- Yin, G.; Sun, H.; Xin, X.; Qin, G.; Liang, Z.; Jing, X. Mitochondrial damage in the soybean seed axis during imbibition at chilling temperatures. Plant Cell Physiol. 2009, 50, 1305–1318. [Google Scholar] [CrossRef]
- Pawlowski, T. Proteomic approach to analyze dormancy breaking of tree seeds. Plant. Mol. Biol. 2010, 73, 15–25. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Candiano, G.; Bruschi, M.; Musante, L.; Santucci, L.; Ghiggeri, G.M.; Carnemolla, B.; Orecchia, P.; Zardi, L.; Righetti, P.G. Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 2004, 25, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Pawlowski, T.; Staszak, A.M.; Karolewski, P.; Giertych, M.J. Plant development reprogramming by cynipid gall wasp: Proteomic analysis. Acta Physiol. Plant 2017, 39, 114. [Google Scholar] [CrossRef]
Spot a | Protein b [Species] | Accession c | Theoretical | Experimental | Score | SC d | All/No Repeat e | Unic/No Repeat f | emPAI g | ||
---|---|---|---|---|---|---|---|---|---|---|---|
MW | pI | MW | pI | ||||||||
9 | succinyl-CoA ligase beta subunit [Arabidopsis thaliana] | AAM65138.1 | 46 | 6.1 | 40 | 5.3 | 166 | 5 | 3/3 | 3/3 | 0.2 |
10 | actin [Lycoris longituba] | AFP44112.1 | 42 | 5.3 | 41 | 5.3 | 751 | 29 | 11/9 | 0/0 | 1.72 |
11 | elongation factor E1 [Brassica oleracea var. capitata] | AFL69959.1 | 49 | 6.1 | 40 | 5.3 | 725 | 21 | 10/9 | 9/8 | 0.98 |
28 | temperature-induced lipocalin [Solanum tuberosum] | ABB02386.1 | 21 | 6.0 | 16 | 4.9 | 118 | 10 | 2/2 | 2/2 | 0.48 |
41 | legumin B-like [Fragaria vesca subsp. vesca] | XP_004294115.1 | 57 | 6.8 | 36 | 5.2 | 483 | 16 | 31/6 | 16/3 | 0.56 |
44 | adenosine kinase 2 [Glycine soja] | KHN02332.1 | 38 | 5.5 | 37 | 5 | 99 | 3 | 1/1 | 1/1 | 0.12 |
79 | actin-7 [Musa acuminata subsp. malaccensis] | XP_009383456.1 | 42 | 5.3 | 41 | 5.2 | 350 | 16 | 5/5 | 0/0 | 0.65 |
120 | cytosolic class I small heat-shock protein HSP17.5 [Rosa hybrid cultivar] | ABO84841.1 | 17 | 6.0 | 15 | 5.8 | 562 | 46 | 16/8 | 2/2 | 5.64 |
152 | mitochondrial ADP/ATP translocator [Chlamydomonas incerta] | ABA01103.1 | 34 | 9.7 | 37 | 5.0 | 357 | 15 | 5/5 | 1/1 | 0.86 |
167 | legumin B-like [F. vesca subsp. vesca] | XP_004294115.1 | 57 | 6.3 | 36 | 5.5 | 493 | 16 | 40/6 | 13/3 | 0.56 |
196 | 2-dehydro-3-deoxyphosphooctonate aldolase 1 [F. vesca subsp. vesca] | XP_004306551.1 | 32 | 6.6 | 32 | 6.1 | 590 | 33 | 9/8 | 9/9 | 2.24 |
197 | ATPase alpha subunit, partial (mitochondrion) [Chlorokybus atmophyticus] | ABI54626.1 | 38 | 9.3 | 24 | 7 | 131 | 5 | 2/2 | 2/2 | 0.12 |
199 | triosephosphate isomerase, cytosolic [Zea mays] | ACG24648.1 | 27 | 5.5 | 23 | 6.6 | 283 | 14 | 3/3 | 1/1 | 0.58 |
200 | triosephosphate isomerase, cytosolic [Z. mays] | ACG24648.1 | 27 | 5.5 | 25 | 6.8 | 374 | 19 | 4/4 | 2/2 | 0.85 |
352 | glyceraldehyde 3-phosphate dehydrogenase [R. multiflora] | AEQ75490.1 | 37 | 7.7 | 27 | 6.9 | 562 | 33 | 11/10 | 1/1 | 1.51 |
353 | oil body-associated protein 1A-like [R. chinensis] | XP_024167493.1 | 27 | 5.9 | 26 | 7.1 | 408 | 19 | 6/5 | 5/4 | 1.19 |
Spot a | Protein b | Mean % Volume (± s.d.) c | |||
---|---|---|---|---|---|
Dry | Warm | Cold | Secondary | ||
28 | temperature-induced lipocalin | 0.09 ± 0.07 c | 0.22 ± 0.08 bc | 0.39 ± 0.21 ab | 0.46 ± 0.11 a |
41 | legumin B-like | 1.16 ± 0.21 b | 1.53 ± 0.30 b | 2.25 ± 0.49 a | 1.49 ± 0.38 b |
79 | actin-7 | 0.06 ± 0.01 b | 0.12 ± 0.02 ab | 0.20 ± 0.11 a | 0.15 ± 0.05 ab |
120 | cytosolic class I small heat-shock protein HSP17.5 | 0.09 ± 0.01 b | 0.08 ± 0.01 b | 0.12 ± 0.06 ab | 0.16 ± 0.03 a |
152 | mitochondrial ADP/ATP translocator | 0.63 ± 0.16 b | 0.85 ± 0.21 ab | 1.15 ± 0.24 a | 0.91 ± 0.20 ab |
167 | legumin B-like | 4.96 ± 0.60 a | 2.84 ± 0.82 ab | 2.38 ± 1.11 b | 2.23 ± 1.43 b |
196 | 2-dehydro-3-deoxyphosphooctonate aldolase 1 | 0.08 ± 0.04 a | 0.03 ± 0.04 ab | 0 b | 0 B |
197 | ATPase alpha subunit | 0 b | 0.11 ± 0.10 a | 0.07 ± 0.10 ab | 0.04 ± 0.06 ab |
199 | triosephosphate isomerase | 0 b | 0.05 ± 0.03 a | 0.001 ± 0.001 b | 0.02 ± 0.02 ab |
200 | triosephosphate isomerase | 0 b | 0.07 ± 0.02 a | 0.05 ± 0.07 ab | 0.06 ± 0.08 ab |
352 | glyceraldehyde 3-phosphate dehydrogenase | 0.05 ± 0.04 a | 0 b | 0 b | 0 B |
353 | oil body-associated protein 1A-like | 0.13 ± 0.21 a | 0 b | 0 b | 0 B |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawłowski, T.A.; Bujarska-Borkowska, B.; Suszka, J.; Tylkowski, T.; Chmielarz, P.; Klupczyńska, E.A.; Staszak, A.M. Temperature Regulation of Primary and Secondary Seed Dormancy in Rosa canina L.: Findings from Proteomic Analysis. Int. J. Mol. Sci. 2020, 21, 7008. https://doi.org/10.3390/ijms21197008
Pawłowski TA, Bujarska-Borkowska B, Suszka J, Tylkowski T, Chmielarz P, Klupczyńska EA, Staszak AM. Temperature Regulation of Primary and Secondary Seed Dormancy in Rosa canina L.: Findings from Proteomic Analysis. International Journal of Molecular Sciences. 2020; 21(19):7008. https://doi.org/10.3390/ijms21197008
Chicago/Turabian StylePawłowski, Tomasz A., Barbara Bujarska-Borkowska, Jan Suszka, Tadeusz Tylkowski, Paweł Chmielarz, Ewelina A. Klupczyńska, and Aleksandra M. Staszak. 2020. "Temperature Regulation of Primary and Secondary Seed Dormancy in Rosa canina L.: Findings from Proteomic Analysis" International Journal of Molecular Sciences 21, no. 19: 7008. https://doi.org/10.3390/ijms21197008
APA StylePawłowski, T. A., Bujarska-Borkowska, B., Suszka, J., Tylkowski, T., Chmielarz, P., Klupczyńska, E. A., & Staszak, A. M. (2020). Temperature Regulation of Primary and Secondary Seed Dormancy in Rosa canina L.: Findings from Proteomic Analysis. International Journal of Molecular Sciences, 21(19), 7008. https://doi.org/10.3390/ijms21197008