Diseases Associated with Defects in tRNA CCA Addition
Abstract
:1. Introduction
2. TRNT1 and tRNA Maturation
2.1. TRNT1 Structure and Mechanism of Action
2.2. TRNT1 and tRNA Quality Control
3. Mitochondria and Disease
4. TRNT1 and Disease
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GJB2 | Gap junction protein beta 2 |
MRT2 | Mental retardation autosomal recessive 2 |
SIFD | Sideroblastic anemia with B-cell immunodeficiency, periodic fevers, and developmental delay |
tRNA | Transfer ribonucleic acid |
TRNT1 | tRNA nucleotidyl transferase |
References
- Chinnery, P.F. Mitochondrial Disorders Overview. In GeneReviews; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Eds.; University of Washington: Seattle, WA, USA, 1993; pp. 1993–2000. [Google Scholar]
- Pagliarini, D.J.; Calvo, S.E.; Chang, B.; Sheth, S.A.; Vafai, S.B.; Ong, S.E.; Walford, G.A.; Sugiana, C.; Boneh, A.; Chen, W.K.; et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008, 134, 112–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koopman, W.J.; Willems, P.H.; Smeitink, J.A. Monogenic mitochondrial disorders. N. Engl. J. Med. 2012, 366, 1132–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiseman, D.H.; May, A.; Jolles, S.; Connor, P.; Powell, C.; Heeney, M.M.; Giardina, P.J.; Klaassen, R.J.; Chakraborty, P.; Geraghty, M.T.; et al. A novel syndrome of congenital sideroblastic anemia, B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD). Blood 2013, 122, 112–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boczonadi, V.; Ricci, G.; Horvath, R. Mitochondrial DNA transcription and translation: Clinical syndromes. Essays Biochem. 2018, 62, 321–340. [Google Scholar] [PubMed]
- Kirchner, S.; Ignatova, Z. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease. Nat. Rev. Genet. 2015, 16, 98–112. [Google Scholar] [CrossRef]
- Hopper, A.K.; Phizicky, E.M. tRNA transfers to the limelight. Genes Dev. 2003, 17, 162–180. [Google Scholar] [CrossRef] [Green Version]
- Nagaike, T.; Suzuki, T.; Tomari, Y.; Takemoto-Hori, C.; Negayama, F.; Watanabe, K.; Ueda, T. Identification and characterization of mammalian mitochondrial tRNA nucleotidyltransferases. J. Biol. Chem. 2001, 276, 40041–40049. [Google Scholar] [CrossRef] [Green Version]
- Shi, P.Y.; Maizels, N.; Weiner, A.M. CCA addition by tRNA nucleotidyltransferase: Polymerization without translocation? EMBO J. 1998, 17, 3197–3206. [Google Scholar] [CrossRef] [Green Version]
- Mohan, A.; Whyte, S.; Wang, X.; Nashimoto, M.; Levinger, L. The 3′ end CCA of mature tRNA is an antideterminant for eukaryotic 3′-tRNase. RNA 1999, 5, 245–256. [Google Scholar] [CrossRef]
- Belostotsky, R.; Frishberg, Y.; Entelis, N. Human mitochondrial tRNA quality control in health and disease: A channelling mechanism? RNA Biol. 2012, 9, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.M. CCA addition to tRNA: Implications for tRNA quality control. IUBMB Life 2010, 62, 251–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augustin, M.A.; Reichert, A.S.; Betat, H.; Huber, R.; Morl, M.; Steegborn, C. Crystal structure of the human CCA-adding enzyme: Insights into template-independent polymerization. J. Mol. Biol. 2003, 328, 985–994. [Google Scholar] [CrossRef]
- Feng, W.; Hopper, A.K. A Los1p-independent pathway for nuclear export of intronless tRNAs in Saccharomycescerevisiae. Proc. Natl. Acad. Sci. USA 2002, 99, 5412–5417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilusz, J.E.; Whipple, J.M.; Phizicky, E.M.; Sharp, P.A. tRNAs marked with CCACCA are targeted for degradation. Science 2011, 334, 817–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuhn, C.D.; Wilusz, J.E.; Zheng, Y.; Beal, P.A.; Joshua-Tor, L. On-enzyme refolding permits small RNA and tRNA surveillance by the CCA-adding enzyme. Cell 2015, 160, 644–658. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.D.; Tomita, K.; Suzuki, T.; Weiner, A.M. U2 small nuclear RNA is a substrate for the CCA-adding enzyme (tRNA nucleotidyltransferase). J. Biol. Chem. 2002, 277, 3447–3455. [Google Scholar] [CrossRef] [Green Version]
- Tomita, K.; Yamashita, S. Molecular mechanisms of template-independent RNA polymerization by tRNA nucleotidyltransferases. Front. Genet. 2014, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Betat, H.; Morl, M. The CCA-adding enzyme: A central scrutinizer in tRNA quality control. Bioessays 2015, 37, 975–982. [Google Scholar] [CrossRef]
- Hull, S.; Malik, A.N.; Arno, G.; Mackay, D.S.; Plagnol, V.; Michaelides, M.; Mansour, S.; Albanese, A.; Brown, K.T.; Holder, G.E.; et al. Expanding the Phenotype of TRNT1-Related Immunodeficiency to Include Childhood Cataract and Inner Retinal Dysfunction. JAMA Ophthalmol. 2016, 134, 1049–1053. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, C.; Lunse, C.E.; Morl, M. tRNA Modifications: Impact on Structure and Thermal Adaptation. Biomolecules 2017, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- DiMauro, S. Mitochondrial myopathies. Curr. Opin. Rheumatol. 2006, 18, 636–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiMauro, S.; Gurgel-Giannetti, J. The expanding phenotype of mitochondrial myopathy. Curr. Opin. Neurol. 2005, 18, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Dimauro, S.; Davidzon, G. Mitochondrial DNA and disease. Ann. Med. 2005, 37, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Moreira, P.I.; Zhu, X.; Wang, X.; Lee, H.G.; Nunomura, A.; Petersen, R.B.; Perry, G.; Smith, M.A. Mitochondria: A therapeutic target in neurodegeneration. Biochim. Biophys. Acta 2010, 1802, 212–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Agarwal, S.; Heyman, J.A.; Matson, S.; Heidtman, M.; Piccirillo, S.; Umansky, L.; Drawid, A.; Jansen, R.; Liu, Y.; et al. Subcellular localization of the yeast proteome. Genes Dev. 2002, 16, 707–719. [Google Scholar] [CrossRef] [Green Version]
- Foster, L.J.; de Hoog, C.L.; Zhang, Y.; Zhang, Y.; Xie, X.; Mootha, V.K.; Mann, M. A mammalian organelle map by protein correlation profiling. Cell 2006, 125, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Levinger, L.; Morl, M.; Florentz, C. Mitochondrial tRNA 3′ end metabolism and human disease. Nucleic Acids Res. 2004, 32, 5430–5441. [Google Scholar] [CrossRef] [Green Version]
- Abbott, J.A.; Francklyn, C.S.; Robey-Bond, S.M. Transfer RNA and human disease. Front. Genet. 2014, 5, 158. [Google Scholar] [CrossRef] [Green Version]
- Sprinzl, M.; Cramer, F. The -C-C-A end of tRNA and its role in protein biosynthesis. Prog. Nucleic Acid Res. Mol. Biol. 1979, 22, 1–69. [Google Scholar]
- Higgins, J.J.; Pucilowska, J.; Lombardi, R.Q.; Rooney, J.P. Candidate genes for recessive non-syndromic mental retardation on chromosome 3p (MRT2A). Clin. Genet. 2004, 65, 496–500. [Google Scholar] [CrossRef]
- Jovov, B.; Araujo-Perez, F.; Sigel, C.S.; Stratford, J.K.; McCoy, A.N.; Yeh, J.J.; Keku, T. Differential gene expression between African American and European American colorectal cancer patients. PLoS ONE 2012, 7, e30168. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, P.K.; Schmitz-Abe, K.; Kennedy, E.K.; Mamady, H.; Naas, T.; Durie, D.; Campagna, D.R.; Lau, A.; Sendamarai, A.K.; Wiseman, D.H.; et al. Mutations in TRNT1, encoding the CCA-adding enzyme, cause congenital sideroblastic anemia with B cell immunodeficiency, periodic fevers and developmental delay (SIFD). Blood 2014, 5, 2008–2014. [Google Scholar]
- Sasarman, F.; Thiffault, I.; Weraarpachai, W.; Salomon, S.; Maftei, C.; Gauthier, J.; Ellazam, B.; Webb, N.; Antonicka, H.; Janer, A.; et al. The 3′ addition of CCA to mitochondrial tRNASer(AGY) is specifically impaired in patients with mutations in the tRNA nucleotidyl transferase TRNT1. Hum. Mol. Genet. 2015, 4, 2841–2847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wedatilake, Y.; Niazi, R.; Fassone, E.; Powell, C.A.; Pearce, S.; Plagnol, V.; Saldanha, J.W.; Kleta, R.; Chong, W.K.; Footitt, E.; et al. TRNT1 deficiency: Clinical, biochemical and molecular genetic features. Orphanet J. Rare Dis. 2016, 11, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liwak-Muir, U.; Mamady, H.; Naas, T.; Wylie, Q.; McBride, S.; Lines, M.; Michaud, J.; Baird, S.D.; Chakraborty, P.K.; Holcik, M. Impaired activity of CCA-adding enzyme TRNT1 impacts OXPHOS complexes and cellular respiration in SIFD patient-derived fibroblasts. Orphanet J. Rare Dis. 2016, 11, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeLuca, A.P.; Whitmore, S.S.; Barnes, J.; Sharma, T.P.; Westfall, T.A.; Scott, C.A.; Weed, M.C.; Wiley, J.S.; Wiley, L.A.; Johnston, R.M.; et al. Hypomorphic mutations in TRNT1 cause retinitis pigmentosa with erythrocytic microcytosis. Hum. Mol. Genet. 2016, 25, 44–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finsterer, J.; Zarrouk-Mahjoub, S.; Daruich, A. The Eye on Mitochondrial Disorders. J. Child Neurol. 2016, 31, 652–662. [Google Scholar] [CrossRef] [Green Version]
- Frans, G.; Moens, L.; Schaballie, H.; Wuyts, G.; Liston, A.; Poesen, K.; Janssens, A.; Rice, G.I.; Crow, Y.J.; Meyts, I.; et al. Homozygous N-terminal missense mutation in TRNT1 leads to progressive B-cell immunodeficiency in adulthood. J. Allergy Clin. Immunol. 2017, 139, 360–363. [Google Scholar] [CrossRef] [Green Version]
- Lougaris, V.; Chou, J.; Baronio, M.; Gazzurelli, L.; Lorenzini, T.; Soresina, A.; Moratto, D.; Badolato, R.; Seleman, M.; Bellettato, M.; et al. Novel biallelic TRNT1 mutations resulting in sideroblastic anemia, combined B and T cell defects, hypogammaglobulinemia, recurrent infections, hypertrophic cardiomyopathy and developmental delay. Clin. Immunol. 2018, 188, 20–22. [Google Scholar] [CrossRef]
- Barton, C.; Kausar, S.; Kerr, D.; Bitetti, S.; Wynn, R. SIFD as a novel cause of severe fetal hydrops and neonatal anaemia with iron loading and marked extramedullary haemopoiesis. J. Clin. Pathol. 2018, 71, 275–278. [Google Scholar] [CrossRef]
- Giannelou, A.; Wang, H.; Zhou, Q.; Park, Y.H.; Abu-Asab, M.S.; Ylaya, K.; Stone, D.L.; Sediva, A.; Sleiman, R.; Sramkova, L.; et al. Aberrant tRNA processing causes an autoinflammatory syndrome responsive to TNF inhibitors. Ann. Rheum. Dis. 2018, 77, 612–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bader-Meunier, B.; Rieux-Laucat, F.; Touzot, F.; Fremond, M.L.; Andre-Schmutz, I.; Fraitag, S.; Bodemer, C. Inherited Immunodeficiency: A New Association With Early-Onset Childhood Panniculitis. Pediatrics 2018, 141, S496–S500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leibovitch, M.; Hanic-Joyce, P.J.; Joyce, P.B.M. In vitro studies of disease-linked variants of human tRNA nucleotidyltransferase reveal decreased thermal stability and altered catalytic activity. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2018, 1866, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Leibovitch, M.; Reid, N.E.; Victoria, J.; Hanic-Joyce, P.J.; Joyce, P.B.M. Analysis of the pathogenic I326T variant of human tRNA nucleotidyltransferase reveals reduced catalytic activity and thermal stability in vitro linked to a conformational change. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2019, 1867, 616–626. [Google Scholar] [CrossRef] [PubMed]
Clinical Features | Cases (Total Number) | % | Reference | |||||||
---|---|---|---|---|---|---|---|---|---|---|
[20] | [35] | [39] | [40] | [41] | [42] | [43] | ||||
General and administrative site disorder | 28/35 | 80.00% | ||||||||
Febrile illness | 26/35 | 74.29% | 1/3 | 14/18 | 0/1 | 1/1 | 0/2 | 9/9 | 1/1 | |
Developmental delay | 25/34 | 73.53% | 0/3 | 14/18 | 1/1 (mild) | 1/1 | 1/2 (mild) | 8/9 | ||
Blood and lymphatic system disorder | 23/35 | 65.71% | ||||||||
Sideroblastic anemia | 23/35 | 65.71% | 0/3 | 13/18 | 0/1 | 1/1 | 1/2 | 7/9 | 1/1 | |
Splenomegaly | 10/29 | 34.48% | 4/18 | 1/2 (severe) | 6/9 | |||||
Gastrointestinal disorders | 19/29 | 65.52% | ||||||||
Inflammatory bowel disease | 1/1 | 100.00% | 1/1 | |||||||
Diarrhoea (is this IBD?) | 15/28 | 53.57% | 8/18 | 1/1 | 7/9 | |||||
Vomiting | 11/27 | 40.74% | 7/18 | 4/9 | ||||||
Pancreatic insufficiency | 3/18 | 16.67% | 3/18 | 2/9 | ||||||
Gastrointestinal symptoms | 10/10 | 100.00% | 1/1 | 9/9 | ||||||
Nervous system disorder | 14/31 | 45.16% | ||||||||
Sensorineural hearing loss | 13/31 | 41.94% | 1/3 | 7/18 | 1/1 | 4/9 | ||||
Seizures | 9/27 | 33.33% | 7/18 | 2/9 | ||||||
Ataxia | 5/18 | 27.78% | 5/18 | |||||||
Hypotonia | 6/27 | 22.22% | 5/18 | 1/9 | ||||||
Acute encephalopathy | 2/18 | 11.11% | 2/18 | |||||||
Poor balance | 5/12 | 41.67% | 2/3 | 1/9 | ||||||
Congenital, familial and genetic disorders | 15/33 | 51.51% | ||||||||
Microcephaly | 3/3 | 100.00% | 3/3 | |||||||
Villous atrophy | 2/18 | 11.11% | 2/18 | |||||||
Dysmorphic features | 4/12 | 33.33% | 1/1 | 0/2 | 3/9 | |||||
Retinitis pigmentosa | 10/27 | 37.04% | 6/18 | 4/9 | ||||||
Congenital anemia of unknown cause | 1/2 | 50.00% | 1/2 | |||||||
Eye disorder | 6/13 | 46.15% | ||||||||
Cataracts | 6/13 | 46.15% | 3/3 | 1/1 | 2/9 | |||||
Skin and subcutaneous diseases | 11/31 | 35.48% | ||||||||
Brittle hair | 5/18 | 27.78% | 5/18 | |||||||
Sparse hair | 4/12 | 33.33% | 3/3 | 2/9 | ||||||
Panniculitis | 1/1 | 100.00% | 1/1 | |||||||
Hepatobiliary disorders | 10/29 | 34.48% | ||||||||
Hepatomegaly | 10/29 | 34.48% | 4/18 | 1/2 | 5/9 | |||||
Renal and urinary disorder | 5/18 | 27.78% | ||||||||
Nephrocalcinosis | 5/18 | 27.78% | 5/18 | |||||||
Renal tubulopathy | 4/18 | 22.22% | 4/18 | |||||||
Cardiac disorders | 2/19 | 10.53% | ||||||||
Cardiomyopathy | 2/19 | 10.53% | 1/18 | 1/1 | ||||||
Pregnancy, puerperium and perinatal conditions | 1/2 | 50.00% | ||||||||
Fetal hydrops | 1/2 | 50.00% | 1/2 | |||||||
Reproductive system and breast disorders | 1/2 | 50.00% | ||||||||
Ovarian failure | 1/2 | 50.00% | 1/2 * | |||||||
Laboratory investigation | ||||||||||
Low or low-normal hemoglobin | 16/18 | 88.89% | 16/18 | |||||||
Microcytosis | 24/25 | 96.00% | 1/1 | 16/18 | 3/3 | 1/1 | 2/9 | |||
B lymphopenia with or without Hypogammaglobulinemia | 22/31 | 70.97% | 1/1 | 12/18 | 1/1 | 6/9 | 1/2 | |||
Hypogammaglobulinemia without B lymphopenia | 3/3 | 100.00% | 3/3 | |||||||
Anisocytosis | 9/18 | 50.00% | 9/18 | |||||||
High lactate | 6/18 | 33.33% | 6/18 | |||||||
Metabolic acidosis | 5/18 | 27.78% | 5/18 | |||||||
High alanine | 3/18 | 16.67% | 3/18 | |||||||
Abnormal retinal ERG | 3/3 | 100.00% | 3/3 | |||||||
T cell defects | 3/10 | 30.00% | 1/1 | 2/9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slade, A.; Kattini, R.; Campbell, C.; Holcik, M. Diseases Associated with Defects in tRNA CCA Addition. Int. J. Mol. Sci. 2020, 21, 3780. https://doi.org/10.3390/ijms21113780
Slade A, Kattini R, Campbell C, Holcik M. Diseases Associated with Defects in tRNA CCA Addition. International Journal of Molecular Sciences. 2020; 21(11):3780. https://doi.org/10.3390/ijms21113780
Chicago/Turabian StyleSlade, Angelo, Ribal Kattini, Chloe Campbell, and Martin Holcik. 2020. "Diseases Associated with Defects in tRNA CCA Addition" International Journal of Molecular Sciences 21, no. 11: 3780. https://doi.org/10.3390/ijms21113780
APA StyleSlade, A., Kattini, R., Campbell, C., & Holcik, M. (2020). Diseases Associated with Defects in tRNA CCA Addition. International Journal of Molecular Sciences, 21(11), 3780. https://doi.org/10.3390/ijms21113780