Association between Polymorphisms of OCT1 and Metabolic Response to Metformin in Women with Polycystic Ovary Syndrome
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Insulin Sensitivity Analysis
4.3. Genotyping
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dumesic, D.A.; Oberfield, S.E.; Stener-Victorin, E.; Marshall, J.C.; Laven, J.S.; Legro, R.S. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr. Rev. 2015, 36, 487–525. [Google Scholar] [CrossRef] [PubMed]
- Stepto, N.K.; Cassar, S.; Joham, A.E.; Hutchison, S.K.; Harrison, C.L.; Goldstein, R.F.; Teede, H.J. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Hum. Reprod. 2013, 28, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Sirmans, S.M.; Pate, K.A. Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin. Epidemiol. 2013, 6, 1–13. [Google Scholar] [CrossRef]
- Teede, H.; Deeks, A.; Moran, L. Polycystic ovary syndrome: A complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010, 8, 41. [Google Scholar] [CrossRef]
- Young, J.M.; McNeilly, A.S. Theca: The forgotten cell of the ovarian follicle. Reproduction 2010, 140, 489–504. [Google Scholar] [CrossRef]
- Heimark, D.; McAllister, J.; Larner, J. Decreased myo-inositol to chiro-inositol (m/c) ratios and increased m/c epimerase activity in pcos theca cells demonstrate increased insulin sensitivity compared to controls. Endocr. J. 2014, 61, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, A.; Dragotto, J.; Giuliani, A.; Bizzarri, M. Myo-inositol and D-chiro-inositol (40:1) reverse histological and functional features of polycystic ovary syndrome in a mouse model. J. Cell. Physiol. 2019, 234, 9387–9398. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Wang, Y.; Wu, X.; Gao, L.; Hou, L.; Erkkola, R. Insulin resistance directly contributes to androgenic potential within ovarian theca cells. Fertil. Steril. 2009, 91, 1990–1997. [Google Scholar] [CrossRef]
- Palomba, S.; Falbo, A.; Zullo, F.; Orio, F. Evidence-based and potential benefits of metformin in the polycystic ovary syndrome: A comprehensive review. Endocr. Rev. 2009, 30, 1–50. [Google Scholar] [CrossRef]
- Naderpoor, N.; Shorakae, S.; de Courten, B.; Misso, M.L.; Moran, L.J.; Teede, H.J. Metformin and lifestyle modification in polycystic ovary syndrome: Systematic review and meta-analysis. Hum. Reprod. Update 2015, 21, 560–574. [Google Scholar] [CrossRef] [PubMed]
- Pasquali, R.; Gambineri, A. Insulin-sensitizing agents in polycystic ovary syndrome. Eur. J. Endocrinol. 2006, 154, 763–775. [Google Scholar] [CrossRef] [PubMed]
- Morin-Papunen, L.; Rantala, A.S.; Unkila-Kallio, L.; Tiitinen, A.; Hippeläinen, M.; Perheentupa, A.; Tinkanen, H.; Bloigu, R.; Puukka, K.; Ruokonen, A.; et al. Metformin improves pregnancy and live-birth rates in women with polycystic ovary syndrome (PCOS): A multicenter, double-blind, placebo-controlled randomized trial. J. Clin. Endocrinol. Metab. 2012, 97, 1492–1500. [Google Scholar] [CrossRef] [PubMed]
- Schweighofer, N.; Lerchbaum, E.; Trummer, O.; Schwetz, V.; Pieber, T.; Obermayer-Pietsch, B. Metformin resistance alleles in polycystic ovary syndrome: Pattern and association with glucose metabolism. Pharmacogenomics 2014, 15, 305–317. [Google Scholar] [CrossRef]
- Wang, D.S.; Jonker, J.W.; Kato, Y.; Kusuhara, H.; Schinkel, A.H.; Sugiyama, Y. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J. Pharmacol. Exp. Ther. 2002, 302, 510–515. [Google Scholar] [CrossRef] [PubMed]
- Dresser, M.J.; Leabman, M.K.; Giacomini, K.M. Transporters involved in the elimination of drugs in the kidney: Organic anion transporters and organic cation transporters. J. Pharm. Sci. 2001, 90, 397–421. [Google Scholar] [CrossRef]
- Zolk, O. Disposition of metformin: Variability due to polymorphisms of organic cation transporters. Ann. Med. 2012, 44, 119–129. [Google Scholar] [CrossRef]
- Reitman, M.L.; Schadt, E.E. Pharmacogenetics of metformin response: A step in the path toward personalized medicine. J. Clin. Investig. 2007, 117, 1226–1229. [Google Scholar] [CrossRef] [PubMed]
- Tzvetkov, M.V.; Vormfelde, S.V.; Balen, D.; Meineke, I.; Schmidt, T.; Sehrt, D.; Sabolic, I.; Koepsell, H.; Brockmoller, J. The effects of genetic polymorphisms in the organic cation transporters oct1, oct2, and oct3 on the renal clearance of metformin. Clin. Pharmacol. Ther. 2009, 86, 299–306. [Google Scholar] [CrossRef]
- Takane, H.; Shikata, E.; Otsubo, K.; Higuchi, S.; Ieiri, I. Polymorphism in human organic cation transporters and metformin action. Pharmacogenomics 2008, 9, 415–422. [Google Scholar] [CrossRef]
- Graham, G.G.; Punt, J.; Arora, M.; Day, R.O.; Doogue, M.P.; Duong, J.K.; Furlong, T.J.; Greenfield, J.R.; Greenup, L.C.; Kirkpatrick, C.M.; et al. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet. 2011, 50, 81–98. [Google Scholar] [CrossRef]
- Chen, L.; Pawlikowski, B.; Schlessinger, A.; More, S.S.; Stryke, D.; Johns, S.J.; Portman, M.A.; Chen, E.; Ferrin, T.E.; Sali, A.; et al. Role of organic cation transporter 3 (slc22a3) and its missense variants in the pharmacologic action of metformin. Pharmacogenet. Genom. 2010, 20, 687–699. [Google Scholar] [CrossRef]
- Ou, H.-T.; Chen, P.-C.; Wu, M.-H.; Lin, C.-Y. Metformin improved health-related quality of life in ethnic chinese women with polycystic ovary syndrome. Health Qual. Life Outcomes 2016, 14, 119. [Google Scholar] [CrossRef]
- Johnson, N.P. Metformin use in women with polycystic ovary syndrome. Ann. Transl. Med. 2014, 2, 56. [Google Scholar]
- Gambineri, A.; Tomassoni, F.; Gasparini, D.I.; Di Rocco, A.; Mantovani, V.; Pagotto, U.; Altieri, P.; Sanna, S.; Fulghesu, A.M.; Pasquali, R. Organic cation transporter 1 polymorphisms predict the metabolic response to metformin in women with the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2010, 95, E204–E208. [Google Scholar] [CrossRef]
- Lautem, A.; Heise, M.; Gräsel, A.; Hoppe-Lotichius, M.; Weiler, N.; Foltys, D.; Knapstein, J.; Schattenberg, J.M.; Schad, A.; Zimmermann, A.; et al. Downregulation of organic cation transporter 1 (slc22a1) is associated with tumor progression and reduced patient survival in human cholangiocellular carcinoma. Int. J. Oncol. 2013, 42, 1297–1304. [Google Scholar] [CrossRef]
- Faure, M.; Bertoldo, M.J.; Khoueiry, R.; Bongrani, A.; Brion, F.; Giulivi, C.; Dupont, J.; Froment, P. Metformin in reproductive biology. Front. Endocrinol. 2018, 9, 675. [Google Scholar] [CrossRef]
- Jablonski, K.A.; McAteer, J.B.; de Bakker, P.I.; Franks, P.W.; Pollin, T.I.; Hanson, R.L.; Saxena, R.; Fowler, S.; Shuldiner, A.R.; Knowler, W.C.; et al. Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program. Diabetes 2010, 59, 2672–2681. [Google Scholar] [CrossRef]
- Sallinen, R.; Kaunisto, M.A.; Forsblom, C.; Thomas, M.; Fagerudd, J.; Pettersson-Fernholm, K.; Groop, P.H.; Wessman, M.; Finnish Diabetic Nephropathy Study Group. Association of the slc22a1, slc22a2, and slc22a3 genes encoding organic cation transporters with diabetic nephropathy and hypertension. Ann. Med. 2010, 42, 296–304. [Google Scholar] [CrossRef]
- Ohishi, Y.; Nakamuta, M.; Ishikawa, N.; Saitoh, O.; Nakamura, H.; Aiba, Y.; Komori, A.; Migita, K.; Yatsuhashi, H.; Fukushima, N.; et al. Genetic polymorphisms of oct-1 confer susceptibility to severe progression of primary biliary cirrhosis in japanese patients. J. Gastroenterol. 2014, 49, 332–342. [Google Scholar] [CrossRef]
- Shu, Y.; Brown, C.; Castro, R.A.; Shi, R.J.; Lin, E.T.; Owen, R.P.; Sheardown, S.A.; Yue, L.; Burchard, E.G.; Brett, C.M.; et al. Effect of genetic variation in the organic cation transporter 1, oct1, on metformin pharmacokinetics. Clin. Pharmacol. Ther. 2008, 83, 273–280. [Google Scholar] [CrossRef]
- Shu, Y.; Sheardown, S.A.; Brown, C.; Owen, R.P.; Zhang, S.; Castro, R.A.; Ianculescu, A.G.; Yue, L.; Lo, J.C.; Burchard, E.G.; et al. Effect of genetic variation in the organic cation transporter 1 (oct1) on metformin action. J. Clin. Investig. 2007, 117, 1422–1431. [Google Scholar] [CrossRef]
- Chen, Y.; Li, S.; Brown, C.; Cheatham, S.; Castro, R.A.; Leabman, M.K.; Urban, T.J.; Chen, L.; Yee, S.W.; Choi, J.H.; et al. Effect of genetic variation in the organic cation transporter 2 on the renal elimination of metformin. Pharmacogenet. Genom. 2009, 19, 497–504. [Google Scholar] [CrossRef]
- Shikata, E.; Yamamoto, R.; Takane, H.; Shigemasa, C.; Ikeda, T.; Otsubo, K.; Ieiri, I. Human organic cation transporter (oct1 and oct2) gene polymorphisms and therapeutic effects of metformin. J. Hum. Genet. 2007, 52, 117–122. [Google Scholar] [CrossRef]
- Song, I.S.; Shin, H.J.; Shin, J.G. Genetic variants of organic cation transporter 2 (oct2) significantly reduce metformin uptake in oocytes. Xenobiotica 2008, 38, 1252–1262. [Google Scholar] [CrossRef] [PubMed]
- Song, I.S.; Shin, H.J.; Shim, E.J.; Jung, I.S.; Kim, W.Y.; Shon, J.H.; Shin, J.G. Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin. Pharmacol. Ther. 2008, 84, 559–562. [Google Scholar] [CrossRef]
- Chen, L.; Takizawa, M.; Chen, E.; Schlessinger, A.; Segenthelar, J.; Choi, J.H.; Sali, A.; Kubo, M.; Nakamura, S.; Iwamoto, Y.; et al. Genetic polymorphisms in organic cation transporter 1 (oct1) in Chinese and Japanese populations exhibit altered function. J. Pharmacol. Exp. Ther. 2010, 335, 42–50. [Google Scholar] [CrossRef]
- Pernicova, I.; Korbonits, M. Metformin--mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 2014, 10, 143–156. [Google Scholar] [CrossRef]
- Otsuka, M.; Matsumoto, T.; Morimoto, R.; Arioka, S.; Omote, H.; Moriyama, Y. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc. Natl. Acad. Sci. USA 2005, 102, 17923–17928. [Google Scholar] [CrossRef]
- Becker, M.L.; Visser, L.E.; van Schaik, R.H.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: A preliminary study. Diabetes 2009, 58, 745–749. [Google Scholar] [CrossRef]
- Tanihara, Y.; Masuda, S.; Sato, T.; Katsura, T.; Ogawa, O.; Inui, K. Substrate specificity of mate1 and mate2-k, human multidrug and toxin extrusions/h(+)-organic cation antiporters. Biochem. Pharmacol. 2007, 74, 359–371. [Google Scholar] [CrossRef]
- Stocker, S.L.; Morrissey, K.M.; Yee, S.W.; Castro, R.A.; Xu, L.; Dahlin, A.; Ramirez, A.H.; Roden, D.M.; Wilke, R.A.; McCarty, C.A.; et al. The effect of novel promoter variants in mate1 and mate2 on the pharmacokinetics and pharmacodynamics of metformin. Clin. Pharmacol. Ther. 2013, 93, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.H.; Yee, S.W.; Ramirez, A.H.; Morrissey, K.M.; Jang, G.H.; Joski, P.J.; Mefford, J.A.; Hesselson, S.E.; Schlessinger, A.; Jenkins, G.; et al. A common 5′-utr variant in mate2-k is associated with poor response to metformin. Clin. Pharmacol. Ther. 2011, 90, 674–684. [Google Scholar] [CrossRef]
- Zhou, M.; Xia, L.; Wang, J. Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab. Dispos. 2007, 35, 1956–1962. [Google Scholar] [CrossRef] [PubMed]
- Stovall, D.W.; Bailey, A.P.; Pastore, L.M. Assessment of insulin resistance and impaired glucose tolerance in lean women with polycystic ovary syndrome. J. Womens Health 2011, 20, 37–43. [Google Scholar] [CrossRef]
Mean ± SD | Controls (n = 113) | PCOS Patients (n = 87) | p Value | Adjusted p Value 1 |
---|---|---|---|---|
Age (years) | 30 ± 5.9 | 27.9 ± 5.4 | 0.009 * | |
Height (cm) | 160.2 ± 5.2 | 158.7 ± 6 | 0.063 | |
Weight (kg) | 57.4 ± 9.8 | 67.9 ± 17.9 | <0.001 * | <0.001 * |
BMI (kg/m2) | 22.5 ± 4.1 | 26.9 ± 6.6 | <0.001 * | <0.001 * |
SBP (mmHg) | 112.9 ± 12.3 | 122.7 ± 15.4 | <0.001 * | <0.001 * |
DBP (mmHg) | 67.3 ± 10.7 | 76.3 ± 13.9 | <0.001 * | <0.001 * |
Insulin (µIU/mL) | 27 ± 21.7 | 92.1 ± 67 | <0.001 * | <0.001 * |
Glucose (mg/dL) | 94.8 ± 24.9 | 116 ± 30.8 | <0.001 * | <0.001 * |
OGTT Parameters | Before Metformin | After Metformin | p Value |
---|---|---|---|
2-hr insulin (µIn/mL) | 92.1 ± 67.0 | 59.2 ± 42.7 | <0.001 * |
2-hr glucose (mg/dL) | 116.0 ± 30.8 | 115.2 ± 35.2 | 0.777 |
2-hr G/I ratio | 2.2 ± 2.1 | 3.5 ± 3.7 | 0.001 * |
Gene | rs Number | Alleles | Total | HE | HO | WT | MAF | p Value | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(HE/HO/WT) | n | (%) | n | (%) | n | (%) | ||||||
OCT 1 | rs683369 | G/C | HC | 113 | 32 | (28.3) | 0 | (0) | 81 | (71.7) | G = 0.142 | 0.524 |
(GC/GG/CC) | PCOS | 87 | 22 | (25.3) | 1 | (1.1) | 64 | (73.6) | G = 0.138 | |||
rs628031 | A/G | HC | 113 | 45 | (39.8) | 6 | (5.3) | 62 | (54.9) | A = 0.252 | 0.845 | |
(AG/AA/GG) | PCOS | 87 | 36 | (41.4) | 6 | (6.9) | 45 | (51.7) | A = 0.276 | |||
OCT 2 | rs316019 | A/C | HC | 113 | 27 | (23.9) | 2 | (1.8) | 84 | (74.3) | A = 0.137 | 0.874 |
(AC/AA/CC) | PCOS | 87 | 23 | (26.4) | 1 | (1.2) | 63 | (72.4) | A = 0.144 |
OCT1 rs683369 (C/G) | OCT1 rs628031 (G/A) | OCT2 rs316019 (C/A) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CC | G Allele | p Values | p Values a | GG | A Allele | p Values | p Values a | CC | A Allele | p Values | p Values a | |
OGTT parameter | ||||||||||||
2-hr glucose (mg/dL) | 0.772 | 0.464 | 0.902 | 0.903 | 0.865 | 0.301 | ||||||
Before metformin | 117.8 ± 33 | 111.5 ± 22.1 | 117 ± 34.3 | 115.6 ± 27.6 | 116.5 ± 31.7 | 114.3 ± 28.4 | ||||||
After metformin | 114.2 ± 35.4 | 116.2 ± 29.8 | 115.6 ± 36.7 | 113.5 ± 30.1 | 112.6 ± 34.3 | 120.6 ± 32.9 | ||||||
2-hr insulin (µIU/mL) | 0.465 | 0.981 | 0.211 | 0.265 | 0.862 | 0.631 | ||||||
Before metformin | 93.8 ± 65.8 | 93.4 ± 73.6 | 86 ± 54.2 | 96.5 ± 83.2 | 96.5 ± 67.9 | 84.1 ± 68.2 | ||||||
After metformin | 59.1 ± 42.5 | 51.4 ± 43.1 | 62.2 ± 42.7 | 55.9 ± 43.8 | 58.7 ± 43.6 | 60.9 ± 41.5 | ||||||
2-hr G/I ratio | <0.001 * | <0.001 * | 0.047 * | 0.001 * | 0.565 | 0.401 | ||||||
Before metformin | 2.3 ± 2.4 | 2.1 ± 1.1 | 2.3 ± 2.5 | 2.0 ± 1.9 | 2.2 ± 2.3 | 2.2 ± 1.6 | ||||||
After metformin | 3.3 ± 3.0 | 4.3 ± 3.8 | 3.2 ± 3.2 | 3.9 ± 2.9 | 3.9 ± 4.3 | 2.7 ± 1.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, H.H.; Hsueh, Y.-S.; Cheng, Y.W.; Ou, H.-T.; Wu, M.-H. Association between Polymorphisms of OCT1 and Metabolic Response to Metformin in Women with Polycystic Ovary Syndrome. Int. J. Mol. Sci. 2019, 20, 1720. https://doi.org/10.3390/ijms20071720
Chang HH, Hsueh Y-S, Cheng YW, Ou H-T, Wu M-H. Association between Polymorphisms of OCT1 and Metabolic Response to Metformin in Women with Polycystic Ovary Syndrome. International Journal of Molecular Sciences. 2019; 20(7):1720. https://doi.org/10.3390/ijms20071720
Chicago/Turabian StyleChang, Hui Hua, Yuan-Shuo Hsueh, Yung Wen Cheng, Huang-Tz Ou, and Meng-Hsing Wu. 2019. "Association between Polymorphisms of OCT1 and Metabolic Response to Metformin in Women with Polycystic Ovary Syndrome" International Journal of Molecular Sciences 20, no. 7: 1720. https://doi.org/10.3390/ijms20071720
APA StyleChang, H. H., Hsueh, Y.-S., Cheng, Y. W., Ou, H.-T., & Wu, M.-H. (2019). Association between Polymorphisms of OCT1 and Metabolic Response to Metformin in Women with Polycystic Ovary Syndrome. International Journal of Molecular Sciences, 20(7), 1720. https://doi.org/10.3390/ijms20071720