A Native Human Monoclonal Antibody Targeting HCMV gB (AD-2 Site I)
Abstract
1. Introduction
1.1. Epidemiology and Clinical Need
1.2. Genome and Proteome
2. Therapeutic Approaches
2.1. Small Molecules
2.2. Vaccines
2.3. Hyper Immune Globulin (HIG)
2.4. Monoclonal Antibodies (mAbs)
3. TRL345: A Clinical Candidate
3.1. Discovery
3.2. Biochemical Properties
3.3. Potent Neutralization across Broad Spectrum of Cell Types
3.4. Ex vivo Model for Congenital Indication
3.5. IND-Enabling Studies
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fulop, T.; Larbi, A.; Pawelec, G. Human T cell aging and the impact of persistent viral infections. Front. Immunol. 2013, 4, 271. [Google Scholar] [CrossRef] [PubMed]
- Pawelec, G.; McElhaney, J.E.; Aiello, A.E.; Derhovanessian, E. The impact of CMV infection on survival in older humans. Curr. Opin. Immunol. 2012, 24, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Kotton, C.N.; Kumar, D.; Caliendo, A.M.; Asberg, A.; Chou, S.; Danziger-Isakov, L.; Humar, A. Updated international consensus guidelines on the management of cytomegalovirus in solid-organ transplantation. Transplantation 2013, 96, 333–360. [Google Scholar] [CrossRef] [PubMed]
- De la Camara, R. CMV in hematopoietic stem cell transplantation. Mediterr. J. Hematol. Infect. Dis. 2016, 8, e2016031. [Google Scholar] [CrossRef] [PubMed]
- McCormick, A.L.; Mocarski, E.S. The immunological underpinnings of vaccinations to prevent cytomegalovirus disease. Cell. Mol. Immunol. 2015, 12, 170–179. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chen, K.; Cheng, M.P.; Hammond, S.P.; Einsele, H.; Marty, F.M. Antiviral prophylaxis for cytomegalovirus infection in allogeneic hematopoietic cell transplantation. Blood Adv. 2018, 2, 2159–2175. [Google Scholar] [CrossRef] [PubMed]
- Emery, V.C.; Lazzarotto, T. Cytomegalovirus in pregnancy and the neonate. F1000Research 2017, 6, 138. [Google Scholar] [CrossRef]
- Stagno, S.; Pass, R.F.; Cloud, G.; Britt, W.J.; Henderson, R.E.; Walton, P.D.; Veren, D.A.; Page, F.; Alford, C.A. Primary cytomegalovirus infection in pregnancy. Incidence, transmission to fetus, and clinical outcome. JAMA 1986, 256, 1904–1908. [Google Scholar] [CrossRef]
- Turner, K.M.; Lee, H.C.; Boppana, S.B.; Carlo, W.A.; Randolph, D.A. Incidence and impact of cmv infection in very low birth weight infants. Pediatrics 2014, 133, e609–e615. [Google Scholar] [CrossRef]
- Zavattoni, M.; Lombardi, G.; Rognoni, V.; Furione, M.; Klersy, C.; Stronati, M.; Baldanti, F. Maternal, fetal, and neonatal parameters for prognosis and counseling of HCMV congenital infection. J. Med. Virol. 2014, 86, 2163–2170. [Google Scholar] [CrossRef]
- Yamamoto, A.Y.; Mussi-Pinhata, M.M.; Isaac Mde, L.; Amaral, F.R.; Carvalheiro, C.G.; Aragon, D.C.; Manfredi, A.K.; Boppana, S.B.; Britt, W.J. Congenital cytomegalovirus infection as a cause of sensorineural hearing loss in a highly immune population. Pediatr. Infect. Dis. J. 2011, 30, 1043–1046. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J. Fetal origins of cardiovascular disease. Ann. Med. 1999, 31 (Suppl. 1), 3–6. [Google Scholar] [CrossRef] [PubMed]
- Iwasenko, J.M.; Howard, J.; Arbuckle, S.; Graf, N.; Hall, B.; Craig, M.E.; Rawlinson, W.D. Human cytomegalovirus infection is detected frequently in stillbirths and is associated with fetal thrombotic vasculopathy. J. Infect. Dis. 2011, 203, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Syridou, G.; Spanakis, N.; Konstantinidou, A.; Piperaki, E.T.; Kafetzis, D.; Patsouris, E.; Antsaklis, A.; Tsakris, A. Detection of cytomegalovirus, parvovirus b19 and herpes simplex viruses in cases of intrauterine fetal death: Association with pathological findings. J. Med. Virol. 2008, 80, 1776–1782. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Freifeld, A.G.; Lyden, E.R.; Stoner, J.A. Valganciclovir for cytomegalovirus prevention in solid organ transplant patients: An evidence-based reassessment of safety and efficacy. PLoS ONE 2009, 4, e5512. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Tabata, T.; Petitt, M.; Fang-Hoover, J. Congenital cytomegalovirus infection undermines early development and functions of the human placenta. Placenta 2017, 59 (Suppl. 1), S8–S16. [Google Scholar] [CrossRef]
- Tabata, T.; Petitt, M.; Fang-Hoover, J.; Rivera, J.; Nozawa, N.; Shiboski, S.; Inoue, N.; Pereira, L. Cytomegalovirus impairs cytotrophoblast-induced lymphangiogenesis and vascular remodeling in an in vivo human placentation model. Am. J. Pathol. 2012, 181, 1540–1559. [Google Scholar] [CrossRef]
- Rahav, G. Congenital cytomegalovirus infection—A question of screening. Isr. Med. Assoc. J. 2007, 9, 392–394. [Google Scholar]
- Sijmons, S.; Van Ranst, M.; Maes, P. Genomic and functional characteristics of human cytomegalovirus revealed by next-generation sequencing. Viruses 2014, 6, 1049–1072. [Google Scholar] [CrossRef]
- Stern-Ginossar, N.; Weisburd, B.; Michalski, A.; Le, V.T.; Hein, M.Y.; Huang, S.X.; Ma, M.; Shen, B.; Qian, S.B.; Hengel, H.; et al. Decoding human cytomegalovirus. Science (New York) 2012, 338, 1088–1093. [Google Scholar] [CrossRef]
- Sinzger, C.; Digel, M.; Jahn, G. Cytomegalovirus cell tropism. Curr. Top. Microbiol. Immunol. 2008, 325, 63–83. [Google Scholar] [PubMed]
- Zhou, M.; Lanchy, J.M.; Ryckman, B.J. Human cytomegalovirus gH/gL/gO promotes the fusion step of entry into all cell types, whereas gh/gl/ul128-131 broadens virus tropism through a distinct mechanism. J. Virol. 2015, 89, 8999–9009. [Google Scholar] [CrossRef] [PubMed]
- Ryckman, B.J.; Rainish, B.L.; Chase, M.C.; Borton, J.A.; Nelson, J.A.; Jarvis, M.A.; Johnson, D.C. Characterization of the human cytomegalovirus gH/gL/UL128-131 complex that mediates entry into epithelial and endothelial cells. J. Virol. 2008, 82, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Shenk, T. Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. Proc. Natl. Acad. Sci. USA 2005, 102, 18153–18158. [Google Scholar] [CrossRef] [PubMed]
- Dargan, D.J.; Douglas, E.; Cunningham, C.; Jamieson, F.; Stanton, R.J.; Baluchova, K.; McSharry, B.P.; Tomasec, P.; Emery, V.C.; Percivalle, E.; et al. Sequential mutations associated with adaptation of human cytomegalovirus to growth in cell culture. J. Gen. Virol. 2010, 91, 1535–1546. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Kamil, J.P. Viral regulation of cell tropism in human cytomegalovirus. J. Virol. 2016, 90, 626–629. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, M.; Stanton, R.; Kamil, J.; Ryckman, B.J. Expression levels of glycoprotein o (go) vary between strains of human cytomegalovirus, influencing the assembly of gH/gL complexes and virion infectivity. J. Virol. 2018, 92. [Google Scholar] [CrossRef]
- Renzette, N.; Bhattacharjee, B.; Jensen, J.D.; Gibson, L.; Kowalik, T.F. Extensive genome-wide variability of human cytomegalovirus in congenitally infected infants. PLoS Pathog. 2011, 7, e1001344. [Google Scholar] [CrossRef]
- Kauvar, L.M.; Pereira, L.; Permar, S.; Kowalik, T.; Hamprecht, K.; Adler, S.P.; McVoy, M.A. Trl345: A native human mab against cmv (gb: Ad-2 site I). In Proceedings of the Cytomegalovirus Infection: Advancing Strategies for Prevention and Treatment, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA, 4–6 September 2018. [Google Scholar]
- Fisher, C.E.; Knudsen, J.L.; Lease, E.D.; Jerome, K.R.; Rakita, R.M.; Boeckh, M.; Limaye, A.P. Risk factors and outcomes of ganciclovir-resistant cytomegalovirus infection in solid organ transplant recipients. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2017, 65, 57–63. [Google Scholar] [CrossRef]
- Boeckh, M.; Nichols, W.G.; Chemaly, R.F.; Papanicolaou, G.A.; Wingard, J.R.; Xie, H.; Syrjala, K.L.; Flowers, M.E.; Stevens-Ayers, T.; Jerome, K.R.; et al. Valganciclovir for the prevention of complications of late cytomegalovirus infection after allogeneic hematopoietic cell transplantation: A randomized trial. Ann. Intern. Med. 2015, 162, 1–10. [Google Scholar] [CrossRef]
- Chan, S.T.; Logan, A.C. The clinical impact of cytomegalovirus infection following allogeneic hematopoietic cell transplantation: Why the quest for meaningful prophylaxis still matters. Blood Rev. 2017, 31, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Foolad, F.; Aitken, S.L.; Chemaly, R.F. Letermovir for the prevention of cytomegalovirus infection in adult cytomegalovirus-seropositive hematopoietic stem cell transplant recipients. Expert Rev. Clin. Pharmacol. 2018, 11, 931–941. [Google Scholar] [CrossRef] [PubMed]
- Lischka, P.; Hewlett, G.; Wunberg, T.; Baumeister, J.; Paulsen, D.; Goldner, T.; Ruebsamen-Schaeff, H.; Zimmermann, H. In vitro and in vivo activities of the novel anticytomegalovirus compound aic246. Antimicrob. Agents Chemother. 2010, 54, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Melendez, D.P.; Razonable, R.R. Letermovir and inhibitors of the terminase complex: A promising new class of investigational antiviral drugs against human cytomegalovirus. Infect. Drug Resist. 2015, 8, 269–277. [Google Scholar]
- Marty, F.M.; Ljungman, P.; Chemaly, R.F.; Maertens, J.; Dadwal, S.S.; Duarte, R.F.; Haider, S.; Ullmann, A.J.; Katayama, Y.; Brown, J.; et al. Letermovir prophylaxis for cytomegalovirus in hematopoietic-cell transplantation. N. Engl. J. Med. 2017, 377, 2433–2444. [Google Scholar] [CrossRef] [PubMed]
- Goldner, T.; Hempel, C.; Ruebsamen-Schaeff, H.; Zimmermann, H.; Lischka, P. Geno- and phenotypic characterization of human cytomegalovirus mutants selected in vitro after letermovir (aic246) exposure. Antimicrob. Agents Chemother. 2014, 58, 610–613. [Google Scholar] [CrossRef] [PubMed]
- Chou, S. Rapid in vitro evolution of human cytomegalovirus ul56 mutations that confer letermovir resistance. Antimicrob. Agents Chemother. 2015, 59, 6588–6593. [Google Scholar] [CrossRef]
- Knoll, B.M.; Seiter, K.; Phillips, A.; Soave, R. Breakthrough cytomegalovirus pneumonia in hematopoietic stem cell transplant recipient on letermovir prophylaxis. Bone Marrow Transplant. 2018. [Google Scholar] [CrossRef]
- Lischka, P.; Michel, D.; Zimmermann, H. Characterization of cytomegalovirus breakthrough events in a phase 2 prophylaxis trial of letermovir (aic246, mk 8228). J. Infect. Dis. 2016, 213, 23–30. [Google Scholar] [CrossRef]
- Cherrier, L.; Nasar, A.; Goodlet, K.J.; Nailor, M.D.; Tokman, S.; Chou, S. Emergence of letermovir resistance in a lung transplant recipient with ganciclovir-resistant cytomegalovirus infection. Am. J. Transplant. Off. J. Am. Soc. Transplant. Am. Soc. Transpl. Surg. 2018, 18, 3060–3064. [Google Scholar] [CrossRef]
- Marty, F.M.; Ljungman, P.; Papanicolaou, G.A.; Winston, D.J.; Chemaly, R.F.; Strasfeld, L.; Young, J.A.; Rodriguez, T.; Maertens, J.; Schmitt, M.; et al. Maribavir prophylaxis for prevention of cytomegalovirus disease in recipients of allogeneic stem-cell transplants: A phase 3, double-blind, placebo-controlled, randomised trial. Lancet Infect. Dis. 2011, 11, 284–292. [Google Scholar] [CrossRef]
- Shire. Efficacy and Safety Study of Maribavir Treatment Compared to Investigator-Assigned Treatment in Transplant Recipients with Cytomegalovirus (CMV) Infections That Are Refractory or Resistant to Treatment with Ganciclovir, Valganciclovir, Foscarnet, or Cidofovir. Available online: https://clinicaltrials.gov/ct2/show/NCT02931539 (accessed on 26 September 2018).
- Shire. Study for the Treatment of Cytomegalovirus (CMV) Infection in Hematopoietic Stem Cell Transplant Recipients. Available online: https://ClinicalTrials.gov/show/NCT02927067 (accessed on 17 July 2018).
- Jabs, D.A.; Gilpin, A.M.; Min, Y.I.; Erice, A.; Kempen, J.H.; Quinn, T.C. HIV and cytomegalovirus viral load and clinical outcomes in aids and cytomegalovirus retinitis patients: Monoclonal antibody cytomegalovirus retinitis trial. AIDS (London) 2002, 16, 877–887. [Google Scholar] [CrossRef]
- Wu, Y.; Prager, A.; Boos, S.; Resch, M.; Brizic, I.; Mach, M.; Wildner, S.; Scrivano, L.; Adler, B. Human cytomegalovirus glycoprotein complex gh/gl/go uses pdgfr-alpha as a key for entry. PLoS Pathog. 2017, 13, e1006281. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.T.; Hsueh, P.R.; Wu, S.J.; Yao, M.; Ko, B.S.; Li, C.C.; Hsu, C.A.; Tang, J.L.; Tien, H.F. Repurposing nilotinib for cytomegalovirus infection prophylaxis after allogeneic hematopoietic stem cell transplantation: A single-arm, phase II trial. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 2018, 24, 2310–2315. [Google Scholar] [CrossRef] [PubMed]
- Boppana, S.B.; Britt, W.J. Recent approaches and strategies in the generation of antihuman cytomegalovirus vaccines. Methods Mol. Biol. (Clifton) 2014, 1119, 311–348. [Google Scholar]
- McVoy, M.A. Cytomegalovirus vaccines. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2013, 57 (Suppl. 4), S196–S199. [Google Scholar] [CrossRef] [PubMed]
- Pass, R.F.; Zhang, C.; Evans, A.; Simpson, T.; Andrews, W.; Huang, M.L.; Corey, L.; Hill, J.; Davis, E.; Flanigan, C.; et al. Vaccine prevention of maternal cytomegalovirus infection. N. Engl. J. Med. 2009, 360, 1191–1199. [Google Scholar] [CrossRef]
- Lantto, J.; Fletcher, J.M.; Ohlin, M. Binding characteristics determine the neutralizing potential of antibody fragments specific for antigenic domain 2 on glycoprotein b of human cytomegalovirus. Virology 2003, 305, 201–209. [Google Scholar] [CrossRef]
- Ohlin, M. A new look at a poorly immunogenic neutralization epitope on cytomegalovirus glycoprotein B. Is there cause for antigen redesign? Mol. Immunol. 2014, 60, 95–102. [Google Scholar] [CrossRef]
- Griffiths, P.D.; Stanton, A.; McCarrell, E.; Smith, C.; Osman, M.; Harber, M.; Davenport, A.; Jones, G.; Wheeler, D.C.; O’Beirne, J.; et al. Cytomegalovirus glycoprotein-b vaccine with mf59 adjuvant in transplant recipients: A phase 2 randomised placebo-controlled trial. Lancet (London) 2011, 377, 1256–1263. [Google Scholar] [CrossRef]
- Sester, M.; Sester, U.; Gartner, B.; Kubuschok, B.; Girndt, M.; Meyerhans, A.; Kohler, H. Sustained high frequencies of specific cd4 T cells restricted to a single persistent virus. J. Virol. 2002, 76, 3748–3755. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Kanda, Y.; Takenaka, K.; Okamoto, S.; Kato, J.; Kanda, J.; Yoshimoto, G.; Gondo, H.; Doi, S.; Inaba, M.; et al. Safety of asp0113, a cytomegalovirus DNA vaccine, in recipients undergoing allogeneic hematopoietic cell transplantation: An open-label phase 2 trial. Int. J. Hematol. 2017, 105, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Samuel, E.R.; Beloki, L.; Newton, K.; Mackinnon, S.; Lowdell, M.W. Isolation of highly suppressive cd25+foxp3+ t regulatory cells from g-csf-mobilized donors with retention of cytotoxic anti-viral ctls: Application for multi-functional immunotherapy post stem cell transplantation. PLoS ONE 2014, 9, e85911. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.L.; Gall, S.A. Clinical uses of intravenous immunoglobulin in pregnancy. Am. J. Obstet. Gynecol. 1997, 176, 241–253. [Google Scholar] [CrossRef]
- La Torre, R.; Nigro, G.; Mazzocco, M.; Best, A.M.; Adler, S.P. Placental enlargement in women with primary maternal cytomegalovirus infection is associated with fetal and neonatal disease. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2006, 43, 994–1000. [Google Scholar] [CrossRef] [PubMed]
- Moise, K.J.; Wolfe, H. Treatment of second trimester fetal cytomegalovirus infection with maternal hyperimmune globulin. Prenat. Diagn. 2008, 28, 264–265. [Google Scholar] [CrossRef]
- Moxley, K.; Knudtson, E.J. Resolution of hydrops secondary to cytomegalovirus after maternal and fetal treatment with human cytomegalovirus hyperimmune globulin. Obstet. Gynecol. 2008, 111, 524–526. [Google Scholar] [CrossRef]
- Nigro, G.; Adler, S.P.; La Torre, R.; Best, A.M. Passive immunization during pregnancy for congenital cytomegalovirus infection. N. Engl. J. Med. 2005, 353, 1350–1362. [Google Scholar] [CrossRef]
- Nigro, G.; La Torre, R.; Anceschi, M.M.; Mazzocco, M.; Cosmi, E.V. Hyperimmunoglobulin therapy for a twin fetus with cytomegalovirus infection and growth restriction. Am. J. Obstet. Gynecol. 1999, 180, 1222–1226. [Google Scholar] [CrossRef]
- Revello, M.G.; Lazzarotto, T.; Guerra, B.; Spinillo, A.; Ferrazzi, E.; Kustermann, A.; Guaschino, S.; Vergani, P.; Todros, T.; Frusca, T.; et al. A randomized trial of hyperimmune globulin to prevent congenital cytomegalovirus. N. Engl. J. Med. 2014, 370, 1316–1326. [Google Scholar] [CrossRef]
- Adler, S.P. Editorial commentary: Primary maternal cytomegalovirus infection during pregnancy: Do we have a treatment option? Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2012, 55, 504–506. [Google Scholar] [CrossRef] [PubMed]
- Hamprecht, K.; Kagan, K.O.; Goelz, R. Hyperimmune globulin to prevent congenital CMV infection. N. Engl. J. Med. 2014, 370, 2543. [Google Scholar] [PubMed]
- Kagan, K.O.; Enders, M.; Schampera, M.S.; Baeumel, E.; Hoopmann, M.; Geipel, A.; Berg, C.; Goelz, R.; De Catte, L.; Wallwiener, D.; et al. Prevention of maternal-fetal transmission of cmv by hyperimmunoglobulin (hig) administered after a primary maternal cmv infectionin early gestation. Ultrasound Obstet. Gynecol. Off. J. Int. Soc. Ultrasound Obstet. Gynecol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Hsu, J.L.; Safdar, N. Polyclonal immunoglobulins and hyperimmune globulins in prevention and management of infectious diseases. Infect. Dis. Clin. N. Am. 2011, 25, 773–788. [Google Scholar] [CrossRef] [PubMed]
- Bonaros, N.; Mayer, B.; Schachner, T.; Laufer, G.; Kocher, A. Cmv-hyperimmune globulin for preventing cytomegalovirus infection and disease in solid organ transplant recipients: A meta-analysis. Clin. Transplant. 2008, 22, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, G.; Rutenberg, T.F.; Mendelovich, S.L.; Hutt, D.; Oikawa, M.T.; Toren, A.; Bielorai, B. The role of immunoglobulin prophylaxis for prevention of cytomegalovirus infection in pediatric hematopoietic stem cell transplantation recipients. Pediatr. Blood Cancer 2017, 64. [Google Scholar] [CrossRef] [PubMed]
- Freed, D.C.; Tang, Q.; Tang, A.; Li, F.; He, X.; Huang, Z.; Meng, W.; Xia, L.; Finnefrock, A.C.; Durr, E.; et al. Pentameric complex of viral glycoprotein h is the primary target for potent neutralization by a human cytomegalovirus vaccine. Proc. Natl. Acad. Sci. USA 2013, 110, E4997–E5005. [Google Scholar] [CrossRef]
- Kabanova, A.; Marcandalli, J.; Zhou, T.; Bianchi, S.; Baxa, U.; Tsybovsky, Y.; Lilleri, D.; Silacci-Fregni, C.; Foglierini, M.; Fernandez-Rodriguez, B.M.; et al. Platelet-derived growth factor-alpha receptor is the cellular receptor for human cytomegalovirus ghglgo trimer. Nat. Microbiol. 2016, 1, 16082. [Google Scholar] [CrossRef]
- Fouts, A.E.; Chan, P.; Stephan, J.P.; Vandlen, R.; Feierbach, B. Antibodies against the gh/gl/ul128/ul130/ul131 complex comprise the majority of the anti-cytomegalovirus (anti-cmv) neutralizing antibody response in cmv hyperimmune globulin. J. Virol. 2012, 86, 7444–7447. [Google Scholar] [CrossRef]
- Revello, M.G.; Fornara, C.; Arossa, A.; Zelini, P.; Lilleri, D. Role of human cytomegalovirus (hcmv)-specific antibody in hcmv-infected pregnant women. Early Hum. Dev. 2014, 90 (Suppl. 1), S32–S34. [Google Scholar] [CrossRef]
- Dupont, L.; Reeves, M.B. Cytomegalovirus latency and reactivation: Recent insights into an age old problem. Rev. Med. Virol. 2016, 26, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Macagno, A.; Bernasconi, N.L.; Vanzetta, F.; Dander, E.; Sarasini, A.; Revello, M.G.; Gerna, G.; Sallusto, F.; Lanzavecchia, A. Isolation of human monoclonal antibodies that potently neutralize human cytomegalovirus infection by targeting different epitopes on the gh/gl/ul128–131a complex. J. Virol. 2010, 84, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Scrivano, L.; Sinzger, C.; Nitschko, H.; Koszinowski, U.H.; Adler, B. HCMV spread and cell tropism are determined by distinct virus populations. PLoS Pathog. 2011, 7, e1001256. [Google Scholar] [CrossRef] [PubMed]
- Manley, K.; Anderson, J.; Yang, F.; Szustakowski, J.; Oakeley, E.J.; Compton, T.; Feire, A.L. Human cytomegalovirus escapes a naturally occurring neutralizing antibody by incorporating it into assembling virions. Cell Host Microbe 2011, 10, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Ishida, J.H.; Patel, A.; Mehta, A.K.; Gatault, P.; McBride, J.M.; Burgess, T.; Derby, M.A.; Snydman, D.R.; Emu, B.; Feierbach, B.; et al. Phase 2 randomized, double-blind, placebo-controlled trial of rg7667, a combination monoclonal antibody, for prevention of cytomegalovirus infection in high-risk kidney transplant recipients. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [PubMed]
- Deng, R.; Wang, Y.; Maia, M.; Burgess, T.; McBride, J.M.; Liao, X.C.; Tavel, J.A.; Hanley, W.D. Pharmacokinetics and exposure-response analysis of rg7667, a combination of two anticytomegalovirus monoclonal antibodies, in a phase 2a randomized trial to prevent cytomegalovirus infection in high-risk kidney transplant recipients. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [PubMed]
- Ohlin, M.; Sundqvist, V.A.; Mach, M.; Wahren, B.; Borrebaeck, C.A. Fine specificity of the human immune response to the major neutralization epitopes expressed on cytomegalovirus gp58/116 (gb), as determined with human monoclonal antibodies. J. Virol. 1993, 67, 703–710. [Google Scholar]
- Patel, H.D.; Nikitin, P.; Gesner, T.; Lin, J.J.; Barkan, D.T.; Ciferri, C.; Carfi, A.; Akbarnejad Yazdi, T.; Skewes-Cox, P.; Wiedmann, B.; et al. In vitro characterization of human cytomegalovirus-targeting therapeutic monoclonal antibodies ljp538 and ljp539. Antimicrob. Agents Chemother. 2016, 60, 4961–4971. [Google Scholar] [CrossRef]
- Dole, K.; Segal, F.P.; Feire, A.; Magnusson, B.; Rondon, J.C.; Vemula, J.; Yu, J.; Pang, Y.; Pertel, P. A first-in-human study to assess the safety and pharmacokinetics of monoclonal antibodies against human cytomegalovirus in healthy volunteers. Antimicrob. Agents Chemother. 2016, 60, 2881–2887. [Google Scholar] [CrossRef]
- McCutcheon, K.M.; Gray, J.; Chen, N.Y.; Liu, K.; Park, M.; Ellsworth, S.; Tripp, R.A.; Tompkins, S.M.; Johnson, S.K.; Samet, S.; et al. Multiplexed screening of natural humoral immunity identifies antibodies at fine specificity for complex and dynamic viral targets. mAbs 2014, 6, 460–473. [Google Scholar] [CrossRef]
- Potzsch, S.; Spindler, N.; Wiegers, A.K.; Fisch, T.; Rucker, P.; Sticht, H.; Grieb, N.; Baroti, T.; Weisel, F.; Stamminger, T.; et al. B cell repertoire analysis identifies new antigenic domains on glycoprotein b of human cytomegalovirus which are target of neutralizing antibodies. PLoS Pathog. 2011, 7, e1002172. [Google Scholar] [CrossRef] [PubMed]
- Bialas, K.M.; Westreich, D.; Cisneros de la Rosa, E.; Nelson, C.S.; Kauvar, L.M.; Fu, T.M.; Permar, S.R. Maternal antibody responses and nonprimary congenital cytomegalovirus infection of hiv-1-exposed infants. J. Infect. Dis. 2016, 214, 1916–1923. [Google Scholar] [CrossRef] [PubMed]
- Boppana, S.B.; Britt, W.J. Antiviral antibody responses and intrauterine transmission after primary maternal cytomegalovirus infection. J. Infect. Dis. 1995, 171, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Maidji, E.; McDonagh, S.; Genbacev, O.; Tabata, T.; Pereira, L. Maternal antibodies enhance or prevent cytomegalovirus infection in the placenta by neonatal fc receptor-mediated transcytosis. Am. J. Pathol. 2006, 168, 1210–1226. [Google Scholar] [CrossRef] [PubMed]
- Utz, U.; Britt, W.; Vugler, L.; Mach, M. Identification of a neutralizing epitope on glycoprotein gp58 of human cytomegalovirus. J. Virol. 1989, 63, 1995–2001. [Google Scholar] [PubMed]
- Meyer, H.; Sundqvist, V.A.; Pereira, L.; Mach, M. Glycoprotein gp116 of human cytomegalovirus contains epitopes for strain-common and strain-specific antibodies. J. Gen. Virol. 1992, 73 Pt 9, 2375–2383. [Google Scholar] [CrossRef]
- Collarini, E.J.; Lee, F.E.; Foord, O.; Park, M.; Sperinde, G.; Wu, H.; Harriman, W.D.; Carroll, S.F.; Ellsworth, S.L.; Anderson, L.J.; et al. Potent high-affinity antibodies for treatment and prophylaxis of respiratory syncytial virus derived from b cells of infected patients. J. Immunol. 2009, 183, 6338–6345. [Google Scholar] [CrossRef] [PubMed]
- Harriman, W.D.; Collarini, E.J.; Sperinde, G.V.; Strandh, M.; Fatholahi, M.M.; Dutta, A.; Lee, Y.; Mettler, S.E.; Keyt, B.A.; Ellsworth, S.L.; et al. Antibody discovery via multiplexed single cell characterization. J. Immunol. Methods 2009, 341, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Kauvar, L.M.; Liu, K.; Park, M.; DeChene, N.; Stephenson, R.; Tenorio, E.; Ellsworth, S.L.; Tabata, T.; Petitt, M.; Tsuge, M.; et al. A high-affinity native human antibody neutralizes human cytomegalovirus infection of diverse cell types. Antimicrob. Agents Chemother. 2015, 59, 1558–1568. [Google Scholar] [CrossRef]
- Finnefrock, A.C.; Freed, D.C.; Tang, A.; Li, F.; He, X.; Wu, C.; Nahas, D.; Wang, D.; Fu, T.M. Preclinical evaluations of peptide-conjugate vaccines targeting the antigenic domain-2 of glycoprotein b of human cytomegalovirus. Hum. Vaccines Immunother. 2016, 12, 2106–2112. [Google Scholar] [CrossRef]
- Janeway, C.A., Jr.; Travers, P.; Walport, M.; Shlomchik, M.J. Immunobiology: The Immune System in Health and Disease, 5th ed.; Garland Science: New York, NY, USA, 2001. [Google Scholar]
- Thomson, C.A.; Bryson, S.; McLean, G.R.; Creagh, A.L.; Pai, E.F.; Schrader, J.W. Germline v-genes sculpt the binding site of a family of antibodies neutralizing human cytomegalovirus. EMBO J. 2008, 27, 2592–2602. [Google Scholar] [CrossRef] [PubMed]
- Jackson, K.J.; Liu, Y.; Roskin, K.M.; Glanville, J.; Hoh, R.A.; Seo, K.; Marshall, E.L.; Gurley, T.C.; Moody, M.A.; Haynes, B.F.; et al. Human responses to influenza vaccination show seroconversion signatures and convergent antibody rearrangements. Cell Host Microbe 2014, 16, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Parameswaran, P.; Liu, Y.; Roskin, K.M.; Jackson, K.K.; Dixit, V.P.; Lee, J.Y.; Artiles, K.L.; Zompi, S.; Vargas, M.J.; Simen, B.B.; et al. Convergent antibody signatures in human dengue. Cell Host Microbe 2013, 13, 691–700. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, K.; Tokumoto, T.; Shirakawa, H.; Hashimoto, K.; Ikuta, K.; Kushida, N.; Yanagida, T.; Shishido, K.; Aikawa, K.; Toma, H.; et al. Lack of antibodies against the antigen domain 2 epitope of cytomegalovirus (cmv) glycoprotein b is associated with cmv disease after renal transplantation in recipients having the same glycoprotein h serotypes as their donors. Transpl. Infect. Dis. 2011, 13, 318–323. [Google Scholar] [CrossRef]
- Hackett, D.J.; Zhang, C.; Stefanescu, C.; Pass, R.F. Enzyme-linked immunosorbent assay for measurement of cytomegalovirus glycoprotein b antibody in serum. Clin. Vaccine Immunol. 2010, 17, 836–839. [Google Scholar] [CrossRef] [PubMed]
- Meyer-Konig, U.; Haberland, M.; von Laer, D.; Haller, O.; Hufert, F.T. Intragenic variability of human cytomegalovirus glycoprotein b in clinical strains. J. Infect. Dis. 1998, 177, 1162–1169. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fu, T.-M.; Tang, A.; Wang, D.; An, Z.; Zhang, N.; Ha, S. CMV Neutralizing Antigen Binding Proteins. Patent WO/2017/184562, 26 October 2017. [Google Scholar]
- Cui, X.; Adler, S.P.; Schleiss, M.R.; Arav-Boger, R.; Demmler Harrison, G.J.; McVoy, M.A. Cytomegalovirus virions shed in urine have a reversible block to epithelial cell entry and are highly resistant to antibody neutralization. Clin. Vaccine Immunol. 2017, 24. [Google Scholar] [CrossRef]
- Mariame, B.; Kappler-Gratias, S.; Kappler, M.; Balor, S.; Gallardo, F.; Bystricky, K. Real-time visualization and quantification of human cytomegalovirus replication in living cells using the anchor DNA labeling technology. J. Virol. 2018. [Google Scholar] [CrossRef]
- Cui, X.; Freed, D.C.; Wang, D.; Qiu, P.; Li, F.; Fu, T.M.; Kauvar, L.M.; McVoy, M.A. Impact of antibodies and strain polymorphisms on cytomegalovirus entry and spread in fibroblasts and epithelial cells. J. Virol. 2017, 91. [Google Scholar] [CrossRef]
- Fisher, S.; Genbacev, O.; Maidji, E.; Pereira, L. Human cytomegalovirus infection of placental cytotrophoblasts in vitro and in utero: Implications for transmission and pathogenesis. J. Virol. 2000, 74, 6808–6820. [Google Scholar] [CrossRef]
Vaccine/mAb | Key Features | Status |
---|---|---|
Towne (Wistar) | Attenuated live virus, lacking pentameric complex | Effective in transplant but not in congenital |
gB/MF59 (Sanofi) | Recombinant subunit vaccine with adjuvant | Effective in ~50% of subjects |
Cytotect™ (Europe) Cytogam™ (US) | Hyper Immune Globulin (HIG) has shown efficacy in both transplant and congenital indications | Marketed products |
ASP0113 (Vical, Astellas) | 2 plasmid DNA vaccine (pp65, gB) induced only weak responses to gB | Development suspended after Phase 3 |
MSL-109 (Sandoz) | Binds gH, but efficacy is reduced by uptake of Ab-Ag complex into cells | Development suspended after Phase 3 |
RG7667 (Genentech) | 2 mAbs, one targeting gH (similar to MSL-109), and one targeting the pentameric complex | Development suspended after Phase 2 |
CSJ148 (Novartis) | 2 mAbs, one targeting gB (AD-4), and one targeting the pentameric complex | Development suspended after Phase 2 |
TCN-202 (Theraclone) | Human mAb against gB (AD-2, Site I) | Development suspended after Phase 2 |
TRL345 Properties | Comments |
---|---|
Source | Native human mAb from anonymized blood |
Isotype | IgG1, κ |
Epitope | HCMV envelope glycoprotein gB (AD-2 Site I) |
Affinity | Kd = 50 pM for gB protein; Kd = 1 pM for AD-2 peptide |
Mechanism of Action | Blockade of gB-mediated viral internalization |
Epitope Conservation | All published AD-2 sequences: 99% identical Activity shown against 15/15 clinical isolates |
Cell Types Protected at Uniformly High Potency | Fibroblasts (HFF), Endothelial (HUVEC), Epithelial (ARPE), Placental Fibroblasts, Cytotrophoblasts, Trophoblast Progenitor Cells (TBPC), Dendritic Cells |
Manufacturing | Stable CHO expression at 1.8 g/L at 100 L scale |
28 day Toxicology (Sprague Dawley rat) | No Observed Adverse Effect Level: 150 mg/kg/dose |
Immunogenicity | Expected to be low (native human mAb) |
Half-life | 46 hours in rats, projected to be 21 days in humans |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McVoy, M.M.; Tenorio, E.; Kauvar, L.M. A Native Human Monoclonal Antibody Targeting HCMV gB (AD-2 Site I). Int. J. Mol. Sci. 2018, 19, 3982. https://doi.org/10.3390/ijms19123982
McVoy MM, Tenorio E, Kauvar LM. A Native Human Monoclonal Antibody Targeting HCMV gB (AD-2 Site I). International Journal of Molecular Sciences. 2018; 19(12):3982. https://doi.org/10.3390/ijms19123982
Chicago/Turabian StyleMcVoy, Michael M., Edgar Tenorio, and Lawrence M. Kauvar. 2018. "A Native Human Monoclonal Antibody Targeting HCMV gB (AD-2 Site I)" International Journal of Molecular Sciences 19, no. 12: 3982. https://doi.org/10.3390/ijms19123982
APA StyleMcVoy, M. M., Tenorio, E., & Kauvar, L. M. (2018). A Native Human Monoclonal Antibody Targeting HCMV gB (AD-2 Site I). International Journal of Molecular Sciences, 19(12), 3982. https://doi.org/10.3390/ijms19123982