Quality Evaluation and Antioxidant Activity of Cultivated Gentiana siphonantha: An Ethnic Medicine from the Tibetan Plateau
Abstract
1. Introduction
2. Results
2.1. Methodology Validation Results
2.2. Analysis of Iridoid Glycoside Contents
2.2.1. Analysis of Iridoid Glycoside Content Characteristics from Different Material Sources
2.2.2. Analysis of Iridoid Glycoside Content Characteristics of Samples Under Different Cultivation Ages
2.2.3. Analysis of Iridoid Glycoside Content Characteristics of Samples Harvested in Different Months
2.3. Quality Evaluation
2.3.1. PCA
2.3.2. OPLS-DA
2.3.3. Membership Function Analysis
2.3.4. Entropy Weight–TOPSIS Analysis
2.4. Antioxidant Activity Evaluation
2.4.1. Evaluation of Antioxidant Activity Under Different Cultivation Ages
2.4.2. Evaluation of Antioxidant Activity Under Different Harvest Months
2.5. Correlation Analysis Between Iridoid Glycosides and Antioxidant Activity
2.5.1. Gray Relational Analysis
2.5.2. Spearman’s Rank Correlation Analysis
3. Discussion
4. Materials and Methods
4.1. Instruments
4.2. Chemicals and Materials
4.3. Solution Preparation
4.3.1. Preparation of Sample Solutions
4.3.2. Preparation of Mixed Reference Solutions
4.4. Determination of Iridoid Glycosides
4.5. Methodology Validation
4.5.1. Repeatability
4.5.2. Investigation of Linear Relationship
4.5.3. Precision
4.5.4. Stability
4.5.5. Recovery Rate
4.5.6. LOD
4.6. Antioxidant Activity Evaluation Methods
4.6.1. Assay of DPPH Radical Scavenging Activity
4.6.2. Assay of ABTS Radical Scavenging Activity
4.6.3. Assay of FRAP
4.7. Data Processing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ABTS | 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) |
| ANOVA | Analysis of variance |
| Ci | Closeness coefficient |
| ChP | Pharmacopoeia of the People’s Republic of China |
| DW | Dry weight |
| Di+ | Euclidean distance of each sample to the positive ideal solution |
| Di− | Euclidean distance of each sample to the negative ideal solution |
| Dj | Information utility value |
| DPPH | 1,1-diphenyl-2-picrylhydrazyl |
| Ej | Information entropy |
| FRAP | Ferric reducing antioxidant power |
| GRA | Gray relation analysis |
| HPLC | High-performance liquid chromatography |
| LOD | Limit of detection |
| OD | Optical density |
| OPLS-DA | Orthogonal partial least squares–discriminant analysis |
| PCA | Principal component analysis |
| RSD | Relative standard deviation |
| S/N | Signal-to-noise ratio |
| TEAC | Trolox equivalent antioxidant capacity |
| VIP | Variable importance in projection |
| Wj | indicator weights |
| γ | Gray relational coefficients |
References
- Yao, J.; Cao, X.; Wang, Z. Study on Anti-inflammation and Acesodyne Activity of Roots from 6 Species of Sect. Cruciata. Prog. Mod. Biomed. 2010, 10, 4642–4646. [Google Scholar] [CrossRef]
- Zhao, Z.; Su, J.; Wang, Z. Pharmacognostical studies on root of Gentiana siphonantha. Chin. Tradit. Herb. Drugs 2006, 37, 1875–1878. [Google Scholar]
- Hou, Q.; Meng, L.; Yang, H. Pollination ecology of Gentiana siphonantha (Gentianaceae) and a further comparison with its sympatric congener species. J. Syst. Evol. 2008, 46, 554–562. [Google Scholar]
- Zhang, X.; Zhan, G.; Jin, M.; Zhang, H.; Dang, J.; Zhang, Y.; Guo, Z.; Ito, Y. Botany, traditional use, phytochemistry, pharmacology, quality control, and authentication of Radix Gentianae Macrophyllae—A traditional medicine: A review. Phytomedicine 2018, 42, 142–163. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, H.; Wang, Y.; Wang, Z.; Cao, X. Analysis of ISSR Amplification Results of Six Species in Sect. Cruciata Gaudin. Chin. Med. Mater. 2015, 38, 1375–1378. [Google Scholar] [CrossRef]
- Tan, R.; Kong, L. Secoiridoids from Gentiana siphonantha. Phytochemistry 1997, 46, 1035–1038. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Wang, Z. Simultaneous determination of four iridoid and secoiridoid glycosides and comparative analysis of Radix Gentianae Macrophyllae and their related substitutes by HPLC. Phytochem. Anal. 2010, 21, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, R.; Zhang, J.; Su, H.; Yang, Q.; Wulu, J.; Li, J.; Zhang, Z.; Lv, Z. Comparative analysis of phytochemical profile and antioxidant and anti-inflammatory activity of four Gentiana species from the Qinghai-Tibet Plateau. J. Ethnopharmacol. 2024, 326, 117926. [Google Scholar] [CrossRef]
- Prakash, A.; Prasad, N.; Puppala, E.; Panda, S.; Jain, S.; Ravichandiran, V.; Singh, M.; Naidu, V. Loganic acid protects against ulcerative colitis by inhibiting TLR4/NF-κB mediated inflammation and activating the SIRT1/Nrf2 anti-oxidant responses in-vitro and in-vivo. Int. Immunopharmacol. 2023, 122, 110585. [Google Scholar] [CrossRef]
- Selvam, R.; Muruganantham, K.; Subramanian, S. Biochemical evaluation of antidiabetic properties of swertiamarin, a secoiridoid glycoside of Enicostemma littorale leaves, studied in high-fat diet–fed low-dose streptozotocin-induced type 2 diabetic rats. Asian J. Pharm. Clin. Res. 2018, 11, 486–492. [Google Scholar]
- Ga, Y.; Tang, X.; Yao, J.; Su, T.; Chen, Y.; Cheng, C.; Yang, J.; Wang, B.; Liu, A.; Yang, L.; et al. Targeting the bile acid receptor TGR5 with Gentiopicroside to activate Nrf2 antioxidant signaling and mitigate Parkinson’s disease in an MPTP mouse model. J. Adv. Res. 2025; in press. [Google Scholar] [CrossRef]
- Liu, Q.; Cheng, L.; Matsuura, A.; Xiang, L.; Qi, J. Gentiopicroside, a Secoiridoid Glycoside from Gentiana rigescens Franch, Extends the Lifespan of Yeast via Inducing Mitophagy and Antioxidative Stress. Oxidative Med. Cell. Longev. 2020, 2020, 9125752. [Google Scholar] [CrossRef]
- Angelis, L.A.M.B.A.; Wawruszak, A.; Halabalaki, M.; Kukula-Koch, W.; Skaltsounis, L. Gentiopicroside—An Insight into Its Pharmacological Significance and Future Perspectives. Cells 2023, 13, 70. [Google Scholar] [CrossRef]
- Xiao, H.; Sun, X.; Lin, Z.; Yang, Y.; Zhang, M.; Xu, Z.; Liu, P.; Liu, Z.; Huang, H. Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism. Acta. Pharm Sin. B 2022, 12, 2887–2904. [Google Scholar] [CrossRef] [PubMed]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; 2025 ed.; China Medical Science Press: Beijing, China, 2025; p. 290. [Google Scholar]
- Cui, D.; Zhang, M.; Yu, F.; Wei, R.; Shi, R.; Zhang, F.; Li, X.; Yang, W. Gentianae Macrophyllae Radix (Qin-Jiao): A systematic review of ethnopharmacology, phytochemistry, pharmacology, clinical application and quality control. J. Ethnopharmacol. 2025, 357, 120853. [Google Scholar] [CrossRef]
- Wu, Z.; Peng, H.; Li, D. Flora of China; Science Press: Beijing, China, 1988; p. 73. [Google Scholar]
- Wang, Y.; Yuan, C.; Qian, J.; Wang, Y.; Liu, Y.; Liu, Y.; Nan, T.; Kang, L.; Zhan, Z.; Guo, L.; et al. Reviews and Recommendations in Comparative Studies on Quality of Wild and Cultivated Chinese Crude Drugs. Chin. J. Exp. Tradit. Med. Formulae 2024, 30, 1–20. [Google Scholar] [CrossRef]
- Mao, H.; Liu, D.; Gao, T. A Study on the Status quo and Countermeasures of Protection of the Wild Chinese Medicinals in China. Lishizhen Med. Mater. Med. Res. 2016, 27, 212–214. [Google Scholar]
- Cai, Y.; Luo, Q.; Sun, M.; Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 2004, 74, 2157–2184. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Tian, C.; Liu, X.; Li, D.; Liu, H. Anti-inflammatory and antioxidant traditional Chinese Medicine in treatment and prevention of osteoporosis. Front. Pharmacol. 2023, 14, 1203767. [Google Scholar] [CrossRef]
- Qiao, J.; Wang, C.; Chen, Y.; Yu, S.; Liu, Y.; Yu, S.; Jiang, L.; Jin, C.; Wang, X.; Zhang, P.; et al. Herbal/Natural Compounds Resist Hallmarks of Brain Aging: From Molecular Mechanisms to Therapeutic Strategies. Antioxidants 2023, 12, 920. [Google Scholar] [CrossRef]
- Rosiak, N.; Cielecka-Piontek, J.; Skibiński, R.; Lewandowska, K.; Bednarski, W.; Zalewski, P. Do Rutin and Quercetin Retain Their Structure and Radical Scavenging Activity after Exposure to Radiation? Molecules 2023, 28, 2713. [Google Scholar] [CrossRef]
- Wang, F.; Zheng, Y.; Zheng, X.; Dai, Z.; Liu, B.; Ma, S. Research Progress of the Structure and Biological Activities of Iridoids Compounds. Chin. J. Pharm. Aff. 2019, 33, 323–330. [Google Scholar] [CrossRef]
- González-López, Ó.; Rodríguez-González, Á.; Pinto, C.G.; Arbizu-Milagro, J.; Casquero, P. Hot Spots of Bitter Compounds in the Roots of Gentiana lutea L. subsp. aurantiaca: Wild and Cultivated Comparative. Agron. J. 2024, 14, 1068. [Google Scholar] [CrossRef]
- Liebelt, D.J.; Jordan, J.T.; Doherty, C.J. Only a matter of time: The impact of daily and seasonal rhythms on phytochemicals. Phytochem. Rev. 2019, 18, 1409–1433. [Google Scholar] [CrossRef]
- Ji, R.; Garran, T.; Luo, Y.; Cheng, M.; Ren, M.; Zhou, X. Untargeted Metabolomic Analysis and Chemometrics to Identify Potential Marker Compounds for the Chemical Differentiation of Panax ginseng, P. quinquefolius, P. notoginseng, P. japonicus, and P. japonicus var. major. Molecules 2023, 28, 2745. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zuo, Z.; Xu, F.; Wang, Y. Study on Quality Response to Environmental Factors and Geographical Traceability of Wild Gentiana rigescens Franch. Front. Plant Sci. 2020, 11, 1128. [Google Scholar] [CrossRef]
- Wei, X.; Cao, B.; Luo, C.; Huang, H.; Ta, P.; Xu, X.; Xu, R.; Yang, M.; Zhang, Y.; Han, L.; et al. Recent advances of novel technologies for quality consistency assessment of natural herbal medicines and preparations. Chin. Med. 2020, 15, 56. [Google Scholar] [CrossRef]
- Wei, X.; Chang, Q.; Liu, Y.; Hua, H.; Liu, Y.; Tang, Z.; Mu, L. Influence of Wild and Cultivated Environments on the Antioxidant and Medicinal Components of Rhodiola sachalinensis A. Boriss. Plants 2024, 13, 3544. [Google Scholar] [CrossRef] [PubMed]
- Pant, P.; Pandey, S.; Dall’Acqua, S. The influence of environmental conditions on secondary metabolites in medicinal plants: A literature review. Chem. Biodivers. 2021, 18, e2100345. [Google Scholar] [CrossRef] [PubMed]
- Gaude, A.; Jalmi, S. Environmental Stress Induced Biosynthesis of Plant Secondary Metabolites-Transcriptional Regulation as a key. Crop Des. 2025, 4, 100100. [Google Scholar] [CrossRef]
- Howard, T. Senescence, ageing and death of the whole plant. New Phytol. 2013, 197, 696–711. [Google Scholar] [CrossRef]
- Zhou, Y.; Zha, Y.; Yang, H.; Chen, P. Variation in Gentiopicroside Content of Gentiana crassicaulis with Growth Years in Lanping County. Chin. J. Ethnomed. Ethnopharm. 2013, 22, 13. [Google Scholar]
- Wang, W.; Liang, Z.; Xu, L.; Fu, R.; Xie, J.; Zhao, J. Dynamic Changes of Yield and Active Component Mass Fraction in Different Parts of Gentiana macrophylla Pall. at Different Ages. Acta Agric. Boreali-Occident. Sin. 2014, 23, 167–171. [Google Scholar]
- Wang, J.; Sun, H.; Liu, T.; Zhu, W.; Wang, H.; Zhou, Y.; Wang, W.; Yang, P.; Jiang, S. Optimal harvesting period of cultivated Notopterygium incisum based on HPLC specific chromatogram combined with chemometrics and entropy weight-gray correlation analysis. China J. Chin. Mater. Med. 2025, 50, 3878–3886. [Google Scholar] [CrossRef]
- Alami, M.; Guo, S.; Mei, Z.; Yang, G.; Wang, X. Environmental factors on secondary metabolism in medicinal plants: Exploring accelerating factors. Med. Plant Biol. 2024, 3, e016. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, H.; Zhao, Y.; Gao, X.; Wang, W.; Liang, Z. Dynamic analysis on accumulated contents of chemical composition in cultivated Radix Gentianae Macrophyllae produced in Liupanshan. Chin. J. Tradit. Chin. Med. Pharm. 2017, 32, 3739–3741. [Google Scholar]
- Pan, Y.; Zhao, Y.; Zhang, J.; Li, W.; Wang, Y. Phytochemistry and Pharmacological Activities of the Genus Gentiana (Gentianaceae). ChemInform 2016, 13, 107–150. [Google Scholar] [CrossRef]
- Niu, X.; Chen, X.; Su, H.; Eneji, A.; Guo, Y.; Dong, X. Changes of Secondary Metabolites and Trace Elements in Gentiana macrophylla Flowers: A Potential Medicinal Plant Part. Chin. Herb. Med. 2014, 6, 145–151. [Google Scholar] [CrossRef]
- Souza, A.; Bezerra, M.; Cerqueira, U.; Rodrigues, C.; Santos, B.; Novaes, C.; Almeida, E. An introductory review on the application of principal component analysis in the data exploration of the chemical analysis of food samples. Food Sci. Biotechnol. 2024, 33, 1323–1336. [Google Scholar] [CrossRef]
- Forsgren, E.; Björkblom, B.; Trygg, J.; Jonsson, P. OPLS-Based Multiclass Classification and Data-Driven Interclass Relationship Discovery. J. Chem. Inf. Model. 2025, 65, 1762–1770. [Google Scholar] [CrossRef]
- Zou, Z.; Guo, B.; Guo, Y.; Ma, X.; Luo, S.; Feng, L.; Pan, Z.; Deng, L.; Pan, S.; Wei, J.; et al. A comprehensive “quality-quantity-activity” approach based on portable near-infrared spectrometer and membership function analysis to systematically evaluate spice quality: Cinnamomum cassia as an example. Food Chem. 2024, 439, 138142. [Google Scholar] [CrossRef]
- Lu, J.; Wang, G.; Ying, X.; Li, Z. A novel drug selection decision support model based on real-world medical data by the hybrid entropic weight TOPSIS method. Technol. Health Care 2022, 31, 691–703. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Wang, Z. Determination of four secoiridoid glucosides in Gentiana crassicaulis during different harvest periods cultivated in Yunnan province. Chin. J. Pharm. Anal. 2010, 30, 623–625. [Google Scholar] [CrossRef]
- Sharma, P.; Jha, A.; Dubey, R.; Pessarakli, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. J. Bot. 2012, 2012, 217037. [Google Scholar] [CrossRef]
- Pisoschi, A.; Pop, A.; Cimpeanu, C.; Predoi, G. Antioxidant Capacity Determination in Plants and Plant-Derived Products: A Review. Oxidative Med. Cell. Longev. 2016, 2016, 9130976. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.; Avellaneda, R.; Pinheiro, V.; DiPietro, F.; Marcelino, G.; Bogo, D.; Freitas, K.; Hiane, P.; Melo, E.; Brandão, M.; et al. Natural Antioxidant Evaluation: A Review of Detection Methods. Molecules 2022, 27, 3563. [Google Scholar] [CrossRef]
- Akula, R.; Aswathanarayana, R. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef]
- Nakabayashi, R.; Saito, K. Integrated metabolomics for abiotic stress responses in plants. Curr. Opin. Plant Biol. 2015, 24, 10–16. [Google Scholar] [CrossRef]
- Suyama, Y.; Kurimoto, S.; Kawazoe, K.; Murakami, K.; Sun, H.; Li, S.; Takaishi, Y.; Kashiwada, Y. Rigenolide A, a new secoiridoid glucoside with a cyclobutane skeleton, and three new acylated secoiridoid glucosides from Gentiana rigescens Franch. Fitoterapia 2013, 91, 166–172. [Google Scholar] [CrossRef]
- Xiang, L.; Disasa, D.; Liu, Y.; Fujii, R.; Yang, M.; Wu, E.; Matsuura, A.; Qi, J. Gentirigeoside B from Gentiana rigescens Franch Prolongs Yeast Lifespan via Inhibition of TORC1/Sch9/Rim15/Msn Signaling Pathway and Modification of Oxidative Stress and Autophagy. Antioxidants 2022, 11, 2373. [Google Scholar] [CrossRef]
- Yin, C.; Xie, L.; Guo, Y. Phytochemical analysis and antibacterial activity of Gentiana macrophylla extract against bacteria isolated from burn wound infections. Microb. Pathog. 2018, 114, 25–28. [Google Scholar] [CrossRef]
- Xie, C.; Li, Z.; Huang, J.; Wang, Z.; Tang, F.; Yang, X.; Zhu, H.; Wwi, Y. Extraction and Purification Process Optimization and Activity Assessment of Gentiopicroside. Mod. Food Sci. Technol. 2025, 41, 319. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z.; Zhang, L.; Yin, B.; Lv, L.; He, J.; Chen, Z.; Wen, X.; Qiao, B.; Sun, W.; et al. Protective effect of gentiopicroside from Gentiana macrophylla Pall. in ethanol-induced gastric mucosal injury in mice. Phytother Res. 2018, 32, 259–266. [Google Scholar] [CrossRef]
- Li, P.; Shen, T.; Li, L.; Wang, Y. Optimization of the selection of suitable harvesting periods for medicinal plants: Taking Dendrobium officinale as an example. Plant Methods 2024, 20, 43. [Google Scholar] [CrossRef]
- Ghimire, B.; Seo, J.; Kim, S.; Ghimire, B.; Lee, J.; Yu, C.; Chung, I. Influence of Harvesting Time on Phenolic and Mineral Profiles and Their Association with the Antioxidant and Cytotoxic Effects of Atractylodes japonica Koidz. Agronomy 2021, 11, 1327. [Google Scholar] [CrossRef]
- NY/T 1121; Soil Testing Methods. Ministry of Agriculture: Beijing, China, 2006.
- HJ 804-2016; Determination of Available Soil Eight Kinds of Elements Diethylenetriamine Pentaacetic Acid Extraction—Inductively Coupled Plasma Emission Spectrometry. China Standards Press: Beijing, China, 2016.
- GB 15618-2018; Soil Environmental Quality—Risk Control Standard for Soil Contamination of Agricultural Land. China Standards Press: Beijing, China, 2018.
- Rumpf, J.; Burger, R.; Schulze, M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Wang, J.; Guo, H.; Zhao, M.; Sun, H.; Song, Y.; Zheng, Y.; Ma, D. GC-MS analysis of volatile oils in Magnoliae Flos at differentharvesting periods and their antioxidant and antibacterial activities. Chin. J. Pharm. Anal. 2024, 44, 1475–1484. [Google Scholar] [CrossRef]
- Feng, D.; Long, R.; Li, J.; Song, X.; Sun, J. Online monitoring for extraction of Tibetan medicine Meconopsis quintuplinervia regel. Based on near infrared spectroscopy coupled with chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 321, 124695. [Google Scholar] [CrossRef]
- Jiang, S. Evaluation of new quality productive forces in Henan province based on improved entropy weight-TOPSIS method and deep learning. Sci. Rep. 2025, 15, 35434. [Google Scholar] [CrossRef] [PubMed]









| Component | Linear Regression Equation | R2 | Linearity Range/(mg·mL−1) | LOD/ng |
|---|---|---|---|---|
| Gentiopicroside | Y = 8416.1 X − 0.3633 | 0.9999 | 0.0375–11.25 | 2.00 |
| Loganic acid | Y = 7657.5 X + 0.3352 | 0.9999 | 0.0015–0.45 | 2.25 |
| Sweroside | Y = 15,009 X + 0.2432 | 0.9999 | 0.0021–0.63 | 0.50 |
| Swertiamarin | Y = 9023.2 X + 0.1280 | 1.0000 | 0.0025–0.75 | 2.25 |
| 6′-O-β-D-glucosylgentiopicroside | Y = 6511.4 X + 0.1083 | 1.0000 | 0.0026–0.78 | 2.00 |
| Types of Compounds | Methodology Validation | Precision | Repeatability | Stability | Recovery Rate |
|---|---|---|---|---|---|
| Gentiopicroside | Content RSD (%) | 0.98 | 0.59 | 0.26 | 0.17 |
| Retention time RSD (%) | 0.88 | 0.39 | 0.95 | 0.19 | |
| Recovery rate (%) | 103.64 | ||||
| Loganic acid | Content RSD (%) | 1.47 | 1.58 | 0.55 | 0.35 |
| Retention time RSD (%) | 0.76 | 0.47 | 1.32 | 0.19 | |
| Recovery rate (%) | 109.59 | ||||
| Sweroside | Content RSD (%) | 0.46 | 0.99 | 0.68 | 0.18 |
| Retention time RSD (%) | 0.94 | 0.34 | 0.69 | 0.15 | |
| Recovery rate (%) | 105.02 | ||||
| Swertiamarin | Content RSD (%) | 1.25 | 0.89 | 0.83 | 0.06 |
| Retention time RSD (%) | 0.99 | 0.48 | 0.88 | 0.18 | |
| Recovery rate (%) | 99.15 | ||||
| 6′-O-β-D-glucosylgentiopicroside | Content RSD (%) | 0.64 | 0.81 | 0.51 | 0.19 |
| Retention time RSD (%) | 0.64 | 0.51 | 0.80 | 0.19 | |
| Recovery rate (%) | 100.77 |
| Sample Source | Sample Information | Membership Function Value | |||||
|---|---|---|---|---|---|---|---|
| Gentiopicroside | Loganic Acid | Sweroside | Swertiamarin | 6′-O-β-D- Glucosylgentiopicroside | Overall Membership Function Value | ||
| Cultivated | 2-year-old | 0.437 | 0.008 | 0.344 | 0.392 | 0.347 | 0.306 |
| 3-year-old | 0.959 | 0.615 | 1.000 | 0.936 | 1.000 | 0.902 | |
| 4-year-old | 0.973 | 0.001 | 0.062 | 1.000 | 0.554 | 0.518 | |
| Wild | Sample 1 | 1.000 | 1.000 | 0.709 | 0.997 | 0.287 | 0.799 |
| Sample 2 | 0.216 | 0.630 | 0.214 | 0.231 | 0.159 | 0.290 | |
| Sample 3 | 0.514 | 0.705 | 0.954 | 0.590 | 0.427 | 0.638 | |
| Sample 4 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
| Sample 5 | 0.360 | 0.375 | 0.140 | 0.390 | 0.262 | 0.305 | |
| Collection Month | Membership Function Value | |||||
|---|---|---|---|---|---|---|
| Gentiopicroside | Loganic Acid | Sweroside | Swertiamarin | 6′-O-β-D- Glucosylgentiopicroside | Overall Membership Function Value | |
| 4 | 0.000 | 1.000 | 0.276 | 0.040 | 0.553 | 0.374 |
| 5 | 0.206 | 0.087 | 0.079 | 0.475 | 0.171 | 0.204 |
| 6 | 1.000 | 0.000 | 0.327 | 1.000 | 0.357 | 0.537 |
| 7 | 0.953 | 0.315 | 1.000 | 0.731 | 0.000 | 0.600 |
| 8 | 0.667 | 0.093 | 0.118 | 0.478 | 0.086 | 0.289 |
| 9 | 0.566 | 0.220 | 0.050 | 0.000 | 0.398 | 0.247 |
| 10 | 0.015 | 0.294 | 0.000 | 0.084 | 1.000 | 0.279 |
| Component | Ej | Dj | Wj |
|---|---|---|---|
| Gentiopicroside | 0.878 | 0.122 | 0.148 |
| Loganic acid | 0.762 | 0.238 | 0.290 |
| Sweroside | 0.795 | 0.205 | 0.250 |
| Swertiamarin | 0.882 | 0.118 | 0.144 |
| 6′-O-β-D-glucosylgentiopicroside | 0.862 | 0.138 | 0.168 |
| Sample Source | Sample Information | Di+ | Di− | Ci |
|---|---|---|---|---|
| Cultivated | 2-year-old | 0.369 | 0.135 | 0.267 |
| 3-year-old | 0.112 | 0.401 | 0.782 | |
| 4-year-old | 0.380 | 0.225 | 0.371 | |
| Wild | Sample 1 | 0.140 | 0.400 | 0.740 |
| Sample 2 | 0.310 | 0.197 | 0.389 | |
| Sample 3 | 0.159 | 0.342 | 0.682 | |
| Sample 4 | 0.466 | 0.000 | 0.000 | |
| Sample 5 | 0.333 | 0.145 | 0.303 |
| Component | Ej | Dj | Wj |
|---|---|---|---|
| Gentiopicroside | 0.787 | 0.213 | 0.213 |
| Loganic acid | 0.743 | 0.257 | 0.257 |
| Sweroside | 0.687 | 0.313 | 0.313 |
| Swertiamarin | 0.766 | 0.234 | 0.234 |
| 6′-O-β-D-glucosylgentiopicroside | 0.802 | 0.198 | 0.198 |
| Collection Month | Di+ | Di− | Ci | Rank |
|---|---|---|---|---|
| 4 | 0.324 | 0.241 | 0.426 | 3 |
| 5 | 0.376 | 0.106 | 0.220 | 7 |
| 6 | 0.293 | 0.280 | 0.488 | 2 |
| 7 | 0.224 | 0.344 | 0.605 | 1 |
| 8 | 0.352 | 0.154 | 0.304 | 5 |
| 9 | 0.374 | 0.128 | 0.255 | 6 |
| 10 | 0.387 | 0.175 | 0.312 | 4 |
| No. | DPPH Radical Scavenging Activity | ABTS Radical Scavenging Activity | FRAP Radical Scavenging Activity | |||
|---|---|---|---|---|---|---|
| Component | γ | Component | γ | Component | γ | |
| 1 | Gentiopicroside | 0.890 | Swertiamarin | 0.914 | Swertiamarin | 0.894 |
| 2 | Total content of iridoid glycosides | 0.889 | Total content of iridoid glycosides | 0.901 | Gentiopicroside | 0.861 |
| 3 | Swertiamarin | 0.878 | Gentiopicroside | 0.898 | Total content of iridoid glycosides | 0.852 |
| 4 | 6′-O-β-D- glucosylgentiopicroside | 0.802 | 6′-O-β-D- glucosylgentiopicroside | 0.763 | 6′-O-β-D- glucosylgentiopicroside | 0.732 |
| 5 | Loganic acid | 0.685 | Loganic acid | 0.699 | Loganic acid | 0.678 |
| 6 | Sweroside | 0.579 | Sweroside | 0.571 | Sweroside | 0.541 |
| Sample No. | Sample Type | Collection Time | Collection Location | Latitude | Longitude | Altitude (m) |
|---|---|---|---|---|---|---|
| 1 | 2-year-old cultivated | August 2021 | Huangzhong District, Xining City, Qinghai Province | 36.4434° N | 101.5136° E | 2901.23 |
| 2 | 3-year-old cultivated | August 2022 | ||||
| 3 | 4-year-old cultivated | April 2023 | ||||
| 4 | 4-year-old cultivated | May 2023 | ||||
| 5 | 4-year-old cultivated | June 2023 | ||||
| 6 | 4-year-old cultivated | July 2023 | ||||
| 7 | 4-year-old cultivated | August 2023 | ||||
| 8 | 4-year-old cultivated | September 2023 | ||||
| 9 | 4-year-old cultivated | October 2023 | ||||
| 10 | wild sample 1 | August 2023 | Datong County, Xining City, Qinghai Province | 37.1318° N | 101.5057° E | 2812.35 |
| 11 | wild sample 2 | August 2023 | Delingha City, Haixi Prefecture, Qinghai Province | 37.4946° N | 97.4587° E | 3850.06 |
| 12 | wild sample 3 | August 2023 | Tianjun County, Haixi Prefecture, Qinghai Province | 37.4286° N | 98.3611° E | 3798.31 |
| 13 | wild sample 4 | August 2023 | Tianjun County, Haixi Prefecture, Qinghai Province | 37.1771° N | 98.8681° E | 3861.63 |
| 14 | wild sample 5 | August 2023 | Qilian County, Haibei Prefecture, Qinghai Province | 37.9286° N | 100.1483° E | 3603.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, J.; Zang, L.; Song, X.; Liu, Z.; Li, H.; Sun, J. Quality Evaluation and Antioxidant Activity of Cultivated Gentiana siphonantha: An Ethnic Medicine from the Tibetan Plateau. Molecules 2026, 31, 312. https://doi.org/10.3390/molecules31020312
Li J, Zang L, Song X, Liu Z, Li H, Sun J. Quality Evaluation and Antioxidant Activity of Cultivated Gentiana siphonantha: An Ethnic Medicine from the Tibetan Plateau. Molecules. 2026; 31(2):312. https://doi.org/10.3390/molecules31020312
Chicago/Turabian StyleLi, Jiamin, Liyan Zang, Xiaoming Song, Zixuan Liu, Hongmei Li, and Jing Sun. 2026. "Quality Evaluation and Antioxidant Activity of Cultivated Gentiana siphonantha: An Ethnic Medicine from the Tibetan Plateau" Molecules 31, no. 2: 312. https://doi.org/10.3390/molecules31020312
APA StyleLi, J., Zang, L., Song, X., Liu, Z., Li, H., & Sun, J. (2026). Quality Evaluation and Antioxidant Activity of Cultivated Gentiana siphonantha: An Ethnic Medicine from the Tibetan Plateau. Molecules, 31(2), 312. https://doi.org/10.3390/molecules31020312

