Self-Assembly, Antimicrobial Properties and Biodegradability of Ester-Functionalized Choline-Based Surface-Active Ionic Liquids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Ester-Functionalized Choline-Based Ionic Liquids (CnECholBr)
2.2. Thermal Stability
2.3. Self-Aggregation in Aqueous Solution
2.3.1. Conductivity Measurements
2.3.2. Fluorescence Measurements
2.4. Antimicrobial and Antibiofilm Properties
2.4.1. Antimicrobial Activity
2.4.2. Antibiofilm Activity
2.5. Hemolytic Activity
2.6. Aerobic Biodegradability
2.7. Aquatic Toxicity
3. Materials and Methods
3.1. Synthesis of Ester-Functionalised Choline-Based ILs
3.2. Thermal Stability Measurements
3.3. Conductivity Measurements
3.4. Fluorescence Measurements
3.5. Antimicrobial Activity
3.5.1. Antibacterial Activity
3.5.2. Antifungal Activity
3.6. Antibiofilm Activity
3.6.1. Biofilm Inhibition Procedure
3.6.2. Biofilm Eradication Procedure
3.6.3. Assessment of Biofilm Cell Viability
3.7. Hemolytic Activity
3.8. Aerobic Biodegradability
3.9. Aquatic Toxicity Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferri, M.; Ranucci, E.; Romagnoli, P.; Giaccone, V. Antimicrobial resistance: A global emerging threat to public health systems. Crit. Rev. Food Sci. Nutr. 2017, 57, 2857–2876. [Google Scholar] [CrossRef] [PubMed]
- Michael, I.; Rizzo, L.; McArdell, C.S.; Manaia, C.M.; Merlin, C.; Schwartz, T.; Dagot, C.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review. Water Res. 2013, 47, 957–995. [Google Scholar] [CrossRef] [PubMed]
- Bowler, P.; Murphy, C.; Wolcott, R. Biofilm exacerbates antibiotic resistance: Is this a current oversight in antimicrobial stewardship? Antimicrob. Resist. Infect. Control 2020, 9, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Pendleton, J.N.; Gilmore, B.F. The antimicrobial potential of ionic liquids: A source of chemical diversity for infection and biofilm control. Int. J. Antimicrob. Agents 2015, 46, 131–139. [Google Scholar] [CrossRef]
- Galié, S.; García-Gutiérrez, C.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Biofilms in the Food Industry: Health Aspects and Control Methods. Front. Microbiol. 2018, 9, 898. [Google Scholar] [CrossRef]
- Carrascosa, C.; Raheem, D.; Ramos, F.; Saraiva, A.; Raposo, A. Microbial Biofilms in the Food Industry—A Comprehensive Review. Int. J. Environ. Res. Public Health 2021, 18, 2014. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Last-Line Antibiotics Are Failing: Options to Address This Urgent Threat to Patients and Healthcare Systems. Available online: https://www.ecdc.europa.eu/en/publications-data/last-line-antibiotics-are-failing-options-address-urgent-threat-patients-and (accessed on 9 March 2025).
- Pereira, A.R.; Gomes, I.B.; Simões, M. Choline-based ionic liquids for planktonic and biofilm growth control of bacillus cereus and pseudomonas fluorescens. J. Mol. Liq. 2022, 346, 117077. [Google Scholar] [CrossRef]
- Cornellas, A.; Perez, L.; Comelles, F.; Ribosa, I.; Manresa, A.; Garcia, M.T. Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. J. Colloid Interface Sci. 2011, 355, 164–171. [Google Scholar] [CrossRef]
- Anandkumar, B.; George, R.P.; Philip, J. Efficacy of imidazolium and piperidinium based ionic liquids on inhibiting biofilm formation on titanium and carbon steel surfaces. Anal. Chim. Acta 2020, 1126, 38–51. [Google Scholar] [CrossRef]
- Egorova, K.S.; Gordeev, E.G.; Ananikov, V.P. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chem. Rev. 2017, 117, 7132–7189. [Google Scholar] [CrossRef]
- MacFarlane, D.R.; Forsyth, M.; Izgorodina, E.I.; Abbott, A.P.; Annat, G.; Fraser, K. On the concept of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 2009, 11, 4962–4967. [Google Scholar] [CrossRef] [PubMed]
- Lei, Z.; Chen, B.; Koo, Y.-M.; Macfarlane, D.R. Introduction: Ionic Liquids. Chem. Rev. 2017, 117, 6633–6635. [Google Scholar] [CrossRef] [PubMed]
- Gathergood, N.; Garcia, M.T.; Scammells, P.J. Biodegradable Ionic Liquids: Part I. Concept, Preliminary Targets and Evaluation. Green Chem. 2004, 6, 166–175. [Google Scholar] [CrossRef]
- Jordan, A.; Gathergood, N. Biodegradation of ionic liquids—A critical review. Chem. Soc. Rev. 2015, 44, 8200–8237. [Google Scholar] [CrossRef]
- Atefi, F.; Garcia, M.T.; Singer, R.D.; Scammells, P.J. phosphonium ionic liquids: Design, synthesis and evaluation of biodegradability. Green Chem. 2009, 11, 1595–1604. [Google Scholar] [CrossRef]
- Harjani, J.R.; Farrell, J.; Garcia, M.T.; Singer, R.D.; Scammells, P.J. Further investigation of the biodegradability of imidazolium ionic liquids. Green Chem. 2009, 11, 821–829. [Google Scholar] [CrossRef]
- Jennings, M.C.; Forman, M.E.; Duggan, S.M.; Minbiole, K.P.C.; Wuest, W.M. Efflux Pumps Might Not Be the Major Drivers of QAC Resistance in Methicillin-Resistant Staphylococcus Aureus. ChemBioChem 2017, 18, 1573–1577. [Google Scholar] [CrossRef]
- Minbiole, K.P.C.; Jennings, M.C.; Ator, L.E.; Black, J.W.; Grenier, M.C.; LaDow, J.E.; Caran, K.L.; Seifert, K.; Wuest, W.M. From antimicrobial activity to mechanism of resistance: The multifaceted role of simple quaternary ammonium compounds in bacterial eradication. Tetrahedron 2016, 72, 3559–3566. [Google Scholar] [CrossRef]
- Siopa, F.; Figueiredo, T.; Frade, R.F.M.; Neto, I.; Meirinhos, A.; Reis, C.P.; Sobral, R.G.; Afonso, C.A.M.; Rijo, P. Choline-Based Ionic Liquids: Improvement of Antimicrobial Activity. ChemistrySelect 2016, 1, 5909–5916. [Google Scholar] [CrossRef]
- García, M.T.; Bautista, E.; de la Fuente, A.; Pérez, L. Cholinium-Based Ionic Liquids as Promising Antimicrobial Agents in Pharmaceutical Applications: Surface Activity, Antibacterial Activity and Ecotoxicological Profile. Pharmaceutics 2023, 15, 1806. [Google Scholar] [CrossRef]
- Gadilohar, B.L.; Shankarling, G.S. Choline based ionic liquids and their applications in organic transformation. J. Mol. Liq. 2017, 227, 234–261. [Google Scholar] [CrossRef]
- Li, X.; Ma, N.; Zhang, L.; Ling, G.; Zhang, P. Applications of choline-based ionic liquids in drug delivery. Int. J. Pharm. 2022, 612, 121366. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.T.; Ribosa, I.; Perez, L.; Manresa, A.; Comelles, F. Aggregation Behavior and Antimicrobial Activity of Ester-Functionalized Imidazolium- and Pyridinium-Based Ionic Liquids in Aqueous Solution. Langmuir 2013, 29, 2536–2545. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.T.; Ribosa, I.; Perez, L.; Manresa, A.; Comelles, F. Self-assembly and antimicrobial activity of long-chain amide-functionalized ionic liquids in aqueous solution. Colloids Surf. B Biointerfaces 2014, 123, 318–325. [Google Scholar] [CrossRef]
- Garcia, M.T.; Ribosa, I.; Perez, L.; Manresa, A.; Comelles, F. Micellization and Antimicrobial Properties of Surface-Active Ionic Liquids Containing Cleavable Carbonate Linkages. Langmuir 2017, 33, 6511–6520. [Google Scholar] [CrossRef]
- Rosen, M.J.; Kunjappu, J.T. Surfactants and Interfacial Phenomena, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 9781118228920. [Google Scholar]
- Zhou, C.; Wang, Y. Structure–activity relationship of cationic surfactants as antimicrobial agents. Curr. Opin. Colloid Interface Sci. 2020, 45, 28–43. [Google Scholar] [CrossRef]
- Forman, M.E.; Jennings, M.C.; Wuest, W.M.; Minbiole, K.P.C. Building a Better Quaternary Ammonium Compound (QAC): Branched Tetracationic Antiseptic Amphiphiles. ChemMedChem 2016, 11, 1401–1405. [Google Scholar] [CrossRef]
- Tehrani-Bagha, A.R.; Holmberg, K. Cationic Ester-Containing Gemini Surfactants: Physical−Chemical Properties. Langmuir 2010, 26, 9276–9282. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in Vitro Evaluating Antimicrobial Activity: A Review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Haney, E.F.; Trimble, M.J.; Hancock, R.E.W. Microtiter Plate Assays to Assess Antibiofilm Activity against Bacteria. Nat. Protoc. 2021, 16, 2615–2632. [Google Scholar] [CrossRef]
- Pape, W.J.; Pfannenbecker, U.; Hoppe, U. Validation of the red blood cell test system as in vitro assay for the rapid screening of irritation potential of surfactants. Mol. Toxicol. 1987, 1, 525–536. [Google Scholar]
- OECD. OECD Test No. 310: Ready Biodegradability—CO2 in Sealed Vessels (Headspace Test); OECD Guidelines for the Testing of Chemicals, Section 3; OECD Publishing: Paris, France, 2014. [Google Scholar]
- UNE-EN ISO 11348-3-2009; Water Quality—Determination of the Inhibitory Effect of Water Samples on the Light Emission of Vibrio fischeri (Luminescent Bacteria Test)—Part 3: Method Using Freeze-Dried Bacteria. European Standards: Brussels, Belgium, 2009.
Ionic Liquid | Tonset1 (°C) | Tonset2 (°C) |
---|---|---|
Ester-functionalized cholinium ILs (C10-C14) | 156–164 | 230–236 |
Cholinium ILs (C10-C16) | 238–241 [21] | |
Ester-functionalized imidazolium ILs (C6-C14) | 210–228 [24] | |
Imidazolium ILs (C10-C14) | 282–288 [9] | |
Ester-functionalized pyridinium ILs (C6-C14) | 158–162 [24] | |
Pyridinium ILs (C12) | 232 [9] |
CnECholBr | CMC a (mM) | CMC b (mM) |
---|---|---|
C10ECholBr | 11.2 ± 0.8 | 9.0 ± 0.5 |
C12ECholBr | 4.2 ± 0.5 | 2.9 ± 0.1 |
C14ECholBr | 0.7 ± 0.1 | 1.3 ± 0.1 |
MIC (µg/mL) | ||||
---|---|---|---|---|
Microorganism | C10ECholBr | C12ECholBr | C14ECholBr | |
Gram-positive bacteria | Micrococcus luteus | >256 | 16 | 8 |
Staphylococcus epidermidis | >256 | 64 | 64 | |
Staphylococcus aureus | >256 | 64 | 128 | |
MRSA | >256 | 64 | >256 | |
Listeria monocytogenes | >256 | >256 | >256 | |
Gram-negative bacteria | Escherichia coli | >256 | >256 | >256 |
Acinetobacter baumannii | >256 | >256 | >256 | |
Klebsiella aerogenes | >256 | >256 | >256 | |
Pseudomonas aeruginosa | >256 | >256 | >256 | |
Salmonella enterica | >256 | >256 | >256 | |
Yeast | Candida albicans | >256 | 64 | >256 |
Candida tropicalis | >256 | >256 | >256 | |
Candida parasilopsis | >256 | >256 | >256 | |
Candida glabrata | >256 | 32 | >256 |
Ester-Functionalized Cholinium-Based IL | HC50 (µM) |
---|---|
C10ECholBr | >2500 |
C12ECholBr | 232 ± 2 |
C14ECholBr | 56 ± 1 |
Compound | Biodegradation (%) | |||
---|---|---|---|---|
7 Days | 14 Days | 21 Days | 28 Days | |
NaBz | 80 | 91 | 93 | 98 ± 5.1 |
C10ECholBr | 10 | 19 | 40 | 64 ± 2.9 |
C12ECholBr | 26 | 28 | 46 | 69 ± 5.5 |
C14ECholBr | 29 | 34 | 57 | 61 ± 3.0 |
Ionic Liquid | V. fisheri, EC50 (95% CI) (mg/L) |
---|---|
C10ECholBr | 1.7 (1.4–2.2) |
C12ECholBr | 0.27 (0.12–0.61) |
C14ECholBr | 0.44 (0.14–1.37) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, M.T.; Bautista, E.; Pérez, L.; Vázquez, S. Self-Assembly, Antimicrobial Properties and Biodegradability of Ester-Functionalized Choline-Based Surface-Active Ionic Liquids. Molecules 2025, 30, 1280. https://doi.org/10.3390/molecules30061280
García MT, Bautista E, Pérez L, Vázquez S. Self-Assembly, Antimicrobial Properties and Biodegradability of Ester-Functionalized Choline-Based Surface-Active Ionic Liquids. Molecules. 2025; 30(6):1280. https://doi.org/10.3390/molecules30061280
Chicago/Turabian StyleGarcía, María Teresa, Elena Bautista, Lourdes Pérez, and Sergio Vázquez. 2025. "Self-Assembly, Antimicrobial Properties and Biodegradability of Ester-Functionalized Choline-Based Surface-Active Ionic Liquids" Molecules 30, no. 6: 1280. https://doi.org/10.3390/molecules30061280
APA StyleGarcía, M. T., Bautista, E., Pérez, L., & Vázquez, S. (2025). Self-Assembly, Antimicrobial Properties and Biodegradability of Ester-Functionalized Choline-Based Surface-Active Ionic Liquids. Molecules, 30(6), 1280. https://doi.org/10.3390/molecules30061280