Phytochemical Analysis, Antioxidant and Antibacterial Activities, Minerals Element Profiling, and Identification of Bioactive Compounds by UPLC-HRMS Orbitrap in Four Aromatic and Medicinal Plants
Abstract
:1. Introduction
2. Results and Discussions
2.1. Total TPC, TFC and TCT
2.2. Antioxidant Activity
2.3. Determination of Bioactive Molecules by UPLC–HRMS Orbitrap
2.4. Mineral Contents in the Plants
2.5. Antibacterial Activity
2.6. Correlation Matrix
2.7. Principal Component Analysis
3. Materials and Methods
3.1. Plant Material
3.2. Preparation of Extracts
3.3. Determination of Total Polyphenol Content (TPC)
3.4. Determination of Total Flavonoid Content (TFC)
3.5. Determination of Total Catechin Tannin (TCT)
3.6. Antioxidant Activity
3.7. Instrument and Chromatography Condition
3.8. Minerals Determination
3.9. Antibacterial Activity
3.9.1. Agar Diffusion Test
3.9.2. Determination of the Minimum Inhibitory Concentration (MIC) of the Extract
3.10. Statistical Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gogoi, I.; Dowara, M.; Chetia, P. Traditional Medicinal Plants and Their Ethnomedicinal Values. In Traditional Resources and Tools for Modern Drug Discovery: Ethnomedicine and Pharmacology; Das Talukdar, A., Patra, J.K., Das, G., Nath, D., Eds.; Springer Nature: Singapore, 2024; pp. 377–399. ISBN 978-981-9746-00-2. [Google Scholar]
- Bourgou, S.; Ben Haj Jilani, I.; Karous, O.; Megdiche-Ksouri, W.; Ghrabi-Gammar, Z.; Libiad, M.; Khabbach, A.; El Haissoufi, M.; Lamchouri, F.; Greveniotis, V.; et al. Medicinal-Cosmetic Potential of the Local Endemic Plants of Crete (Greece), Northern Morocco and Tunisia: Priorities for Conservation and Sustainable Exploitation of Neglected and Underutilized Phytogenetic Resources. Biology 2021, 10, 1344. [Google Scholar] [CrossRef] [PubMed]
- Bencheikh, N.; Elbouzidi, A.; Kharchoufa, L.; Ouassou, H.; Alami Merrouni, I.; Mechchate, H.; Es-safi, I.; Hano, C.; Addi, M.; Bouhrim, M.; et al. Inventory of Medicinal Plants Used Traditionally to Manage Kidney Diseases in North-Eastern Morocco: Ethnobotanical Fieldwork and Pharmacological Evidence. Plants 2021, 10, 1966. [Google Scholar] [CrossRef] [PubMed]
- Jamaleddine, M.; El Oualidi, J.; Taleb, M.S.; Thévenin, T.; El Alaoui-Faris, F.E. Inventaire et état de conservation des plantes aromatiques et médicinales (PAM) au Maroc. Phytothérapie 2017, 15, 114–122. [Google Scholar] [CrossRef]
- Mamadalieva, N.Z.; Akramov, D.K.; Wessjohann, L.A.; Hussain, H.; Long, C.; Tojibaev, K.S.; Alshammari, E.; Ashour, M.L.; Wink, M. The Genus Lagochilus (Lamiaceae): A Review of Its Diversity, Ethnobotany, Phytochemistry, and Pharmacology. Plants 2021, 10, 132. [Google Scholar] [CrossRef]
- Sennouni, C.I.; Oukouia, M.; Jabeur, I.; Hamdani, H.; Chami, F.; Remmal, A. In Vitro and in Vivo Study of the Antiparasitic Effect of Thymol on Poultry Drinking Water. Acta Sci. Biol. Sci. 2022, 44, e58571. [Google Scholar] [CrossRef]
- Vassiliou, E.; Awoleye, O.; Davis, A.; Mishra, S. Anti-Inflammatory and Antimicrobial Properties of Thyme Oil and Its Main Constituents. Int. J. Mol. Sci. 2023, 24, 6936. [Google Scholar] [CrossRef]
- El Hachlafi, N.; Benkhaira, N.; Ferioun, M.; Kandsi, F.; Jeddi, M.; Chebat, A.; Addi, M.; Hano, C.; Fikri-Benbrahim, K. Moroccan Medicinal Plants Used to Treat Cancer: Ethnomedicinal Study and Insights into Pharmacological Evidence. Evid. Based Complement. Alternat. Med. 2022, 2022, 1645265. [Google Scholar] [CrossRef]
- Arraji, M.; Al Wachami, N.; Boumendil, K.; Chebabe, M.; Mochhoury, L.; Laamiri, F.Z.; Barkaoui, M.; Chahboune, M. Ethnobotanical Survey on Herbal Remedies for the Management of Type 2 Diabetes in the Casablanca-Settat Region, Morocco. BMC Complement. Med. Ther. 2024, 24, 160. [Google Scholar] [CrossRef]
- Yacoub, O.S.; Embarek, A.; Abderahim, K.; Bouchra, B.; Ali, O.; Omar, A.; Abdelhalim, M. Chemical Composition and Zootechnical Effects of Essential Oil of Fennel (Foeniculum vulgare Mill) and Anise (Pimpinella anisum L.) on Turkey. J. World’s Poult. Res. 2015, 5, 90–97. [Google Scholar]
- Vella, F.M.; Pignone, D.; Laratta, B. The Mediterranean Species Calendula Officinalis and Foeniculum vulgare as Valuable Source of Bioactive Compounds. Molecules 2024, 29, 3594. [Google Scholar] [CrossRef]
- Malin, V.; Elez Garofulić, I.; Repajić, M.; Zorić, Z.; Pedisić, S.; Sterniša, M.; Smole Možina, S.; Dragović-Uzelac, V. Phenolic Characterization and Bioactivity of Fennel Seed (Foeniculum vulgare Mill.) Extracts Isolated by Microwave-Assisted and Conventional Extraction. Processes 2022, 10, 510. [Google Scholar] [CrossRef]
- Mokhtari, R.; Kazemi Fard, M.; Rezaei, M.; Moftakharzadeh, S.A.; Mohseni, A. Antioxidant, Antimicrobial Activities, and Characterization of Phenolic Compounds of Thyme (Thymus vulgaris L.), Sage (Salvia officinalis L.), and Thyme–Sage Mixture Extracts. J. Food Qual. 2023, 2023, 2602454. [Google Scholar] [CrossRef]
- Soussi, M.; Fadil, M.; Yaagoubi, W.A.; Benjelloun, M.; El Ghadraoui, L. Simultaneous Optimization of Phenolic Compounds and Antioxidant Abilities of Moroccan Pimpinella anisum Extracts Using Mixture Design Methodology. Processes 2022, 10, 2580. [Google Scholar] [CrossRef]
- Sarfaraz, D.; Rahimmalek, M.; Saeidi, G. Polyphenolic and Molecular Variation in Thymus Species Using HPLC and SRAP Analyses. Sci. Rep. 2021, 11, 5019. [Google Scholar] [CrossRef]
- Macedo, L.M.D.; Santos, É.M.D.; Ataide, J.A.; Silva, G.T.D.S.E.; Guarnieri, J.P.D.O.; Lancellotti, M.; Jozala, A.F.; Rosa, P.C.P.; Mazzola, P.G. Development and Evaluation of an Antimicrobial Formulation Containing Rosmarinus officinalis. Molecules 2022, 27, 5049. [Google Scholar] [CrossRef]
- Noreen, S.; Tufail, T.; Bader Ul Ain, H.; Ali, A.; Aadil, R.M.; Nemat, A.; Manzoor, M.F. Antioxidant Activity and Phytochemical Analysis of Fennel Seeds and Flaxseed. Food Sci. Nutr. 2023, 11, 1309–1317. [Google Scholar] [CrossRef]
- Jain, N.; Choudhary, P. Phytochemistry Traditional Uses and Pharmacological Aspect of Thymus vulgaris: A Review. Indian J. Pharm. Sci. 2022, 84, 1369–1379. [Google Scholar] [CrossRef]
- Bejenaru, L.E.; Biţă, A.; Mogoşanu, G.D.; Segneanu, A.-E.; Radu, A.; Ciocîlteu, M.V.; Bejenaru, C. Polyphenols Investigation and Antioxidant and Anticholinesterase Activities of Rosmarinus officinalis L. Species from Southwest Romania Flora. Molecules 2024, 29, 4438. [Google Scholar] [CrossRef]
- Baer-Dubowska, W.; Narożna, M.; Krajka-Kuźniak, V. Anti-Cancer Potential of Synthetic Oleanolic Acid Derivatives and Their Conjugates with NSAIDs. Molecules 2021, 26, 4957. [Google Scholar] [CrossRef]
- Puvača, N.; Tufarelli, V.; Giannenas, I. Essential Oils in Broiler Chicken Production, Immunity and Meat Quality: Review of Thymus vulgaris, Origanum vulgare, and Rosmarinus officinalis. Agriculture 2022, 12, 874. [Google Scholar] [CrossRef]
- Twaij, B.M.; Hasan, M.N. Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses. Int. J. Plant Biol. 2022, 13, 4–14. [Google Scholar] [CrossRef]
- Chandran, H.; Meena, M.; Barupal, T.; Sharma, K. Plant Tissue Culture as a Perpetual Source for Production of Industrially Important Bioactive Compounds. Biotechnol. Rep. 2020, 26, e00450. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, A.; Rajabiyan, A.; Nabizade, N.; Meygoli Nezhad, N.; Zarei-Ahmady, A. Seaweed-Derived Phenolic Compounds as Diverse Bioactive Molecules: A Review on Identification, Application, Extraction and Purification Strategies. Int. J. Biol. Macromol. 2024, 266, 131147. [Google Scholar] [CrossRef]
- Liu, N.; Li, X.; Zhao, P.; Zhang, X.; Qiao, O.; Huang, L.; Guo, L.; Gao, W. A Review of Chemical Constituents and Health-Promoting Effects of Citrus Peels. Food Chem. 2021, 365, 130585. [Google Scholar] [CrossRef] [PubMed]
- Donadio, G.; Mensitieri, F.; Santoro, V.; Parisi, V.; Bellone, M.L.; De Tommasi, N.; Izzo, V.; Dal Piaz, F. Interactions with Microbial Proteins Driving the Antibacterial Activity of Flavonoids. Pharmaceutics 2021, 13, 660. [Google Scholar] [CrossRef]
- Uawisetwathana, U.; Jamboonsri, W.; Bamrungthai, J.; Jitthiang, P.; Nookaew, I.; Karoonuthaisiri, N. Metabolite Profiles of Brown Planthopper-Susceptible and Resistant Rice (Oryza sativa) Varieties Associated with Infestation and Mechanical Stimuli. Phytochemistry 2022, 194, 113044. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, H.; Yu, B.; He, J.; Mao, X.; Yu, J.; Zheng, P.; Huang, Z.; Luo, Y.; Luo, J.; et al. Protective Effects of Natural Antioxidants on Inflammatory Bowel Disease: Thymol and Its Pharmacological Properties. Antioxidants 2022, 11, 1947. [Google Scholar] [CrossRef]
- Quintero-Cabello, K.P.; Lugo-Flores, M.A.; Rivera-Palafox, P.; Silva-Espinoza, B.A.; González-Aguilar, G.A.; Esqueda, M.; Gaitán-Hernández, R.; Ayala-Zavala, J.F. Antioxidant Properties and Industrial Uses of Edible Polyporales. J. Fungi 2021, 7, 196. [Google Scholar] [CrossRef]
- Bajer, D. Eco-Friendly, Biodegradable Starch-Based Packaging Materials with Antioxidant Features. Polymers 2024, 16, 958. [Google Scholar] [CrossRef]
- Duda-Madej, A.; Stecko, J.; Sobieraj, J.; Szymańska, N.; Kozłowska, J. Naringenin and Its Derivatives—Health-Promoting Phytobiotic against Resistant Bacteria and Fungi in Humans. Antibiotics 2022, 11, 1628. [Google Scholar] [CrossRef]
- Günther, A.; Zalewski, P.; Sip, S.; Ruszkowski, P.; Bednarczyk-Cwynar, B. Oleanolic Acid Dimers with Potential Application in Medicine—Design, Synthesis, Physico-Chemical Characteristics, Cytotoxic and Antioxidant Activity. Int. J. Mol. Sci. 2024, 25, 6989. [Google Scholar] [CrossRef] [PubMed]
- Bouyahya, A.; Mechchate, H.; Benali, T.; Ghchime, R.; Charfi, S.; Balahbib, A.; Burkov, P.; Shariati, M.A.; Lorenzo, J.M.; Omari, N.E. Health Benefits and Pharmacological Properties of Carvone. Biomolecules 2021, 11, 1803. [Google Scholar] [CrossRef] [PubMed]
- Lalouckova, K.; Mala, L.; Marsik, P.; Skrivanova, E. In Vitro Antibacterial Effect of the Methanolic Extract of the Korean Soybean Fermented Product Doenjang against Staphylococcus Aureus. Animals 2021, 11, 2319. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Du, C.; Beaman, H.T.; Monroe, M.B.B. Characterization of Phenolic Acid Antimicrobial and Antioxidant Structure–Property Relationships. Pharmaceutics 2020, 12, 419. [Google Scholar] [CrossRef]
- Zafar, A.; Alruwaili, N.K.; Imam, S.S.; Alsaidan, O.A.; Ahmed, M.M.; Yasir, M.; Warsi, M.H.; Alquraini, A.; Ghoneim, M.M.; Alshehri, S. Development and Optimization of Hybrid Polymeric Nanoparticles of Apigenin: Physicochemical Characterization, Antioxidant Activity and Cytotoxicity Evaluation. Sensors 2022, 22, 1364. [Google Scholar] [CrossRef]
- Hasan, S.N.; Banerjee, J.; Patra, S.; Kar, S.; Das, S.; Samanta, S.; Wanigasekera, D.; Pavithra, U.; Wijesekera, K.; Napagoda, M.; et al. Self-Assembled Renewable Nano-Sized Pentacyclic Triterpenoid Maslinic Acids in Aqueous Medium for Anti-Leukemic, Antibacterial and Biocompatibility Studies: An Insight into Targeted Proteins-Compound Interactions Based Mechanistic Pathway Prediction through Molecular Docking. Int. J. Biol. Macromol. 2023, 245, 125416. [Google Scholar] [CrossRef]
- Samsonowicz, M.; Kalinowska, M.; Gryko, K. Enhanced Antioxidant Activity of Ursolic Acid by Complexation with Copper (II): Experimental and Theoretical Study. Materials 2021, 14, 264. [Google Scholar] [CrossRef]
- Zieniuk, B. Dihydrocaffeic Acid—Is It the Less Known but Equally Valuable Phenolic Acid? Biomolecules 2023, 13, 859. [Google Scholar] [CrossRef]
- Song, X.; Li, R.; Zhang, Q.; He, S.; Wang, Y. Antibacterial Effect and Possible Mechanism of Salicylic Acid Microcapsules against Escherichia Coli and Staphylococcus Aureus. Int. J. Environ. Res. Public Health 2022, 19, 12761. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Gholamhosseinpour, A.; Barba, F.J. Rosmarinus officinalis L. Essential Oils Impact on the Microbiological and Oxidative Stability of Sarshir (Kaymak). Molecules 2023, 28, 4206. [Google Scholar] [CrossRef]
- Sousa, J.L.C.; Gonçalves, C.; Ferreira, R.M.; Cardoso, S.M.; Freire, C.S.R.; Silvestre, A.J.D.; Silva, A.M.S. Functionalization of Betulinic Acid with Polyphenolic Fragments for the Development of New Amphiphilic Antioxidants. Antioxidants 2021, 10, 148. [Google Scholar] [CrossRef] [PubMed]
- Ulanowska, M.; Olas, B. Biological Properties and Prospects for the Application of Eugenol—A Review. Int. J. Mol. Sci. 2021, 22, 3671. [Google Scholar] [CrossRef]
- Halpani, C.G.; Mishra, S. Design, Synthesis, Characterization of Ferulic Acid and p-Coumaric Acid Amide Derivatives as an Antibacterial/Antioxidant Agent. Pharm. Sci. Adv. 2024, 2, 100023. [Google Scholar] [CrossRef]
- Almeida, R.S.; Freitas, P.R.; Araújo, A.C.J.; Alencar Menezes, I.R.; Santos, E.L.; Tintino, S.R.; Moura, T.F.; Filho, J.R.; Ferreira, V.A.; Silva, A.C.A.; et al. GC-MS Profile and Enhancement of Antibiotic Activity by the Essential Oil of Ocotea Odorífera and Safrole: Inhibition of Staphylococcus Aureus Efflux Pumps. Antibiotics 2020, 9, 247. [Google Scholar] [CrossRef]
- Sharafan, M.; Jafernik, K.; Ekiert, H.; Kubica, P.; Kocjan, R.; Blicharska, E.; Szopa, A. Illicium verum (Star Anise) and Trans-Anethole as Valuable Raw Materials for Medicinal and Cosmetic Applications. Molecules 2022, 27, 650. [Google Scholar] [CrossRef]
- Kafali, M.; Finos, M.A.; Tsoupras, A. Vanillin and Its Derivatives: A Critical Review of Their Anti-Inflammatory, Anti-Infective, Wound-Healing, Neuroprotective, and Anti-Cancer Health-Promoting Benefits. Nutraceuticals 2024, 4, 522–561. [Google Scholar] [CrossRef]
- Nazzaro, F.; Ombra, M.N.; Coppola, F.; De Giulio, B.; d’Acierno, A.; Coppola, R.; Fratianni, F. Antibacterial Activity and Prebiotic Properties of Six Types of Lamiaceae Honey. Antibiotics 2024, 13, 868. [Google Scholar] [CrossRef]
- Mehta, J.; Rolta, R.; Salaria, D.; Awofisayo, O.; Fadare, O.A.; Sharma, P.P.; Rathi, B.; Chopra, A.; Kaushik, N.; Choi, E.H.; et al. Phytocompounds from Himalayan Medicinal Plants as Potential Drugs to Treat Multidrug-Resistant Salmonella Typhimurium: An In Silico Approach. Biomedicines 2021, 9, 1402. [Google Scholar] [CrossRef]
- Burt, S. Essential Oils: Their Antibacterial Properties and Potential Applications in Foods—A Review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Ould Sidi Moctar, Y.; EL Ouardi, A.; Azeroual, E.; Benazzouz, B.; Ouichou, A.; El Hesni, A.; Mesfioui, A.E. Effect of Certain Phytobiotics on the Digestive Microbiota of Broilers (Gallus gallus). Int. J. Sci. Res. IJSR 2023, 12, 1423–1427. [Google Scholar] [CrossRef]
- Van de Vel, E.; Sampers, I.; Raes, K. A review on influencing factors on the minimum inhibitory concentration of essential oils. Crit. Rev. Food Sci. Nutr. 2019, 59, 357–378. [Google Scholar] [CrossRef] [PubMed]
- Saharan, V.V.; Verma, P.; Singh, A.P. High Prevalence of Antimicrobial Resistance in Escherichia Coli, Salmonella Spp. and Staphylococcus Aureus Isolated from Fish Samples in India. Aquac. Res. 2020, 51, 1200–1210. [Google Scholar] [CrossRef]
- Jeong, J.-Y.; Jung, I.-G.; Yum, S.-H.; Hwang, Y.-J. In Vitro Synergistic Inhibitory Effects of Plant Extract Combinations on Bacterial Growth of Methicillin-Resistant Staphylococcus Aureus. Pharmaceuticals 2023, 16, 1491. [Google Scholar] [CrossRef] [PubMed]
- Hayat, J.; Akodad, M.; Moumen, A.; Baghour, M.; Skalli, A.; Ezrari, S.; Belmalha, S. Phytochemical Screening, Polyphenols, Flavonoids and Tannin Content, Antioxidant Activities and FTIR Characterization of Marrubium vulgare L. from 2 Different Localities of Northeast of Morocco. Heliyon 2020, 6, e05609. [Google Scholar] [CrossRef]
- Eddahhaoui, F.Z.; Boudalia, M.; Harhar, H.; Chahboun, N.; Tabyaoui, M.; Guenbour, A.; Zarrouk, A.; Bellaouchou, A. Effect of the Extraction Technique on the Bioactive Compounds and the Antioxidant Capacity of the Chamaerops humilis L. Fruit (Pulp and Seeds). Chem. Data Collect. 2022, 40, 100882. [Google Scholar] [CrossRef]
- Nounah, I.; El Harkaoui, S.; Hajib, A.; Gharby, S.; Harhar, H.; Bouyahya, A.; Caprioli, G.; Maggi, F.; Matthäus, B.; Charrouf, Z. Effect of Seed’s Geographical Origin on Cactus Oil Physico-Chemical Characteristics, Oxidative Stability, and Antioxidant Activity. Food Chem. X 2024, 22, 101445. [Google Scholar] [CrossRef]
- Han, H.; Yılmaz, H.; Gülçin, İ. Antioxidant Activity of Flaxseed (Linum usitatissimum L.) Shell and Analysis of Its Polyphenol Contents by LC-MS/MS. Rec. Nat. Prod. 2018, 12, 397–402. [Google Scholar] [CrossRef]
- Moroccan Institute for Standardization (IMANOR). Determination of Trace Elements-Determination of Lead, Cadmium, Zinc, Copper, Iron, and Chromium by Atomic Absorption Spectrometry (AAS) after Dry Ashing 2016; Moroccan Institute for Standardization (IMANOR): Rabat, Morocco, 2016. [Google Scholar]
- CLSI M02-Ed14; Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—14th Edition. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024.
- CLSI M07-Ed12; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—12th Edition. Clinical and Laboratory Standards Institute CLSI: Wayne, PA, USA, 2024.
Plant | Extract | TPC (μg GAE/mg E) | TFC (μg QE/mg E) | TCT (μg CE/mg E) |
---|---|---|---|---|
T. vulgaris | Aqueous | 51.37 ± 0.04 | 126.45 ± 0.02 | 18.45 ± 0.4 |
Ethanol | 93.99 ± 0.05 | 111.37 ± 0.05 | 23.27 ± 0.1 | |
Methanol | 70.96 ± 0.01 | 143.37 ± 0.02 | 20.38 ± 0.2 | |
R. officinalis | Aqueous | 58.68 ± 0.01 | 121.37 ± 0.04 | 5.62 ± 0.1 |
Ethanol | 75.79 ± 0.02 | 208.46 ± 0.16 | 21.17 ± 0.3 | |
Methanol | 66.47 ± 0.02 | 99.61 ± 0.01 | 12.04 ± 0.1 | |
P. anisum | Aqueous | 37.70 ± 0.14 | 223.69 ± 0.02 | 4.01 ± 0.29 |
Ethanol | 67.71 ± 0.04 | 101.06 ± 0.05 | 16.85 ± 0.1 | |
Methanol | 20.10 ± 0.11 | 25.50 ± 0.1 | 8.83 ± 0.01 | |
F. vulgare | Aqueous | 9.41 ± 0.10 | 17.71 ± 0.2 | 31.29 ± 0.03 |
Ethanol | 17.67 ± 0.02 | 170.8 ± 0.05 | 5.62 ± 0.01 | |
Methanol | 14.22 ± 0.03 | 37.42 ± 0.1 | 10.43 ± 0.02 |
Plant | Extract | CI50 DPPH (μg/mL) |
---|---|---|
T. vulgaris | Aqueous | 67.07 ± 1.07 |
Ethanol | 43.82 ± 0.51 | |
Methanol | 49.41 ± 1.12 | |
R. officinalis | Aqueous | 15.87 ± 0.4 |
Ethanol | 12.79 ± 0.2 | |
Methanol | 21.87 ± 0.4 | |
P. anisum | Aqueous | 72.33 ± 0.15 |
Ethanol | 84.71 ± 0.21 | |
Methanol | 79.69 ± 0.22 | |
F. vulgare | Aqueous | 201.41 ± 0.10 |
Ethanol | 159.16 ± 0.2 | |
Methanol | 165.23 ± 0.31 |
Nom | Chemical Formulae | Structure | Retention Time | T. vulgaris | R. officinalis | P. anisum | F. vulgare | Bioactivity |
---|---|---|---|---|---|---|---|---|
Tangeritin | C20H20O7 | 25.78 | D | D | ND | D | Antimicrobial [25] | |
Nobiletin | C21H22O8 | 24.44 | D | ND | ND | ND | Antibacterial [26] | |
2-anisic acid | C8H8O3 | 25.55 | ND | ND | D | D | Antibacterial and antifungal [27] | |
Thymol | C10H14O | 21.01 | D | ND | ND | ND | Antioxidant and antibacterial [28] | |
Ergosterol peroxide | C28H44O3 | 37.65 | D | ND | ND | ND | antioxidant [29] | |
D-(-)-quinic acid | C7H12O6 | 2.20 | D | D | D | ND | Antioxidant [30] | |
Naringenin | C15H12O5 | 19.07 | D | ND | ND | ND | Antimicrobial, antioxidant, and anti-inflammatory [31] | |
Oleanolic acid | C30H48O3 | 34.74 | D | D | D | D | Antioxidant [32] | |
Carvone | C10H14O | 25.46 | D | D | ND | ND | Antioxidant and antimicrobial [33] | |
Glycitein | C16H12O5 | 24.92 | D | D | D | ND | Antimicrobial [34] | |
Caffeic acid | C9H8O4 | 6.87 | D | D | D | ND | Antibacterial and antioxidant [35] | |
Apigenin | C15H10O5 | 19.98 | D | ND | ND | ND | Anticancer, Antioxidant, and antimicrobial [36] | |
Maslinic acid | C30H48O4 | 30.23 | ND | D | ND | ND | Antibacterial [37] | |
Ursolic acid | C30H48O3 | 34.81 | D | ND | ND | ND | Antioxidant [38] | |
3,4-dihydroxyphenylacetic acid | C8H8O4 | 2.91 | D | ND | ND | ND | Antioxidant [39] | |
Salicylic acid | C7H6O3 | 3.23 | D | ND | D | D | Antibacterial [40] | |
Rosmanol | C20H26O5 | 23.44 | ND | D | ND | ND | Antioxidant and antimicrobial [41] | |
Betulonic acid | C30H46O3 | 33.32 | ND | D | D | D | Antioxidant [42] | |
Eugenol | C10H12O2 | 38.63 | ND | ND | D | D | Antioxidant and antibacterial [43] | |
(E)-p-coumaric acid | C9H8O3 | 2.55 | ND | ND | D | D | Antioxidant and antibacterial [44] | |
Safrole | C10H10O2 | 26.84 | ND | ND | D | D | Antibacterial [45] | |
Trans-anethole | C10H12O | 27.77 | ND | ND | D | D | Antibacterial and antioxidant [46] | |
Vanillin | C8H8O3 | 8.46 | ND | ND | ND | D | Antibacterial [47] |
T. vulgaris | R. officinalis | P. anisum | F. vulgare | |
---|---|---|---|---|
Macroelement | ||||
Ca | 20.823 ± 0.71 | 13.126 ± 0.52 | 12.528 ± 0.33 | 7.029 ± 0.24 |
Mg | 3.354 ± 0.17 | 2.582 ± 0.11 | 2.796 ± 0.21 | 2.257 ± 0.15 |
K | 0.658 ± 0.09 | 0.486 ± 0.06 | 0.752 ± 001 | 36.413 ± 0.98 |
Na | 1.233 ± 0.13 | 0.700 ± 0.04 | 1.407 ± 0.091 | 0.728 ± 0.053 |
Trace element | ||||
Fe | 0.970± 0.11 | 0.32 ± 0.32 | 0.093 ± 0.004 | 0.088 ± 0.006 |
Cu | 0.007 ± 0.002 | 0.003± 0.002 | 0.01± 0.01 | 0.010 ± 0.010 |
Zn | 0.019 ± 0.03 | 0.017 ± 0.006 | 0.035 ± 0.004 | 0.041 ± 0.005 |
Mn | 0.051 ± 0.01 | 0.02 ± 0.01 | 0.049 ± 0.005 | 0.021 ± 0.002 |
B | 0.03 ± 0.01 | 0.01 ± 0.01 | 0.003 ± 0.002 | 0.009± 0.001 |
Zone of Inhibition (mm) | ||||
---|---|---|---|---|
Plant | Concentration (mg/mL) | E. coli | Salmonella | Staphylococcus |
T. vulgaris | 100 | 14.00 ± 0.50 | 7.00 ± 1.00 | 12.00 ± 0.50 |
50 | 13.00 ± 0.0 | - | 7.50 ± 0.50 | |
25 | 9.00 ± 0.0 | - | - | |
12.5 | 7.00 ± 0.00 | - | - | |
6.25 | - | - | ||
R. officinalls | 100 | 15.00 ± 1.50 | 12.50 ± 0.50 | 14.00 ± 1.00 |
50 | 9.00 ± 0.05 | 11 ± 0.00 | 11.50 ± 0.50 | |
25 | 8.00 ± 0.00 | Trace | 10.00 ± 0.00 | |
12.5 | 7.00 ± 0.00 | - | 7.50 ± 0.00 | |
6.25 | - | - | - | |
P. anisum | 100 | 8.00 ± 0.00 | 7.50 ± 0.00 | 9.00 ± 0.50 |
50 | Trace | - | Trace | |
25 | - | - | - | |
12.5 | - | - | - | |
6.25 | - | - | - | |
F. vulgare | 100 | 14.50 ± 1.50 | 12.50 ± 0.50 | 15.50 ± 1.00 |
50 | 12.00 ± 0.50 | 11.00 ± 0.00 | 12.50 ± 1.00 | |
25 | 9.50 ± 0.50 | 7.00 ± 0.00 | 9.00 ± 0.50 | |
12.5 | 7.00 ± 0.00 | Trace | 7.00 ± 0.00 | |
6.25 | Trace | - | - | |
Water distilled | 100 | - | - | - |
50 | - | - | - | |
25 | - | - | - | |
12.5 | - | - | - | |
6.25 | - | - | - |
Hydrolic Extract | MIC (µg/mL) | ||
---|---|---|---|
E. coli | Salmonella | Staphylococcus | |
T. vulgaris | 7.81 | 31.25 | 15.62 |
R. officinalls | 3.91 | 15.62 | 3.91 |
P. anisum | 125.00 | 125.00 | 125.00 |
F. vulgare | 31.25 | 62.5 | 3.91 |
Common Name | Scientific Name | Abbreviation | Botanical Family | Growth Habit | Wild/Cultivated | Part Used |
---|---|---|---|---|---|---|
Thyme | Thymus vulgaris | T. vulgaris | Lamiaceae | Herbaceous | Cultivated | Leaves and stems |
Rosemary | Rosmarinus officinalis | R. officinalis | Lamiaceae | Woody shrub | Cultivated | Leaves and stems |
Anis | Pimpinella anisum | P. anisum | Apiaceae | Herbaceous | Cultivated | Seeds |
Fennel | Foeniculum vulgare | F. vulgare | Apiaceae | Herbaceous | Cultivated | Seeds |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boubker, A.; El Ouardi, A.; El Kamli, T.; El Hamidi, A.; Kaicer, M.; Kichou, F.; Ameur, N.; Errafii, K.; Ben Aakame, R.; Sifou, A. Phytochemical Analysis, Antioxidant and Antibacterial Activities, Minerals Element Profiling, and Identification of Bioactive Compounds by UPLC-HRMS Orbitrap in Four Aromatic and Medicinal Plants. Molecules 2025, 30, 1279. https://doi.org/10.3390/molecules30061279
Boubker A, El Ouardi A, El Kamli T, El Hamidi A, Kaicer M, Kichou F, Ameur N, Errafii K, Ben Aakame R, Sifou A. Phytochemical Analysis, Antioxidant and Antibacterial Activities, Minerals Element Profiling, and Identification of Bioactive Compounds by UPLC-HRMS Orbitrap in Four Aromatic and Medicinal Plants. Molecules. 2025; 30(6):1279. https://doi.org/10.3390/molecules30061279
Chicago/Turabian StyleBoubker, Aicha, Abdelmoula El Ouardi, Taha El Kamli, Adnane El Hamidi, Mohammed Kaicer, Faouzi Kichou, Najia Ameur, Khaoula Errafii, Rachid Ben Aakame, and Aicha Sifou. 2025. "Phytochemical Analysis, Antioxidant and Antibacterial Activities, Minerals Element Profiling, and Identification of Bioactive Compounds by UPLC-HRMS Orbitrap in Four Aromatic and Medicinal Plants" Molecules 30, no. 6: 1279. https://doi.org/10.3390/molecules30061279
APA StyleBoubker, A., El Ouardi, A., El Kamli, T., El Hamidi, A., Kaicer, M., Kichou, F., Ameur, N., Errafii, K., Ben Aakame, R., & Sifou, A. (2025). Phytochemical Analysis, Antioxidant and Antibacterial Activities, Minerals Element Profiling, and Identification of Bioactive Compounds by UPLC-HRMS Orbitrap in Four Aromatic and Medicinal Plants. Molecules, 30(6), 1279. https://doi.org/10.3390/molecules30061279