Phytochemical Constituent of Devil Weed (Chromolaena odorata), Concurrent with Its Antioxidant, α-Glucosidase Inhibitory, and Antibacterial Activity
Abstract
1. Introduction
2. Results and Discussion
2.1. Yield of Extraction
2.2. Antioxidant Activity
2.3. α-Glucosidase Inhibitory Activity
2.4. Antibacterial Activity
2.5. Total Phenolic Content
2.6. FTIR Spectra
2.7. LC-HRMS and PCA
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Preparation of C. odorata Extracts
3.3. Antioxidant Assay
3.3.1. DPPH Assay
3.3.2. β-Carotene-Bleaching Assay
3.4. α-Glucosidase Inhibitory Assay
3.5. Total Phenolic Content (TPC) Analysis
3.6. Antibacterial Study
3.7. FTIR Study
3.8. LC-HRMS Study
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sahid, I.; Yusoff, N. Allelopathic Effects of Chromolaena odorata (L.) King and Robinson and Mikania Micrantha H.B.K. on Three Selected Weed Species. Aust. J. Crop Sci. 2014, 8, 1024–1028. [Google Scholar]
- Rizali, A.; Hadi, M.S.; Pudjianto, P.; Buchori, D. A New Trophic Interaction between Invasive Weed, Its Biological Control Agent, and Local Insects: A Case Study of Chromolaena odorata. Biodivers. J. Biol. Divers. 2019, 20, 1006–1011. [Google Scholar] [CrossRef]
- Juru, V.N.; Ndam, L.M.; Tatah, B.N.; Fonge, B.A. Rhizospheric Soil Chemical Properties and Microbial Response to a Gradient of Chromolaena odorata (L) Invasion in the Mount Cameroon Region. PLoS ONE 2024, 19, e0312199. [Google Scholar] [CrossRef] [PubMed]
- Otabor, J.I.; Egbon, I.; Toews, M.D.; Uyi, O. The Double-Edged Sword: Local Perspectives on the Spread, Impact, Management, and Uses of the Invasive Chromolaena odorata in Southern Nigeria. Sustainability 2025, 17, 3514. [Google Scholar] [CrossRef]
- Rai, P.K.; Singh, J.S. Ecological Insights and Environmental Threats of Invasive Alien Plant Chromolaena odorata: Prospects for Sustainable Management. Weed Biol. Manag. 2024, 24, 15–37. [Google Scholar] [CrossRef]
- Aigbedion-Atalor, P.O. Weed or Not a Weed? Density, Perceptions and Management of Chromolaena odorata (Asteraceae) in West Africa: Voices from Ghana. Weed Res. 2020, 60, 406–414. [Google Scholar] [CrossRef]
- Kanase, V.; Shaikh, S. A Pharmacognostic and Pharmacological Review on Chromolaena odorata (Siam Weed). Asian J. Pharm. Clin. Res. 2018, 11, 34–38. [Google Scholar] [CrossRef]
- Omokhua, A.G.; McGaw, L.J.; Finnie, J.F.; Van Staden, J. Chromolaena odorata (L.) R.M. King & H. Rob. (Asteraceae) in Sub-Saharan Africa: A Synthesis and Review of Its Medicinal Potential. J. Ethnopharmacol. 2016, 183, 112–122. [Google Scholar] [CrossRef]
- Pitakpawasutthi, Y.; Palanuvej, C.; Ruangrungsi, N. Microscopic Leaf Constant Numbers of Chromolaena odorata in Thailand. Pharmacogn. J. 2018, 10, s95–s99. [Google Scholar] [CrossRef]
- Zahara, M. Description of Chromolaena odorata L. R.M King and H. Robinson as Medicinal Plant: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2019, 506, 012022. [Google Scholar] [CrossRef]
- Emani, L.; Ravada, S.; Meka, B.; Garaga, M.; Golakoti, T. A New Flavanone from the Leaves of Chromolaena odorata. Nat. Prod. Commun. 2015, 10, 1555–1559. [Google Scholar] [CrossRef]
- Srinivasa Rao, K.; Chaudhury, P.K.; Pradhan, A. Evaluation of Anti-Oxidant Activities and Total Phenolic Content of Chromolaena odorata. Food Chem. Toxicol. 2010, 48, 729–732. [Google Scholar] [CrossRef]
- Elekofehinti, O.O.; Adewumi, N.A.; Iwaloye, O. Antidiabetic Potential of Chromolaena odorata Leave Extract and Its Effect on Nrf2/Keap1 Antioxidant Pathway in the Liver of Diabetic-Induced Wistar Rats. Adv. Tradit. Med. 2023, 23, 513–523. [Google Scholar] [CrossRef]
- Jungers, J.M.; Fargione, J.E.; Sheaffer, C.C.; Wyse, D.L.; Lehman, C. Energy Potential of Biomass from Conservation Grasslands in Minnesota, USA. PLoS ONE 2013, 8, e61209. [Google Scholar] [CrossRef]
- Gamble, J.D.; Jungers, J.M.; Wyse, D.L.; Johnson, G.A.; Lamb, J.A.; Sheaffer, C.C. Harvest Date Effects on Biomass Yield, Moisture Content, Mineral Concentration, and Mineral Export in Switchgrass and Native Polycultures Managed for Bioenergy. BioEnergy Res. 2015, 8, 740–749. [Google Scholar] [CrossRef]
- Kumar, R.; Chandrashekar, N.; Prasad, N.R.R.; Tailor, R. Effect of Extractive Content on Fuelwood Characteristics of Certain Woody and Non-Woody Biomass. Curr. Sci. 2020, 118, 966–969. [Google Scholar] [CrossRef]
- Kumar Dohare, R.; Singh, A.; Jain, P.; Singh, K.; Upadhyaya, S.; Agrawal, M. Simulated Heat Integration Study of Reactive Distillation Column for Ethanol Synthesis. Iran. J. Chem. Chem. Eng. 2019, 38, 183–191. [Google Scholar] [CrossRef]
- Qu, Y.; Harte, F.M.; Elias, R.J.; Coupland, J.N. Effect of Ethanol on the Solubilization of Hydrophobic Molecules by Sodium Caseinate. Food Hydrocoll. 2018, 77, 454–459. [Google Scholar] [CrossRef]
- Matsushika, A.; Sawayama, S. Characterization of a Recombinant Flocculent Saccharomyces cerevisiae Strain That Co-Ferments Glucose and Xylose: I. Influence of the Ratio of Glucose/Xylose on Ethanol Production. Appl. Biochem. Biotechnol. 2013, 169, 712–721. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Chandrasekar, D.; Madhusudhana, K.; Ramakrishna, S.; Diwan, P. V Determination of DPPH Free Radical Scavenging Activity by Reversed-Phase HPLC: A Sensitive Screening Method for Polyherbal Formulations. J. Pharm. Biomed. Anal. 2006, 40, 460–464. [Google Scholar] [CrossRef]
- Xie, J.; Schaich, K.M. Re-Evaluation of the 2,2-Diphenyl-1-Picrylhydrazyl Free Radical (DPPH) Assay for Antioxidant Activity. J. Agric. Food Chem. 2014, 62, 4251–4260. [Google Scholar] [CrossRef]
- Omonije, O.O.; Saidu, A.N.; Muhammad, H.L. Antioxidant and Hypolipidemic Effects of Methanolic Root Extract of Chromolaena odorata in Alloxan-Induced Diabetic Rats. Iran. J. Toxicol. 2020, 14, 63–70. [Google Scholar] [CrossRef]
- Tahir, K.A.; Miskad, U.A.; Djawad, K.; Sartini, S.; Djide, N.; Khaerani, K.; Indrisari, M. Evaluation of Antioxidant Activity of Botto-Botto Leaf Fraction (Chromolaena odorata L.) Using Dpph and Abts Methods. Open Access Maced. J. Med. Sci. 2021, 9, 183–188. [Google Scholar] [CrossRef]
- Widayanti, A.; Jufri, M.; Surini, S.; Ellya, B. Antioxidant Activity of the Active Fraction of Mangosteen Rind Extract (Garcinia mangostana). Int. J. Appl. Pharm. 2024, 16, 145–148. [Google Scholar] [CrossRef]
- Zeroual, A.; Sakar, E.H.; Mahjoubi, F.; Chaouch, M.; Chaqroune, A.; Taleb, M. Effects of Extraction Technique and Solvent on Phytochemicals, Antioxidant, and Antimicrobial Activities of Cultivated and Wild Rosemary (Rosmarinus officinalis L.) from Taounate Region (Northern Morocco). Biointerface Res. Appl. Chem. 2022, 12, 8441–8452. [Google Scholar] [CrossRef]
- Mamyrbékova-Békro, J.A.; Konan, K.M.; Békro, Y.A.; Djié Bi, M.G.; Zomi Bi, T.J.; Mambo, V.; Boua, B.B. Phytocompounds of the Extracts of Four Medicinal Plants of Côte d’ivoire and Assessment of Their Potential Antioxidant by Thin Layer Chromatography. Eur. J. Sci. Res. 2008, 24, 219–228. [Google Scholar]
- Budha Magar, A.; Shrestha, D.; Pakka, S.; Sharma, K.R. Phytochemistry, Biological, and Toxicity Study on Aqueous and Methanol Extracts of Chromolaena odorata. Sci. World J. 2023, 2023, 6689271. [Google Scholar] [CrossRef]
- Putri, D.A.; Fatmawati, S. A New Flavanone as a Potent Antioxidant Isolated from Chromolaena odorata L. Leaves. Evid. Based Complement. Alternat. Med. 2019, 2019, 1453612. [Google Scholar] [CrossRef]
- Dawidowicz, A.L.; Olszowy, M. Depletion/Protection of β-Carotene in Estimating Antioxidant Activity by β-Carotene Bleaching Assay. J. Food Sci. Technol. 2015, 52, 7321–7328. [Google Scholar] [CrossRef]
- Prieto, M.A.; Rodríguez-Amado, I.; Vázquez, J.A.; Murado, M.A. β-Carotene Assay Revisited. Application to Characterize and Quantify Antioxidant and Prooxidant Activities in a Microplate. J. Agric. Food Chem. 2012, 60, 8983–8993. [Google Scholar] [CrossRef]
- Hardianti, B.; Amin, A.; Lallo, S.; Hertati, A. Phytochemical Composition by GC–MS, Invitro Antioxidant, Insilico Chemical Active Compound of Chromolaena odorata L. Weed Extract Targeting EGFR as Anti Lung Cancer. Res. J. Pharm. Technol. 2024, 17, 6020–6031. [Google Scholar] [CrossRef]
- Yang, J.; Guo, J.; Yuan, J. In Vitro Antioxidant Properties of Rutin. LWT—Food Sci. Technol. 2008, 41, 1060–1066. [Google Scholar] [CrossRef]
- Gong, T.; Yang, X.; Bai, F.; Li, D.; Zhao, T.; Zhang, J.; Sun, L.; Guo, Y. Young Apple Polyphenols as Natural α-Glucosidase Inhibitors: In Vitro and in Silico Studies. Bioorg. Chem. 2020, 96, 103625. [Google Scholar] [CrossRef]
- Giang, P.M.; Huong, D.T.V.; Thao, V.M.; Thuy, T.T.T.; Trang, V.M. Flavonoids from the Leaves of Chromolaena odorata and Their α-Glucosidase Inhibitory Activity. Pharm. Chem. J. 2024, 57, 1621–1626. [Google Scholar] [CrossRef]
- Yusuf, H.; Yusni, Y.; Meutia, F.; Fahriani, M. Pharmacological Evaluation of Antidiabetic Activity of Chromolaena odorata Leaves Extract in Streptozotocin-Induced Rats. Syst. Rev. Pharm. 2020, 11, 772–778. [Google Scholar] [CrossRef]
- Tran, C.L.; Chong, K.T.D.; Do, V.M.; Huynh, V.T.; Nguyen, T.A.L. In Vitro Investigations of Chemical Composition, Antibacterial, Antioxidant, Antidiabetic, and Anti-Inflammatory Activities of Chromolaena odorata Flower Extracts. Songklanakarin J. Sci. Technol. 2024, 46, 522–530. [Google Scholar]
- Ghorbani, A. Mechanisms of Antidiabetic Effects of Flavonoid Rutin. Biomed. Pharmacother. 2017, 96, 305–312. [Google Scholar] [CrossRef]
- Pari, L.; Rajarajeswari, N. Efficacy of Coumarin on Hepatic Key Enzymes of Glucose Metabolism in Chemical Induced Type 2 Diabetic Rats. Chem. Biol. Interact. 2009, 181, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraghavan, K.; Rajkumar, J.; Seyed, M.A. Phytochemical Screening, Free Radical Scavenging and Antimicrobial Potential of Chromolaena odorata Leaf Extracts against Pathogenic Bacterium in Wound Infections—A Multispectrum Perspective. Biocatal. Agric. Biotechnol. 2018, 15, 103–112. [Google Scholar] [CrossRef]
- Phetburom, N.; Chopjitt, P.; Dulyasucharit, R.; Nontunha, N.; Daenprakhom, K.; Ongarj, P.; Hatachote, S.; Srichaijaroonpong, S.; Hatrongjit, R.; Kerdsin, A.; et al. Antimicrobial Activity of Chromolaena odorata Crude Extracts against Streptococcus suis. Microb. Pathog. 2025, 206, 107799. [Google Scholar] [CrossRef]
- Sambavekar, P.P.; Aitawade, M.M.; Patil, D.R.; Kolekar, G.B.; Deshmukh, M.B.; Anbhule, P.V. In-Silico, in-Vitro Antibacterial Activity and Toxicity Profile of New Quinoline Derivatives. Indian J. Chem.—Sect. B Org. Med. Chem. 2013, 52, 1521–1526. [Google Scholar]
- Lee, B.; Lee, D.G. Depletion of Reactive Oxygen Species Induced by Chlorogenic Acid Triggers Apoptosis-like Death in Escherichia coli. Free Radic. Res. 2018, 52, 605–615. [Google Scholar] [CrossRef]
- Bajaj, H.; Kaushal, S.; Kaur, V.; Panwar, H.; Sharma, P.; Jangra, R. Isolation of Quinic Acid from Dropped Citrus Reticulata Blanco Fruits: Its Derivatization, Antibacterial Potential, Docking Studies, and ADMET Profiling. Front. Chem. 2024, 12, 1372560. [Google Scholar] [CrossRef]
- Ercan, L.; Dogru, M. Antioxidant and Antimicrobial Capacity of Quinic Acid. Bitlis Eren Üniversitesi Fen Bilim. Derg. 2022, 11, 1018–1025. [Google Scholar] [CrossRef]
- Ding, Y.; Wen, G.; Wei, X.; Zhou, H.; Li, C.; Luo, Z.; Ou, D.; Yang, J.; Song, X. Antibacterial Activity and Mechanism of Luteolin Isolated from Lophatherum gracile Brongn. against Multidrug-Resistant Escherichia coli. Front. Pharmacol. 2024, 15, 1430564. [Google Scholar] [CrossRef]
- Ulanowska, K.; Tkaczyk, A.; Konopa, G.; Wȩgrzyn, G. Differential Antibacterial Activity of Genistein Arising from Global Inhibition of DNA, RNA and Protein Synthesis in Some Bacterial Strains. Arch. Microbiol. 2006, 184, 271–278. [Google Scholar] [CrossRef]
- Dominguez-López, I.; Pérez, M.; Lamuela-Raventós, R.M. Total (Poly)Phenol Analysis by the Folin-Ciocalteu Assay as an Anti-Inflammatory Biomarker in Biological Samples. Crit. Rev. Food Sci. Nutr. 2024, 64, 10048–10054. [Google Scholar] [CrossRef] [PubMed]
- Silver, R.A.; Noviana, E.; Ash Shiddiq, M.A.F.; Wardani, N.K.; Windarsih, A.; Indrasyah, F.S.; Fakhrudin, N.; Indrianingsih, A.W.; Henry, C.S. Paper-Based Device for Phenolic Content Determination in Tea Extracts. Phytochem. Anal. 2025, 36, 1094–1104. [Google Scholar] [CrossRef]
- Sirinthipaporn, A.; Jiraungkoorskul, K.; Jiraungkoorskul, W. Artemia Salina Lethality and Histopathological Studies of Siam Weed, Chromolaena odorata. J. Nat. Remedies 2016, 16, 131–136. [Google Scholar] [CrossRef]
- Kut, K.; Tama, A.; Furdak, P.; Bartosz, G.; Sadowska-Bartosz, I. Generation of Hydrogen Peroxide and Phenolic Content in Plant-Material-Based Beverages and Spices. Processes 2024, 12, 166. [Google Scholar] [CrossRef]
- Sharmin, H.; Nazma, S.; Mohiduzzaman, M.; Cadi, P.B. Antioxidant Capacity and Total Phenol Content of Commonly Consumed Selected Vegetables of Bangladesh. Malays. J. Nutr. 2011, 17, 377–383. [Google Scholar]
- Hamza, Z.M.; Kadhim, S.A.; Hussain, H.H. Study of Spectra Physical for Some Samples of Medical Herbal by FTIR-ATR Spectroscopy. J. Pharm. Negat. Results 2022, 13, 49–55. [Google Scholar] [CrossRef]
- Rohman, A.; Windarsih, A.; Hossain, M.A.M.; Johan, M.R.; Ali, M.E.; Fadzilah, N.A. Application of Near- and Mid-Infrared Spectroscopy Combined with Chemometrics for Discrimination and Authentication of Herbal Products: A Review. J. Appl. Pharm. Sci. 2019, 9, 137–147. [Google Scholar] [CrossRef]
- Chuo, S.C.; Nasir, H.M.; Mohd-Setapar, S.H.; Mohamed, S.F.; Ahmad, A.; Wani, W.A.; Muddassir, M.; Alarifi, A. A Glimpse into the Extraction Methods of Active Compounds from Plants. Crit. Rev. Anal. Chem. 2022, 52, 667–696. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Li, Y.; Zhao, C.; Yang, Y.; Xiong, C.; Zhang, D.; Feng, S.; Wu, J.; Wang, X. Rutin Supplementation Reduces Oxidative Stress, Inflammation and Apoptosis of Mammary Gland in Sheep During the Transition Period. Front. Vet. Sci. 2022, 9, 907299. [Google Scholar] [CrossRef]
- Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a Potent Antioxidant: Implications for Neurodegenerative Disorders. Oxid. Med. Cell. Longev. 2018, 2018, 6241017. [Google Scholar] [CrossRef] [PubMed]
- Alqudah, A.; Qnais, E.Y.; Wedyan, M.A.; Altaber, S.; Bseiso, Y.; Oqal, M.; AbuDalo, R.; Alrosan, K.; Alrosan, A.Z.; Bani Melhim, S.; et al. Isorhamnetin Reduces Glucose Level, Inflammation, and Oxidative Stress in High-Fat Diet/Streptozotocin Diabetic Mice Model. Molecules 2023, 28, 502. [Google Scholar] [CrossRef]
- Chunmei, Z.; Shuai, W. Molecular Mechanisms of Neuroprotective Effect of Rutin. Front. Pharmacol. 2025, 16, 1599167. [Google Scholar] [CrossRef]
- Huang, L.; Kim, M.-Y.; Cho, J.Y. Immunopharmacological Activities of Luteolin in Chronic Diseases. Int. J. Mol. Sci. 2023, 24, 2136. [Google Scholar] [CrossRef]
- Mijiti, N.; Someya, A.; Nagaoka, I. Effects of Isoflavone Derivatives on the Production of Inflammatory Cytokines by Synovial Cells. Exp. Ther. Med. 2021, 22, 1300. [Google Scholar] [CrossRef] [PubMed]
- Annunziata, F.; Pinna, C.; Dallavalle, S.; Tamborini, L.; Pinto, A. An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. Int. J. Mol. Sci. 2020, 21, 4618. [Google Scholar] [CrossRef] [PubMed]
- Joung, D.-K.; Kang, O.-H.; Seo, Y.-S.; Zhou, T.; Lee, Y.-S.; Han, S.-H.; Mun, S.-H.; Kong, R.; Song, H.-J.; Shin, D.-W.; et al. Luteolin Potentiates the Effects of Aminoglycoside and β-Lactam Antibiotics against Methicillin-Resistant Staphylococcus aureus in Vitro. Exp. Ther. Med. 2016, 11, 2597–2601. [Google Scholar] [CrossRef]
- Morimoto, Y.; Aiba, Y.; Miyanaga, K.; Hishinuma, T.; Cui, L.; Baba, T.; Hiramatsu, K. CID12261165, a Flavonoid Compound as Antibacterial Agents against Quinolone-Resistant Staphylococcus aureus. Sci. Rep. 2023, 13, 1725. [Google Scholar] [CrossRef]
- Suarez, A.F.L.; Tirador, A.D.G.; Villorente, Z.M.; Bagarinao, C.F.; Sollesta, J.V.N.; Dumancas, G.G.; Sun, Z.; Zhan, Z.Q.; Saludes, J.P.; Dalisay, D.S. The Isorhamnetin-Containing Fraction of Philippine Honey Produced by the Stingless Bee Tetragonula Biroi Is an Antibiotic against Multidrug-Resistant Staphylococcus aureus. Molecules 2021, 26, 1688. [Google Scholar] [CrossRef]
- Verdrengh, M.; Collins, L.V.; Bergin, P.; Tarkowski, A. Phytoestrogen Genistein as an Anti-Staphylococcal Agent. Microbes Infect. 2004, 6, 86–92. [Google Scholar] [CrossRef]
- Yi, L.; Bai, Y.; Chen, X.; Wang, W.; Zhang, C.; Shang, Z.; Zhang, Z.; Li, J.; Cao, M.; Zhu, Z.; et al. Synergistic Effects and Mechanisms of Action of Rutin with Conventional Antibiotics Against Escherichia coli. Int. J. Mol. Sci. 2024, 25, 13684. [Google Scholar] [CrossRef] [PubMed]
- Zai, M.J.; Cheesman, M.J.; Cock, I.E. Flavonoids Identified in Terminalia spp. Inhibit Gastrointestinal Pathogens and Potentiate Conventional Antibiotics via Efflux Pump Inhibition. Molecules 2025, 30, 2300. [Google Scholar] [CrossRef]
- Yoshizane, C.; Mizote, A.; Arai, C.; Arai, N.; Ogawa, R.; Endo, S.; Mitsuzumi, H.; Ushio, S. Daily Consumption of One Teaspoon of Trehalose Can Help Maintain Glucose Homeostasis: A Double-Blind, Randomized Controlled Trial Conducted in Healthy Volunteers. Nutr. J. 2020, 19, 68. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, X.; Guo, K.; Zhou, F.; Yang, H. Use of Chlorogenic Acid against Diabetes Mellitus and Its Complications. J. Immunol. Res. 2020, 2020, 9680508. [Google Scholar] [CrossRef]
- Cai, C.; Cheng, W.; Shi, T.; Liao, Y.; Zhou, M.; Liao, Z. Rutin Alleviates Colon Lesions and Regulates Gut Microbiota in Diabetic Mice. Sci. Rep. 2023, 13, 4897. [Google Scholar] [CrossRef]
- Chang, X.-Q.; Yue, R.-S. Therapeutic Potential of Luteolin for Diabetes Mellitus and Its Complications. Chin. J. Integr. Med. 2025, 31, 566–576. [Google Scholar] [CrossRef]
- Abbasi, E.; Khodadadi, I. Antidiabetic Effects of Genistein: Mechanism of Action. Endocr. Metab. Immune Disord. Drug Targets 2023, 23, 1599–1610. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, L.; Chen, M.; Li, R.; Yu, Y.; Qiao, L.; Liu, J.; Zhang, X.; Zhang, Y.; Zhang, Y.; et al. Nootkatone Alleviates Type 2 Diabetes in Db/Db Mice Through AMPK Activation and ERK Inhibition: An Integrated In Vitro and In Vivo Study. Molecules 2025, 30, 2111. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, A.; Alkhalidy, H.; Luo, J.; Moomaw, E.; Neilson, A.P.; Liu, D. Flavone Hispidulin Stimulates Glucagon-Like Peptide-1 Secretion and Ameliorates Hyperglycemia in Streptozotocin-Induced Diabetic Mice. Mol. Nutr. Food Res. 2020, 64, e1900978. [Google Scholar] [CrossRef]
- Doi, M.; Yamaoka, I.; Nakayama, M.; Mochizuki, S.; Sugahara, K.; Yoshizawa, F. Isoleucine, a Blood Glucose-Lowering Amino Acid, Increases Glucose Uptake in Rat Skeletal Muscle in the Absence of Increases in AMP-Activated Protein Kinase Activity. J. Nutr. 2005, 135, 2103–2108. [Google Scholar] [CrossRef]
- Shahidi, F.; Ambigaipalan, P. Phenolics and Polyphenolics in Foods, Beverages and Spices: Antioxidant Activity and Health Effects—A Review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Keramat, M.; Niakousari, M.; Golmakani, M.-T. Comparing the Antioxidant Activity of Gallic Acid and Its Alkyl Esters in Emulsion Gel and Non-Gelled Emulsion. Food Chem. 2023, 407, 135078. [Google Scholar] [CrossRef] [PubMed]
- Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef]
- Parhiz, H.; Roohbakhsh, A.; Soltani, F.; Rezaee, R.; Iranshahi, M. Antioxidant and Anti-Inflammatory Properties of the Citrus Flavonoids Hesperidin and Hesperetin: An Updated Review of Their Molecular Mechanisms and Experimental Models. Phytother. Res. 2015, 29, 323–331. [Google Scholar] [CrossRef]
- Rauf, A.; Wilairatana, P.; Joshi, P.B.; Ahmad, Z.; Olatunde, A.; Hafeez, N.; Hemeg, H.A.; Mubarak, M.S. Revisiting Luteolin: An Updated Review on Its Anticancer Potential. Heliyon 2024, 10, e26701. [Google Scholar] [CrossRef]
- Spoel, S.H.; Dong, X. How Do Plants Achieve Immunity? Defence without Specialized Immune Cells. Nat. Rev. Immunol. 2012, 12, 89–100. [Google Scholar] [CrossRef]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary Polyphenols and the Prevention of Diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.-H. Effect of Extraction Solvent on Total Phenol Content, Total Flavonoid Content, and Antioxidant Activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic Compounds in Plants and Agri-Industrial by-Products: Antioxidant Activity, Occurrence, and Potential Uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef]
- Fiehn, O. Metabolomics--the Link between Genotypes and Phenotypes. Plant Mol. Biol. 2002, 48, 155–171. [Google Scholar] [CrossRef] [PubMed]
- Jorge, T.F.; Rodrigues, J.A.; Caldana, C.; Schmidt, R.; van Dongen, J.T.; Thomas-Oates, J.; António, C. Mass Spectrometry-Based Plant Metabolomics: Metabolite Responses to Abiotic Stress. Mass Spectrom. Rev. 2016, 35, 620–649. [Google Scholar] [CrossRef]
- Dunn, W.B.; Broadhurst, D.I.; Atherton, H.J.; Goodacre, R.; Griffin, J.L. Systems Level Studies of Mammalian Metabolomes: The Roles of Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy. Chem. Soc. Rev. 2011, 40, 387–426. [Google Scholar] [CrossRef]
- Markham, J.E.; Lynch, D.V.; Napier, J.A.; Dunn, T.M.; Cahoon, E.B. Plant Sphingolipids: Function Follows Form. Curr. Opin. Plant Biol. 2013, 16, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Yu, Y.; Jo, Y.; Han, J.H.; Xue, Y.; Cho, M.; Bae, S.-J.; Ryu, D.; Park, W.; Ha, K.-T.; et al. Impact of Extraction Techniques on Phytochemical Composition and Bioactivity of Natural Product Mixtures. Front. Pharmacol. 2025, 16, 1615338. [Google Scholar] [CrossRef]
- Windarsih, A.; Indrianingsih, A.W.; Suryani, R.; Wiyono, T.; Noviana, E.; Darsih, C.; Rahayu, E.; Pangestuti, R.; Asari, S.M.; Pratiwi, S.I.; et al. Evaluation of the Antioxidant, Antidiabetic, and Antibacterial Activity of Curcuma domestica, Zingiber officinale, Alpinia galanga, Curcuma xanthorrhiza, and Kaempferia galanga Concurrent with Its Metabolite’s Constituent Analysis. Chem. Biodivers. 2025, 22, e00645. [Google Scholar] [CrossRef] [PubMed]
- Indrianingsih, A.W.; Styaningrum, P.; Suratno; Windarsih, A.; Suryani, R.; Noviana, E.; Itoh, K. The Effect of Extraction Method on Biological Activity and Phytochemical Content of Artocarpus heterophyllus (Jackfruit) Leaves Extract Concurrent with Its Principal Component Analysis. Process Biochem. 2024, 143, 135–147. [Google Scholar] [CrossRef]
- Windarsih, A.; Ahla, M.F.F.; Indrianingsih, A.W.; Suratno; Noviana, E.; Bhattacharjya, D.K.; Sulistyowaty, M.I. In Vitro Evaluation of Antioxidant, Antibacterial, and Antidiabetes of Billygoat Weed Leaves, Stem, and Flower (Ageratum conyzoides L.) Concurrent with Its Phytochemical Constituents. Waste Biomass Valorization 2025, 16, 4711–4725. [Google Scholar] [CrossRef]
- Indrianingsih, A.W.; Hayati, S.N.; Rosyida, V.T.; Apriyana, W.; Darsih, C.; Nisa, K.; Suryani, A.E.; Wiyono, T.; Windarsih, A.; Handayani, S. Improving the Functional Benefits of Powdered Ginger Beverage through the Incorporation of Ganoderma lucidum. Bioact. Carbohydrates Diet. Fibre 2025, 34, 100482. [Google Scholar] [CrossRef]
- Yulianti, Y.; Andarwulan, N.; Adawiyah, D.R.; Herawati, D.; Indrasti, D.; Wanita, Y.P. Phenolic Content and α-Glucosidase Inhibition of Tubruk-Brew Kalosi Coffee Processed by Different Post-Harvest Processing. Coffee Sci. 2025, 20, e202333. [Google Scholar] [CrossRef]





| Sample | Solvent | Yield (%) |
|---|---|---|
| Leaf | Ethanol 70% | 15.83 ± 1.32 d |
| Leaf | Ethanol 100% | 11.02 ± 1.10 b |
| Stem | Ethanol 70% | 13.53 ± 0.51 c |
| Stem | Ethanol 100% | 10.22 ± 0.54 a |
| Sample | IC50, µg/mL | % Radical Scavenging Activity at 400 µg/mL |
|---|---|---|
| Leaf EtOH 70% | 223.33 ± 9.20 b | 80.36 ± 2.52 |
| Leaf EtOH 100% | 458.99 ± 3.51 c | 55.28 ± 3.58 |
| Stem EtOH 70% | 2706.76 * ± 18.32 e | 7.65 ± 0.65 |
| Stem EtOH 100% | 1535.86 * ± 13.71 d | 13.56 ± 1.12 |
| Ascorbic acid | 14.31 ± 0.09 a |
| No | Name | Formula | Calc. MW | RT [Min] | Leaf 70% (% Relative) | Leaf 100% (% Relative) | Stem 70% (% Relative) | Stem 100% (% Relative) |
|---|---|---|---|---|---|---|---|---|
| 1 | α,α-Trehalose | C12H22 O11 | 342.1155 | 0.824 | 0.002 | 0.180 | 1.929 | 2.163 |
| 2 | Adenosine | C10H13 N5 O4 | 267.0956 | 0.828 | 0.002 | 0.068 | 3.134 | 5.700 |
| 3 | D-(-)-Quinic acid | C7H12 O6 | 192.0627 | 0.83 | 0.029 | 0.041 | 1.741 | 0.550 |
| 4 | 3,4,5-trihydroxycyclohex-1-ene-1-carboxylic acid | C7H10 O5 | 174.0522 | 0.861 | 0.004 | 0.041 | 0.081 | 0.100 |
| 5 | Nicotinic acid | C6H5 N O2 | 123.0318 | 1.031 | 0.001 | 8.585 | 0.785 | 0.629 |
| 6 | Tyramine | C8H11 N O | 137.0836 | 1.109 | 0.001 | 11.313 | 0.182 | 0.100 |
| 7 | Adenine | C5H5 N5 | 135.054 | 1.192 | 0.0001 | 1.928 | 0.502 | 0.546 |
| 8 | L-Isoleucine | C6H13 N O2 | 131.0942 | 1.216 | 0.010 | 0.045 | 14.071 | 14.741 |
| 9 | Guanine | C5H5 N5 O | 151.0487 | 1.261 | 0.001 | 2.326 | 1.697 | 1.470 |
| 10 | (2S)-4-Methyl-2-({[(3S,4S,5R)-2,3,4-trihydroxy-5-(hydroxymethyl)tetrahydro-2-furanyl]methyl}amino)pentanoic acid | C12H23 N O7 | 293.1467 | 1.329 | 0.0006 | 5.307 | 1.274 | 1.469 |
| 11 | 4-Hydroxy-6-methyl-2-pyrone | C6H6 O3 | 126.0312 | 1.638 | 0.0002 | 8.385 | 35.884 | 44.544 |
| 12 | L-Phenylalanine | C9H11 N O2 | 165.0785 | 1.961 | 0.003 | 0.018 | 2.675 | 3.344 |
| 13 | trans-3-Indoleacrylic acid | C11H9 N O2 | 187.0625 | 3.108 | 0.003 | 0.015 | 2.148 | 4.014 |
| 14 | Neochlorogenic acid | C16H18 O9 | 354.0947 | 3.449 | 0.001 | 3.281 | 0.114 | 0.068 |
| 15 | Chlorogenic acid | C16H18 O9 | 354.0941 | 5.327 | 0.014 | 0.040 | 1.268 | 0.792 |
| 16 | 2,3-Dihydro-1-benzofuran-2-carboxylic acid | C9H8 O3 | 164.0467 | 5.775 | 0.001 | 0.004 | 0.349 | 0.330 |
| 17 | 5,7-Dihydroxy-2-(4-hydroxyphenyl)-6,8-bis [3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl]-4H-chromen-4-one | C27H30 O15 | 594.1571 | 7.076 | 0.003 | 8.308 | 0.277 | 0.099 |
| 18 | {(1R,2R)-2-[(2Z)-5-(Hexopyranosyloxy)-2-penten-1-yl]-3-oxocyclopentyl}acetic acid | C18H28 O9 | 388.1728 | 7.193 | 0.005 | 0.034 | 2.439 | 2.960 |
| 19 | (1S,3R,4R,5R)-1,3,4-trihydroxy-5-{[(2E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}cyclohexane-1-carboxylic acid | C17H20 O9 | 368.1102 | 7.245 | 0.001 | 12.659 | 0.089 | 0.063 |
| 20 | 2-(2,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one | C15H10 O7 | 302.0417 | 7.423 | 0.0004 | 5.229 | 0.030 | 0.012 |
| 21 | Rutin | C27H30 O16 | 610.1519 | 8.618 | 0.010 | 0.037 | 1.369 | 0.699 |
| 22 | Coumarin | C9H6 O2 | 146.0364 | 8.862 | 0.002 | 0.031 | 0.648 | 0.355 |
| 23 | 2,4,6-Trihydroxy-2-(4-hydroxybenzyl)-1-benzofuran-3(2H)-one | C15H12 O6 | 288.063 | 8.916 | 0.011 | 0.345 | 0.963 | 0.981 |
| 24 | 4-(4-benzhydrylpiperidino)-8-chloro-2-(trifluoromethyl)quinoline | C28H24 Cl F3 N2 | 480.1597 | 9.337 | 0.001 | 0.006 | 0.144 | 0.163 |
| 25 | 5,7-Dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yl 6-O-(6-deoxyhexopyranosyl)hexopyranoside | C27H30 O15 | 594.1579 | 9.487 | 0.002 | 9.186 | 0.351 | 0.233 |
| 26 | Padmatin | C16H14 O7 | 318.0725 | 10.627 | 0.023 | 0.979 | 1.025 | 0.897 |
| 27 | Nootkatone | C15H22 O | 218.1662 | 10.909 | 0.002 | 0.165 | 1.052 | 0.940 |
| 28 | N,N-Dimethyldecylamine N-oxide | C12H27 N O | 201.2084 | 11.59 | 0.001 | 0.108 | 1.645 | 1.531 |
| 29 | Luteolin | C15H10 O6 | 286.0475 | 11.649 | 0.003 | 0.082 | 0.029 | 0.022 |
| 30 | (2R,3R)-3,5-dihydroxy-2-(4-hydroxyphenyl)-7-methoxy-3,4-dihydro-2H-1-benzopyran-4-one | C16H14 O6 | 302.0779 | 11.694 | 0.045 | 1.568 | 2.660 | 1.195 |
| 31 | Isorhamnetin | C16H12 O7 | 316.0575 | 11.807 | 0.023 | 0.537 | 0.096 | 0.067 |
| 32 | Genistein | C15H10 O5 | 270.0524 | 11.862 | 0.001 | 0.038 | 0.040 | 0.014 |
| 33 | (6,6-Dimethylbicyclo[3.1.1]hept-2-yl)methyl 6-O-[(2R,3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)tetrahydro-2-furanyl]-β-D-glucopyranoside | C21H36 O10 | 448.2302 | 11.981 | 0.0002 | 1.915 | 0.768 | 0.850 |
| 34 | Hispidulin | C16H12 O6 | 300.0629 | 12.028 | 0.002 | 0.048 | 0.066 | 0.019 |
| 35 | Scrophulein | C17H14 O6 | 314.0778 | 12.905 | 0.018 | 0.835 | 0.902 | 0.184 |
| 36 | 5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-3,6-dimethoxy-4H-chromen-4-one | C18H16 O8 | 360.0835 | 12.969 | 0.003 | 0.108 | 0.079 | 0.038 |
| 37 | N,N-Diethyldodecanamide | C16H33 N O | 255.2553 | 13.266 | 0.001 | 0.062 | 1.386 | 1.061 |
| 38 | Corchorifatty acid F | C18H32 O5 | 328.2242 | 13.274 | 0.001 | 0.026 | 0.528 | 0.189 |
| 39 | Glycitein | C16H12 O5 | 284.0675 | 13.549 | 0.035 | 1.643 | 1.808 | 0.210 |
| 40 | 19-Norandrostenedione | C18H24 O2 | 272.1765 | 14.024 | 0.005 | 0.178 | 0.171 | 0.023 |
| 41 | 12-oxo Phytodienoic Acid | C18H28 O3 | 292.2032 | 15.665 | 99.710 | 4.762 | 5.310 | 0.257 |
| 42 | Bis(2-ethylhexyl) amine | C16H35 N | 241.2761 | 15.716 | 0.001 | 1.640 | 1.424 | 1.411 |
| 43 | Octadecanamine | C18H39 N | 269.3075 | 16.479 | 0.003 | 7.457 | 4.171 | 3.000 |
| 44 | Stearamide | C18H37 N O | 283.2866 | 18.355 | 0.014 | 0.437 | 2.696 | 1.967 |
| Sample | Bacteria | Inhibition Zone (mm) | ||
|---|---|---|---|---|
| 5 mg/mL | 2.5 mg/ml | 1.25 mg/mL | ||
| Leaf EtOH 70% | S. aureus | 9.31 ± 0.61 c | 8.05 ± 0.22 b | 7.23 ± 0.23 a |
| Leaf EtOH 100% | 9.31 ± 0.73 c | 8.94 ± 0.71 d | 7.41 ± 0.56 a | |
| Stem EtOH 70% | 9.25 ± 0.74 b | 7.48 ± 0.64 a | 7.43 ± 0.55 a | |
| Stem EtOH 100% | 8.03 ± 0.25 a | 8.19 ± 0.63 c | 7.36 ± 0.53 a | |
| Amoxycillin 10 µg | 30.25 ± 2.10 d | 29.30 ± 1.70 e | 30.52 ± 2.40 b | |
| Leaf EtOH 70% | E. coli | 9.92 ± 0.46 b | 8.33 ± 0.53 c | 6.02 ± 0.46 a |
| Leaf EtOH 100% | 9.02 ± 0.62 b | 8.69 ± 0.67 c | 6.87 ± 0.63 b | |
| Stem EtOH 70% | 7.97 ± 0.57 a | 6.02 ± 0.55 a | 6.02 ± 0.58 a | |
| Stem EtOH 100% | 7.79 ± 0.75 a | 7.57 ± 0.73 b | 6.92 ± 0.44 b | |
| Amoxycillin 10 µg | 29.92 ± 1.71 c | 29.44 ± 1.31 d | 29.86 ± 1.16 c | |
| Leaf EtOH 70% | S. typhimurium | 6.08 ± 0.65 a | 6.02 ± 0.56 a | 6.01 ± 0.20 a |
| Leaf EtOH 100% | 7.50 ± 0.53 b | 7.24 ± 0.52 b | 6.00 ± 0.00 a | |
| Stem EtOH 70% | 7.31 ± 0.62 b | 6.02 ± 0.63 a | 6.02 ± 0.01 a | |
| Stem EtOH 100% | 8.00 ± 0.57 c | 6.15 ± 0.42 a | 6.02 ± 0.01 a | |
| Amoxycillin 10 µg | 30.17 ± 1.17 d | 28.29 ± 1.22 c | 28.57 ± 1.21 b | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Indrianingsih, A.W.; Ahla, M.F.F.; Windarsih, A.; Suratno; Wiyono, T.; Noviana, E.; Fadzhillah, N.A.; Alfiani, R.N. Phytochemical Constituent of Devil Weed (Chromolaena odorata), Concurrent with Its Antioxidant, α-Glucosidase Inhibitory, and Antibacterial Activity. Molecules 2025, 30, 4314. https://doi.org/10.3390/molecules30214314
Indrianingsih AW, Ahla MFF, Windarsih A, Suratno, Wiyono T, Noviana E, Fadzhillah NA, Alfiani RN. Phytochemical Constituent of Devil Weed (Chromolaena odorata), Concurrent with Its Antioxidant, α-Glucosidase Inhibitory, and Antibacterial Activity. Molecules. 2025; 30(21):4314. https://doi.org/10.3390/molecules30214314
Chicago/Turabian StyleIndrianingsih, Anastasia Wheni, Muhammad F. F. Ahla, Anjar Windarsih, Suratno, Tri Wiyono, Eka Noviana, Nurrulhidayah Ahmad Fadzhillah, and Ririn Nur Alfiani. 2025. "Phytochemical Constituent of Devil Weed (Chromolaena odorata), Concurrent with Its Antioxidant, α-Glucosidase Inhibitory, and Antibacterial Activity" Molecules 30, no. 21: 4314. https://doi.org/10.3390/molecules30214314
APA StyleIndrianingsih, A. W., Ahla, M. F. F., Windarsih, A., Suratno, Wiyono, T., Noviana, E., Fadzhillah, N. A., & Alfiani, R. N. (2025). Phytochemical Constituent of Devil Weed (Chromolaena odorata), Concurrent with Its Antioxidant, α-Glucosidase Inhibitory, and Antibacterial Activity. Molecules, 30(21), 4314. https://doi.org/10.3390/molecules30214314

