Nutritional, Therapeutic, and Functional Food Perspectives of Kale (Brassica oleracea var. acephala): An Integrative Review
Abstract
1. Introduction
2. Morphological Appearance and Varieties
3. Occurrence and Cultivation
4. Chemical Composition
5. Biological Activity and Pro-Health Importance
6. Overview of the Newest Scientific Literature
6.1. Antioxidant Potential
6.2. Antimicrobial Activity
6.3. Anti-Inflammatory Effect
6.4. Anticancer Effect
6.5. Antihypercholesterolemic Activity
6.6. Lowering Blood Sugar Level
6.7. Effects on Intestinal Microflora
6.8. Summary of Biological Activities of Kale Based on Experimental Studies
7. Status as a Superfood
| Category | Research Model | Key Findings | Mechanism of Activity | Research Methods | References |
|---|---|---|---|---|---|
| Regulation of the composition of the intestinal microbiome | C57BL/6J mice with diet-induced obesity | Feces modulate the composition of the intestinal microflora, reduce inflammation, and increase bacterial diversity. | Regulation of the Firmicutes/Bacteroidetes ratio, increasing the diversity of the microbiome. | 16S rRNA sequencing, PICRUSt2 analysis | [53] |
| C57BL/6J mice with intestinal inflammation | Kale protects against acute intestinal inflammation by modulating the ratio of pro- and anti-inflammatory bacteria and strengthening the intestinal barrier. | Increase in Bacteroidales, reduction in Enterobacteriaceae, and strengthening of the intestinal barrier. | Analysis of intestinal microflora, inflammatory markers | [52] | |
| Mice C57BL/6J | Consumption of kale affects the microbial ecology of the gut by increasing butyrate levels in the colon. | Increased production of short-chain fatty acids (SCFAs), especially butyrate. | HPLC for analysis of short-chain fatty acids | [79] | |
| Anti-inflammatory effect | C57BL/6J mice with intestinal inflammation | Kale reduces inflammation in the gut by regulating pro-inflammatory cytokines and strengthening the intestinal barrier. | Inhibition of the NF-κB pathway, reduction in pro-inflammatory cytokines (TNF-α, IL-6, IL-1β). | Analysis of inflammatory markers, histopathological evaluation | [52] |
| Wistar rats and Swiss mice | Kale shows gastroprotective effects by reducing gastric mucosal damage and lowering inflammatory markers. | Stimulation of gastric mucus secretion, reduction in gastric juice acidity through effects on pH and H+ concentration, protection against NSAID-induced damage through the modulation of prostaglandins, antioxidant and cytoprotective effects through flavonoids, and the presence of active compounds such as flavonoids (quercetin, kemferol), glucosinolates (e.g., sulforaphane), and terpenes and sterols. | Analysis of inflammatory markers, histopathological evaluation | [75] | |
| Anticancer effects | Cancer cell lines (HT29, SW620) | Fermented kale contains salicylic and gentisic acids, which have been shown to have anticancer effects by reducing the number of cancer cells. | Induction of apoptosis, inhibition of tumor cell proliferation. | LC-MS, HPLC, immunoenzymatic analysis, histological evaluation of cells in a smear | [77] |
| Mice with BBN-induced bladder cancer | Sulforaphane from kale normalizes intestinal microflora, strengthens the intestinal barrier, and reduces inflammation, which may protect against bladder cancer. | Regulation of intestinal microflora, strengthening of the intestinal barrier, and inhibition of the NF-κB pathway. | Analysis of intestinal microflora, inflammatory markers, and histopathological evaluation | [78] | |
| In vitro HT-29 cells | Kale extract reduced viability and inhibited proliferation of HT-29 cells. | elevated expression of casp9, mapk10, mapk11, fas, cat2 b, and ubd genes indicates apoptosis via the caspase-dependent pathway. | MTT and LDH assays; qRT-PCR | [76] |
8. Status as a Cosmetic Ingredient
9. Plant Biotechnology Studies
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hendriks, K.P.; Kiefer, C.; Al-Shehbaz, I.A.; Bailey, C.D.; van Huysduynen, A.H.; Nikolov, L.A.; Nauheimer, L.; Zuntini, A.R.; German, D.A.; Franzke, A.; et al. Global Brassicaceae Phylogeny Based on Filtering of 1000-Gene Dataset. Curr. Biol. 2023, 33, 4052–4068.e6. [Google Scholar] [CrossRef]
- Šamec, D.; Urlić, B.; Salopek-Sondi, B. Kale (Brassica oleracea var. acephala) as a Superfood: Review of the Scientific Evidence behind the Statement. Crit. Rev. Food Sci. Nutr. 2019, 59, 2411–2422. [Google Scholar] [CrossRef]
- Pipan, B.; Neji, M.; Meglič, V.; Sinkovič, L. Genetic Diversity of Kale (Brassica oleracea L. Var acephala) Using Agro-Morphological and Simple Sequence Repeat (SSR) Markers. Genet. Resour. Crop Evol. 2024, 71, 1221–1239. [Google Scholar] [CrossRef]
- World Flora Online. Available online: https://www.worldfloraonline.org/ (accessed on 22 October 2025).
- Park, J.E.; Kim, J.; Purevdorj, E.; Son, Y.J.; Nho, C.W.; Yoo, G. Effects of Long Light Exposure and Drought Stress on Plant Growth and Glucosinolate Production in Pak Choi (Brassica rapa subsp. chinensis). Food Chem. 2021, 340, 128167. [Google Scholar] [CrossRef] [PubMed]
- Wade, K.L.; Ito, Y.; Ramarathnam, A.; Holtzclaw, W.D.; Faheya, J.W. Purification of Active Myrosinase from Plants by Aqueous Two-Phase Counter-Current Chromatography. Phytochem. Anal. 2015, 26, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Hernández, E.; Antunes-Ricardo, M.; Jacobo-Velázquez, D.A.; Barba-Espín, G. Improving the Health-Benefits of Kales (Brassica oleracea L. var. acephala DC) through the Application of Controlled Abiotic Stresses: A Review. Plants 2021, 10, 2629. [Google Scholar] [CrossRef]
- Blažević, I.; Montaut, S.; Burčul, F.; Olsen, C.E.; Burow, M.; Rollin, P.; Agerbirk, N. Glucosinolate Structural Diversity, Identification, Chemical Synthesis and Metabolism in Plants. Phytochemistry 2020, 169, 112100. [Google Scholar] [CrossRef]
- Almagro-Lopez, A.; Puma, O.; Cirillo, V.; Maggio, A.; Nicolas-Espinosa, J.; Carvajal, M. Light Intensity and Sulfur Deficiency Modulate Growth and Water Dynamics in Broccoli Plants via Aquaporin Regulation. Plant Biol. 2025, 27, 1214–1226. [Google Scholar] [CrossRef]
- Stansell, Z.; Hyma, K.; Fresnedo-Ramírez, J.; Sun, Q.; Mitchell, S.; Björkman, T.; Hua, J. Genotyping-by-Sequencing of Brassica oleracea Vegetables Reveals Unique Phylogenetic Patterns, Population Structure and Domestication Footprints. Hortic. Res. 2018, 5, 38. [Google Scholar] [CrossRef]
- Manchali, S.; Chidambara Murthy, K.N.; Patil, B.S. Crucial Facts about Health Benefits of Popular Cruciferous Vegetables. J. Funct. Foods 2012, 4, 94–106. [Google Scholar] [CrossRef]
- Gonçalves, Á.L.M.; Lemos, M.; Niero, R.; De Andrade, S.F.; Maistro, E.L. Evaluation of the Genotoxic and Antigenotoxic Potential of Brassica oleracea L. var. acephala D.C. in Different Cells of Mice. J. Ethnopharmacol. 2012, 143, 740–745. [Google Scholar] [CrossRef]
- WFO Plant List|World Flora Online. Available online: https://wfoplantlist.org/taxon/wfo-0000571350-2023-12?matched_id=wfo-0000571352&page=1 (accessed on 12 March 2024).
- Tropicos|Name—Brassicales. Available online: https://www.tropicos.org/name/50324548 (accessed on 19 March 2024).
- Mariga, I.K.; Mativha, L. Nutritional Assessment of a Traditional Local Vegetable (Brassica oleracea var. acephala). J. Med. Plants Res. 2012, 6, 784–789. [Google Scholar] [CrossRef]
- Britannica—Kale. Available online: https://www.britannica.com/plant/kale (accessed on 8 May 2024).
- Hahn, C.; Howard, N.P.; Albach, D.C. Different Shades of Kale—Approaches to Analyze Kale Variety Interrelations. Genes 2022, 13, 232. [Google Scholar] [CrossRef] [PubMed]
- Reda, T.; Thavarajah, P.; Polomski, R.; Bridges, W.; Shipe, E.; Thavarajah, D. Reaching the Highest Shelf: A Review of Organic Production, Nutritional Quality, and Shelf Life of Kale (Brassica oleracea var. acephala). Plants People Planet 2021, 3, 308–318. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, B.; Wu, J.; Li, Z.; Han, F.; Fang, Z.; Yang, L.; Zhuang, M.; Lv, H.; Liu, Y.; et al. Pigment Variation and Transcriptional Response of the Pigment Synthesis Pathway in the S2309 Triple-Color Ornamental Kale (Brassica oleracea L. var. acephala) Line. Genomics 2020, 112, 2658–2665. [Google Scholar] [CrossRef]
- Kalloo, G. Kale: Brassica oleracea L. var. acephala. Genet. Improv. Veg. Crops 1993, 187–190. [Google Scholar] [CrossRef]
- Balkaya, A.; Yanmaz, R. Promising Kale (Brassica oleracea var. acephala) Populations from Black Sea Region, Turkey. N. Z. J. Crop Hortic. Sci. 2005, 33, 1–7. [Google Scholar] [CrossRef]
- Christensen, S.; von Bothmer, R.; Poulsen, G.; Maggioni, L.; Phillip, M.; Andersen, B.A.; Jørgensen, R.B. AFLP Analysis of Genetic Diversity in Leafy Kale (Brassica oleracea L. Convar. acephala (DC.) Alef.) Landraces, Cultivars and Wild Populations in Europe. Genet. Resour. Crop Evol. 2011, 58, 657–666. [Google Scholar] [CrossRef]
- Băbeanu, C.; Soare, R.; Dinu, M.; Păniță, O. Antioxidant Activities and Phytochemicals Compounds on Leaf Cabbage (Brassica oleracea L. var. acephala) and Chinese Cabbage (Brassica rapa L. var. chinensis). Sci. Pap. Ser. B 2020, 64, 339–346. [Google Scholar]
- Lučić, D.; Pavlović, I.; Brkljačić, L.; Bogdanović, S.; Farkaš, V.; Cedilak, A.; Nanić, L.; Rubelj, I.; Salopek-Sondi, B. Antioxidant and Antiproliferative Activities of Kale (Brassica oleracea L. var. acephala DC.) and Wild Cabbage (Brassica incana Ten.) Polyphenolic Extracts. Molecules 2023, 28, 1840. [Google Scholar] [CrossRef]
- Ljubej, V.; Radojčić Redovniković, I.; Salopek-Sondi, B.; Smolko, A.; Roje, S.; Šamec, D. Chilling and Freezing Temperature Stress Differently Influence Glucosinolates Content in Brassica oleracea var. acephala. Plants 2021, 10, 1305. [Google Scholar] [CrossRef]
- Ku, K.M.; Juvik, J.A. Environmental Stress and Methyl Jasmonate-Mediated Changes in Flavonoid Concentrations and Antioxidant Activity in Broccoli Florets and Kale Leaf Tissues. HortScience 2013, 48, 996–1002. [Google Scholar] [CrossRef]
- Baek, M.W.; Choi, H.R.; Solomon, T.; Jeong, C.S.; Lee, O.H.; Tilahun, S. Preharvest Methyl Jasmonate Treatment Increased the Antioxidant Activity and Glucosinolate Contents of Hydroponically Grown Pak Choi. Antioxidants 2021, 10, 131. [Google Scholar] [CrossRef]
- Nutrient Recommendations and Databases. Available online: https://ods.od.nih.gov/HealthInformation/nutrientrecommendations.aspx#datacentral (accessed on 26 August 2025).
- U.S. Department of Agriculture (USDA). Available online: https://fdc.nal.usda.gov/food-details/323505/nutrients (accessed on 11 October 2025).
- Satheesh, N.; Workneh Fanta, S. Kale: Review on Nutritional Composition, Bio-Active Compounds, Anti-Nutritional Factors, Health Beneficial Properties and Value-Added Products. Cogent Food Agric. 2020, 6, 1811048. [Google Scholar] [CrossRef]
- Acikgoz, F.E. Mineral, Vitamin C and Crude Protein Contents in Kale (Brassica oleraceae var. acephala) at Different Harvesting Stages. Afr. J. Biotechnol. 2011, 10, 17170–17174. [Google Scholar] [CrossRef]
- Korus, A. Jarmuż-Cenne Warzywo Kapustne. Cz.II. Wartość Odżywcza Jarmużu. Przemysł Ferment. Owocowo-Warzywny 2015, 59, 13–15. [Google Scholar] [CrossRef]
- Kattel, S.; Antonious, G.F. Glucosinolates in Cruciferous Vegetables: Genetic and Environmental Regulation, Metabolic Pathways, and Cancer-Preventive Mechanisms. Int. J. Plant Biol. 2025, 16, 58. [Google Scholar] [CrossRef]
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 26 August 2025).
- Korus, A.; Słupski, J.; Gębczyński, P.; Banaś, A. Effect of preliminary processing and method of preservation on the content of glucosinolates in kale (Brassica oleracea L. var. acephala) leaves. LWT–Food Sci. Technol. 2014, 59, 1003–1008. [Google Scholar] [CrossRef]
- Sikora, E.; Bodziarczyk, I. Composition and Antioxidant Activity of Kale (Brassica oleracea L. var. acephala) Raw and Cooked. Acta Sci. Pol. Technol. Aliment. 2012, 11, 239–248. [Google Scholar]
- Holden, J.M.; Eldridge, A.L.; Beecher, G.R.; Buzzard, I.M.; Bhagwat, S.; Davis, C.S.; Douglass, L.W.; Gebhardt, S.; Haytowitz, D.; Schakel, S. Carotenoid content of U.S. foods: An update of the database. J. Food Compos. Anal. 1999, 12, 169–196. [Google Scholar] [CrossRef]
- Di Noia, J. Defining Powerhouse Fruits and Vegetables: A Nutrient Approach. Prev. Chronic Dis. 2014, 11, E95. [Google Scholar] [CrossRef]
- Larsen-Su, S.A.; Williams, D.E. Transplacental Exposure to Indole-3-Carbinol Induces Sex-Specific Expression of CYP1A1 and CYP1B1 in the Liver of Fischer 344 Neonatal Rats. Toxicol. Sci. 2001, 64, 162–168. [Google Scholar] [CrossRef]
- Kamal, R.M.; Razis, A.F.A.; Sukri, N.S.M.; Perimal, E.K.; Ahmad, H.; Patrick, R.; Djedaini-Pilard, F.; Mazzon, E.; Rigaud, S. Beneficial Health Effects of Glucosinolates-Derived Isothiocyanates on Cardiovascular and Neurodegenerative Diseases. Molecules 2022, 27, 624. [Google Scholar] [CrossRef] [PubMed]
- Fares, F. The Anti-Carcinogenic Effect of Indole-3-Carbinol and 3,3′-Diindolylmethane and Their Mechanism of Action. Med. Chem. 2014, S1, 1–8. [Google Scholar] [CrossRef]
- Lorena, M.; He, S.; Sun, L.; Chen, J.; Li, Y.; Pan, Y.; Su, A.; Mao, Q.; Hu, J.; Feng, D.; et al. Therapeutic Effects of Sulforaphane on Helicobacter Pylori-Infected Mice: Insights from High-Coverage Metabolomics and Lipidomics Analyses of Serum and Liver. Int. J. Mol. Sci. 2025, 26, 7791. [Google Scholar] [CrossRef]
- Morroni, F.; Tarozzi, A.; Sita, G.; Bolondi, C.; Zolezzi Moraga, J.M.; Cantelli-Forti, G.; Hrelia, P. Neuroprotective Effect of Sulforaphane in 6-Hydroxydopamine-Lesioned Mouse Model of Parkinson’s Disease. Neurotoxicology 2013, 36, 63–71. [Google Scholar] [CrossRef]
- Fan, S.; Meng, Q.; Xu, J.; Jiao, Y.; Zhao, L.; Zhang, X.; Sarkar, F.H.; Brown, M.L.; Dritschilo, A.; Rosen, E.M. DIM (3,3′-Diindolylmethane) Confers Protection against Ionizing Radiation by a Unique Mechanism. Proc. Natl. Acad. Sci. USA 2013, 110, 18650–18655. [Google Scholar] [CrossRef]
- Marques, M.; Laflamme, L.; Benassou, I.; Cissokho, C.; Guillemette, B.; Gaudreau, L. Low Levels of 3,3′-Diindolylmethane Activate Estrogen Receptor α and Induce Proliferation of Breast Cancer Cells in the Absence of Estradiol. BMC Cancer 2014, 14, 524. [Google Scholar] [CrossRef]
- Tuj Johra, F.; Kumar Bepari, A.; Tabassum Bristy, A.; Mahmud Reza, H. A Mechanistic Review of β-Carotene, Lutein, and Zeaxanthin in Eye Health and Disease. Antioxidants 2020, 9, 1046. [Google Scholar] [CrossRef]
- Cenkci, S.K.; Kaya, B. Effects of Chlorophyll a and b in Reducing Genotoxicity of 2-Amino-3,8-Dimethylimidazo[4,5-F]Quinoxaline (MeIQx). Biology 2022, 11, 602. [Google Scholar] [CrossRef]
- Stahl, W.; Sies, H. β-Carotene and Other Carotenoids in Protection from Sunlight. Am. J. Clin. Nutr. 2012, 96, 1179S–1184S. [Google Scholar] [CrossRef]
- Aydin, S. Total Phenolic Content, Antioxidant, Antibacterial and Antifungal Activities, FT-IR Analyses of Brassica oleracea L. var. acephala and Ornithogalum umbellatum L. Genetika 2020, 52, 229–244. [Google Scholar] [CrossRef]
- Çömlekçioğlu, N.; Kutlu, M. Yaprak Lahana (Brassica oleracea L. var. acephala) Yapraklarının Fitokimyasal İçeriği ve Antioksidan Aktivitenin Mevsimsel Değişimi. Ege Üniv. Ziraat Fak. Derg. 2018, 55, 119–127. [Google Scholar] [CrossRef]
- Gediz Ertürk, A.; Ertürk, Ö.; Çol Ayvaz, M.; Yurdakul Ertürk, E. Screening of Phytochemical, Antimicrobial and Antioxidant Activities in Extracts of Some Fruits and Vegetables Consumed in Turkey. Celal Bayar Univ. Bilim. Derg. 2018, 14, 81–92. [Google Scholar] [CrossRef]
- Raychaudhuri, S.; Shahinozzaman, M.; Subedi, U.; Fan, S.; Ogedengbe, O.; Obanda, D.N. The Vegetable ‘Kale’ Protects against Dextran-Sulfate-Sodium-Induced Acute Inflammation through Moderating the Ratio of Proinflammatory and Anti-Inflammatory LPS-Producing Bacterial Taxa and Augmenting the Gut Barrier in C57BL6 Mice. Nutrients 2023, 15, 3222. [Google Scholar] [CrossRef] [PubMed]
- Shahinozzaman, M.; Raychaudhuri, S.; Fan, S.; Obanda, D.N. Kale Attenuates Inflammation and Modulates Gut Microbial Composition and Function in C57BL/6J Mice with Diet-Induced Obesity. Microorganisms 2021, 9, 238. [Google Scholar] [CrossRef] [PubMed]
- Nazeri, M.; Nemati, H.; Khazaei, M. Nrf2 Antioxidant Pathway and Apoptosis Induction and Inhibition of NF-ΚB-Mediated Inflammatory Response in Human Prostate Cancer PC3 Cells by Brassica oleracea var. acephala: An in Vitro Study. Mol. Biol. Rep. 2022, 49, 7251–7261. [Google Scholar] [CrossRef]
- Fagundes, G.E.; Damiani, A.P.; Borges, G.D.; Teixeira, K.O.; Jesus, M.M.; Daumann, F.; Ramlov, F.; Carvalho, T.; Leffa, D.D.; Rohr, P.; et al. Effect of Green Juice and Their Bioactive Compounds on Genotoxicity Induced by Alkylating Agents in Mice. J. Toxicol. Environ. Health A 2017, 80, 756–766. [Google Scholar] [CrossRef]
- Kim, S.Y.; Yoon, S.; Kwon, S.M.; Park, K.S.; Lee-Kim, Y.C. Kale Juice Improves Coronary Artery Disease Risk Factors in Hypercholesterolemic Men. Biomed. Environ. Sci. 2008, 21, 91–97. [Google Scholar] [CrossRef]
- Han, J.H.; Lee, H.J.; Kim, T.S.; Kang, M.H. The Effect of Glutathione S-Transferase M1 and T1 Polymorphisms on Blood Pressure, Blood Glucose, and Lipid Profiles Following the Supplementation of Kale (Brassica oleracea acephala) Juice in South Korean Subclinical Hypertensive Patients. Nutr. Res. Pract. 2015, 9, 49. [Google Scholar] [CrossRef]
- Jeppesen, P.B.; Dorner, A.; Yue, Y.; Poulsen, N.; Andersen, S.K.; Aalykke, F.B.; Lambert, M.N.T. Beneficial Effects of a Freeze-Dried Kale Bar on Type 2 Diabetes Patients: A Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Nutrients 2024, 16, 3641. [Google Scholar] [CrossRef]
- Kondo, S.; Suzuki, A.; Kurokawa, M.; Hasumi, K. Intake of Kale Suppresses Postprandial Increases in Plasma Glucose: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study. Biomed. Rep. 2016, 5, 553. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, Y.; Salim, F.; Yamauchi, Y.; Mori, Y.; Murakami, S.; Suzuki, A.; Fukuda, S.; Yamada, T. Kale Improves Bowel Movements in Constipated Women and Affects Some Intestinal Microbes and Metabolites: A Pilot Study. Front. Nutr. 2023, 10, 1247683. [Google Scholar] [CrossRef] [PubMed]
- Nutrition Facts for Raw Kale. Available online: https://tools.myfooddata.com/nutrition-facts/168421/wt1 (accessed on 24 June 2025).
- Ayaz, F.A.; Glew, R.H.; Millson, M.; Huang, H.S.; Chuang, L.T.; Sanz, C.; Hayirlioglu-Ayaz, S. Nutrient Contents of Kale (Brassica oleraceae L. var. acephala DC.). Food Chem. 2006, 96, 572–579. [Google Scholar] [CrossRef]
- Thavarajah, D.; Thavarajah, P.; Abare, A.; Basnagala, S.; Lacher, C.; Smith, P.; Combs, G.F. Mineral Micronutrient and Prebiotic Carbohydrate Profiles of USA-Grown Kale (Brassica oleracea L. var. acephala). J. Food Compos. Anal. 2016, 52, 9–15. [Google Scholar] [CrossRef]
- Fernández-Ríos, A.; Laso, J.; Hoehn, D.; Amo-Setién, F.J.; Abajas-Bustillo, R.; Ortego, C.; Fullana-i-Palmer, P.; Bala, A.; Batlle-Bayer, L.; Balcells, M.; et al. A Critical Review of Superfoods from a Holistic Nutritional and Environmental Approach. J. Clean. Prod. 2022, 379, 134491. [Google Scholar] [CrossRef]
- Alfawaz, H.A.; Wani, K.; Alrakayan, H.; Alnaami, A.M.; Al-Daghri, N.M. Awareness, Knowledge and Attitude towards ‘Superfood’ Kale and Its Health Benefits among Arab Adults. Nutrients 2022, 14, 245. [Google Scholar] [CrossRef]
- EFSA European Food Safety Authority (EFSA). Available online: https://www.efsa.europa.eu/en (accessed on 3 October 2025).
- Lisiewska, Z.; Kmiecik, W.; Korus, A. The Amino Acid Composition of Kale (Brassica oleracea L. var. acephala), Fresh and after Culinary and Technological Processing. Food Chem. 2008, 108, 642–648. [Google Scholar] [CrossRef]
- Heaney, R.P.; Weaver, C.M.; Hinders, S.; Martin, B.; Packard, P.T. Absorbability of Calcium from Brassica Vegetables: Broccoli, Bok Choy, and Kale. J. Food Sci. 1993, 58, 1378–1380. [Google Scholar] [CrossRef]
- Akdaş, Z.Z.; Bakkalbaşı, E. Influence of Different Cooking Methods on Color, Bioactive Compounds, and Antioxidant Activity of Kale. Int. J. Food Prop. 2017, 20, 877–887. [Google Scholar] [CrossRef]
- Murador, D.C.; Mercadante, A.Z.; De Rosso, V.V. Cooking Techniques Improve the Levels of Bioactive Compounds and Antioxidant Activity in Kale and Red Cabbage. Food Chem. 2016, 196, 1101–1107. [Google Scholar] [CrossRef]
- Oliveira, S.M.; Ramos, I.N.; Brandão, T.R.S.; Silva, C.L.M. Effect of Air-Drying Temperature on the Quality and Bioactive Characteristics of Dried Galega Kale (Brassica oleracea L. var. acephala). J. Food Process Preserv. 2015, 39, 2485–2496. [Google Scholar] [CrossRef]
- Vargas, L.; Kapoor, R.; Nemzer, B.; Feng, H. Application of Different Drying Methods for Evaluation of Phytochemical Content and Physical Properties of Broccoli, Kale, and Spinach. LWT 2022, 155, 112892. [Google Scholar] [CrossRef]
- Khalid, W.; Ikram, A.; Nadeem, M.T.; Arshad, M.S.; Rodrigues, S.D.O.; Pagnossa, J.P.; Al-Farga, A.; Chamba, M.V.M.; Batiha, G.E.S.; Koraqi, H. Effects of Traditional and Novel Cooking Processes on the Nutritional and Bioactive Profile of Brassica oleracea (Kale). J. Food Process Preserv. 2023, 2023, 2827547. [Google Scholar] [CrossRef]
- Uyeno, Y.; Katayama, S.; Nakamura, S. Changes in Mouse Gastrointestinal Microbial Ecology with Ingestion of Kale. Benef. Microbes 2014, 5, 345–349. [Google Scholar] [CrossRef]
- Lemos, M.; Santin, J.R.; Júnior, L.C.K.; Niero, R.; Andrade, S.F. De Gastroprotective Activity of Hydroalcoholic Extract Obtained from the Leaves of Brassica oleracea var. acephala DC in Different Animal Models. J. Ethnopharmacol. 2011, 138, 503–507. [Google Scholar] [CrossRef]
- Rachwał, K.; Niedźwiedź, I.; Waśko, A.; Laskowski, T.; Szczeblewski, P.; Kukula-Koch, W.; Polak-Berecka, M. Red Kale (Brassica oleracea L. Ssp. acephala L. var. sabellica) Induces Apoptosis in Human Colorectal Cancer Cells In Vitro. Molecules 2023, 28, 6938. [Google Scholar] [CrossRef]
- Michalak, M.; Szwajgier, D.; Paduch, R.; Kukula-Koch, W.; Waśko, A.; Polak-Berecka, M. Fermented Curly Kale as a New Source of Gentisic and Salicylic Acids with Antitumor Potential. J. Funct. Foods 2020, 67, 103866. [Google Scholar] [CrossRef]
- He, C.; Huang, L.; Lei, P.; Liu, X.; Li, B.; Shan, Y. Sulforaphane Normalizes Intestinal Flora and Enhances Gut Barrier in Mice with BBN-Induced Bladder Cancer. Mol. Nutr. Food Res. 2018, 62, 1800427. [Google Scholar] [CrossRef]
- CosIng-Cosmetics Ingredients. Available online: https://ec.europa.eu/growth/tools-databases/cosing/ (accessed on 3 October 2025).
- Chawalitpong, S.; Ichikawa, S.; Uchibori, Y.; Nakamura, S.; Katayama, S. Long-Term Intake of Glucoraphanin-Enriched Kale Suppresses Skin Aging via Activating Nrf2 and the TβRII/Smad Pathway in SAMP1 Mice. J. Agric. Food Chem. 2019, 67, 9782–9788. [Google Scholar] [CrossRef]
- Hsu, P.; Kamijyo, Y.; Koike, E.; Ichikawa, S.; Zheng, Y.; Ohno, T.; Katayama, S. Exosome-like Nanovesicles Derived from Kale Juice Enhance Collagen Production by Downregulating Smad7 in Human Skin Fibroblasts. Front. Nutr. 2025, 12, 1486572. [Google Scholar] [CrossRef] [PubMed]
- Kappler, K.; Grothe, T.; Srivastava, S.; Jagtap, M. Evaluation of the Efficacy and Safety of Blue Fenugreek Kale Extract on Skin Health and Aging: In-Vitro and Clinical Evidences. Clin. Cosmet. Investig. Dermatol. 2022, 15, 2051–2064. [Google Scholar] [CrossRef] [PubMed]
- Meinke, M.C.; Nowbary, C.K.; Schanzer, S.; Vollert, H.; Lademann, J.; Darvin, M.E. Influences of Orally Taken Carotenoid-Rich Curly Kale Extract on Collagen I/Elastin Index of the Skin. Nutrients 2017, 9, 775. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Heinemann, N.; Rademacher, F.; Darvin, M.E.; Raab, C.; Keck, C.M.; Vollert, H.; Fluhr, J.W.; Gläser, R.; Harder, J.; et al. Skin Care Product Rich in Antioxidants and Anti-Inflammatory Natural Compounds Reduces Itching and Inflammation in the Skin of Atopic Dermatitis Patients. Antioxidants 2022, 11, 1071. [Google Scholar] [CrossRef]
- Ravanfar, S.A.; Orbovic, V.; Moradpour, M.; Abdul Aziz, M.; Karan, R.; Wallace, S.; Parajuli, S. Improvement of Tissue Culture, Genetic Transformation, and Applications of Biotechnology to Brassica. Biotechnol. Genet. Eng. Rev. 2017, 33, 1–25. [Google Scholar] [CrossRef]
- Quazi, M.H. Interspecific Hybrids between Brassica napus L. and B. oleracea L. Developed by Embryo Culture. Theor. Appl. Genet. 1988, 75, 309–318. [Google Scholar] [CrossRef]
- Tuncer, B.; Çiğ, A.; Yanmaz, R.; Yaşar, F. Effect of Heat Shock Treatment on Microspore Embryogenesis in Brassica oleracea Species. Tarim Bilim. Derg. 2016, 22, 548–554. [Google Scholar] [CrossRef]
- Niimi, H.; Watanabe, M.; Serizawa, H.; Koba, T.; Nakamura, I.; Mii, M. Amiprophosmethyl-Induced Efficient in vitro Production of Polyploids in Raphanobrassica with the Aid of Aminoethoxyvinylglycine (AVG) in the Culture Medium. Breed. Sci. 2015, 65, 396–402. [Google Scholar] [CrossRef]
- Dai, X.G.; Shi, X.P.; Ye, Y.M.; Fu, Q.; Bao, M.Z. High Frequency Plant Regeneration from Cotyledon and Hypocotyl Explants of Ornamental Kale. Biol. Plant 2009, 53, 769–773. [Google Scholar] [CrossRef]
- Banjac, N.; Vinterhalter, B.; Krstić-milošević, D.; Milojević, J.; Tubić, L.; Ghalawenji, N.; Zdravković-korać, S. Somatic Embryogenesis and Shoot Organogenesis from the Hypocotyl Slices and Free Radical Scavenging Activity of Regenerants of Collard Greens (Brassica oleracea L. var. acephala). Plant Cell Tissue Organ Cult. 2019, 137, 613–626. [Google Scholar] [CrossRef]
- Kamińska, M.; Styczynska, A.; Szakiel, A.; Pączkowski, C.; Kućko, A. Comprehensive Elucidation of the Differential Physiological Kale Response to Cytokinins under in Vitro Conditions. BMC Plant Biol. 2024, 24, 674. [Google Scholar] [CrossRef] [PubMed]
- Kamińska, M.; Sliwinska, E. Effective Micropropagation of Kale (Brassica oleracea Convar. acephala var. sabellica): One of the Most Important Representatives of Cruciferous Crops. Plant Cell Tissue Organ Cult. 2023, 153, 601–609. [Google Scholar] [CrossRef]
- Stelmach-Wityk, K.; Szymonik, K.; Grzebelus, E.; Kiełkowska, A. Development of an Optimized Protocol for Protoplast-to-Plant Regeneration of Selected Varieties of Brassica oleracea L. BMC Plant Biol. 2024, 24, 1279. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.G.; Shi, X.P.; Fu, Q.; Bao, M.Z. Improvement of Isolated Microspore Culture of Ornamental Kale (Brassica oleracea var. acephala): Effects of Sucrose Concentration, Medium Replacement, and Cold Pre-Treatment. J. Hortic. Sci. Biotechnol. 2009, 84, 519–525. [Google Scholar] [CrossRef]
- Liu, C.; Song, G.; Fang, B.; Liu, Z.; Zou, J.; Dong, S.; Du, S.; Ren, J.; Feng, H. Suberoylanilide Hydroxamic Acid Induced Microspore Embryogenesis and Promoted Plantlet Regeneration in Ornamental Kale (Brassica oleracea var. acephala). Protoplasma 2023, 260, 117–129. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.; Huang, S.; Ren, J.; Feng, H. L-Ascorbic Acid Sodium Salt Promotes Microspore Embryogenesis and Chromosome Doubling by Colchicine in Ornamental Kale (Brassica oleracea var. acephala). Plant Cell Tissue Organ Cult. 2022, 149, 753–765. [Google Scholar] [CrossRef]
- Niu, R.Q.; Zhang, Y.; Tong, Y.; Liu, Z.Y.; Wang, Y.; Feng, H. Effects of P-Chlorophenoxyisobutyric Acid, Arabinogalactan, and Activated Charcoal on Microspore Embryogenesis in Kale. Genet. Mol. Res. 2015, 14, 3897–3909. [Google Scholar] [CrossRef]
- Liu, C.; Song, G.; Zhao, Y.; Fang, B.; Liu, Z.; Ren, J.; Feng, H. Trichostatin A Induced Microspore Embryogenesis and Promoted Plantlet Regeneration in Ornamental Kale (Brassica oleracea var. acephala). Horticulturae 2022, 8, 790. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, Y.; Ren, J.; Ma, Y.; Liu, Z.; Feng, H. Corrigendum to “Effects of Methylene Blue on Microspore Embryogenesis and Plant Regeneration in Ornamental Kale (Brassica oleracea var. acephala)”. Sci. Hortic. 2019, 257, 108678. [Google Scholar] [CrossRef]
- Hosoki, T.; Kanbe, H.; Kigo, T. Transformation of Ornamental Tobacco and Kale Mediated by Agrobacterium tumefaciens and A. Rhizogenes Harboring a Reporter, β-Glucuronidase (GUS) Gene. J. Jpn. Soc. Hortic. Sci. 1994, 63, 167–172. [Google Scholar] [CrossRef]
- Cuong, D.M.; Park, S.U.; Park, C.H.; Kim, N.S.; Bong, S.J.; Lee, S.Y. Comparative Analysis of Glucosinolate Production in Hairy Roots of Green and Red Kale (Brassica oleracea var. acephala). Prep. Biochem. Biotechnol. 2019, 49, 775–782. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA). Available online: https://www.ema.europa.eu/en/homepage (accessed on 3 October 2025).




| Variety | Trade Name Examples | Morphological Appearance |
|---|---|---|
| Curly (green) | Darkibor Dwarf Green Curled Afro Pentland Brig Meadowlark Ripbor Winterbor Vates Blue Ridge Blue Knight Maribor | long central stems and distinctly twisted or wavy, dark green leaves |
| Curly (red) | Baltic Red Redbor Roulette Scarlet | strongly curly leaves in shades of pink, red, and purple |
| Portuguese | Beira | wide, mostly whole leaves |
| Russo-Siberian | Dwarf Siberian Gulag Siberian True Siberian Fizz | flatter, wavy, green leaves (Red Russian has dark red stems and leaf veins) |
| Collard | Top Bunch Champion Georgia Collard Green Glaze Evenstar | smooth, wide, dark green leaves |
| Dinosaur | Black Magic Lacinato | dark green leaves with a rough texture |
| Component | Content per 100 g of Fresh Weight | RDI | ||
|---|---|---|---|---|
| water | 89.6 g | 2.7–3.7 L/d | ||
| protein | 2.92 g | 50 g | ||
| fat | 1.49 g | 78 g | ||
| carbohydrates | 4.4 g | 275 g | ||
| fiber | 4.1 g | 28 g | ||
| MINERALS | Macroelements | potassium (K) | 348 mg | 4700 mg |
| calcium (Ca) | 254 mg | 1300 mg | ||
| sodium (Na) | 53 mg | 2300 mg | ||
| magnesium (Mg) | 32.7 mg | 420 mg | ||
| Microelements | iron (Fe) | 1.6 mg | 18 mg | |
| phosphorus (P) | 55 mg | 1250 mg | ||
| zinc (Zn) | 0.39 mg | 11 mg | ||
| manganese (Mn) | 0.92 mg | 2.3 mg | ||
| copper (Cu) | 0.053 mg | 0.9 mg | ||
| VITAMINS | vitamin A | 241 μg | 900 μg RAE * | |
| lutein and zeaxanthin | 6260 μg | nd ** | ||
| thiamine (vit. B1) | 0.113 mg | 1.2 mg | ||
| riboflavin (vit. B2) | 0.347 mg | 1.3 mg | ||
| niacin (vit. B3) | 1.18 mg | 16 mg | ||
| pantothenic acid (vit. B5) | 0.37 mg | 5 mg | ||
| pyridoxine (vit. B6) | 0.147 mg | 1.7 mg | ||
| acid folic (folate, vit. B9) | 62 μg | 400 μg DFE *** | ||
| vitamin C | 93.4 mg | 90 mg | ||
| vitamin E | 0.66 mg | 15 mg | ||
| vitamin K | 390 μg | 120 μg | ||
| Glucosinolate Name | Isothiocyanates |
|---|---|
| Glucoerucin | 4-methylthiobutyl glucosinolate |
| Glucoiberin | 3-methylsulfinylpropyl glucosinolate |
| Glucoraphanin | sulforaphane, 4-methylsulfinylbutyl glucosinolate |
| Gluconasturcin | 2-phenylethyl glucosinolate |
| Glucobrassicin | 3-indolylmethyl glucosinolate |
| Progoitrin | 2-hydroxy-3-butenyl glucosinolate |
| Compound | Action | References |
|---|---|---|
| Indole-3-carbinol | chemoprevention by inhibiting DNA adduct formation and cell proliferation, inhibiting the cell cycle and invasive growth along with angiogenesis, and inducing apoptosis | [33] |
| induction of enzymes of phase I and II of detoxification | [39] | |
| prevention of cervical, endometrial, and breast cancer | [41] | |
| hydroxyestrone formation and regression of cervical intraepithelial neoplasia | [41] | |
| Diindolylmethane | DNA repair | [44] |
| activation of the estrogen receptor α (ERα) signaling pathway | [45] | |
| Sulforaphane | protection of nerve cells in Parkinson’s disease | [43] |
| bactericidal vs. Helicobacter pylori | [42] | |
| ↓ concentrations of active carcinogens | [24] | |
| ↓ leptin and cholesterol levels ↑ adiponectin concentrations | [7] |
| Group of Compounds | Active Compound | Biological Activity Related to Plant Consumption | References |
|---|---|---|---|
| Phenolic acids | sinapic acid | NF-κB inhibition, antiproliferative effect on breast cancer cell lines | [7] |
| ferulic acid | antioxidant, anti-inflammatory, antidiabetic, antihypertensive, antimicrobial, antiviral | [7] | |
| Flavonoids | quercetin, kaempferol | antioxidant, anti-inflammatory, antimutagenic, anti-edematous, anti-allergic, anti-atherosclerotic, and gastroprotective | [12,30] |
| neuroprotective, normotensive, vasodilatory, antiproliferative | [7] | ||
| Carotenoids | β-carotene and lutein | antioxidant, skin protection against UV rays, stimulation of the immune system, regulation of the cell cycle and growth factors, modulation of intercellular signaling pathways, | [7,48] |
| protection against cardiovascular disease, cataracts, diabetes, prostate cancer, and cancers in the digestive tract | [7] | ||
| lutein | antiproliferative, neuroprotective, antidiabetic, apoptosis-inducing effect | [7] | |
| Chlorophylls | chlorophyll a and b | detoxification of the body | [47] |
| Vitamins | vitamin E | stabilization of cell membranes and prevention of oxidative damage to tissues | [2] |
| Activity | Research Model | Key Findings | Mechanism of Activity/Results | References |
|---|---|---|---|---|
| In vitro studies | ||||
| Antioxidant potential | in vitro studies | The ethanolic flower extract showed higher antioxidant potential than the ethanolic stem extract. | The flower extract showed 146.56 µg AAE/mL compared to 80.35 µg AAE/mL from stems. DPPH inhibition was 80.80% for flowers and 13.25% for stems; activity increased with concentration. | [49] |
| in vitro studies | Seasonal variation affected antioxidant activity in leaf extracts. | DPPH IC50 ranged from 1.91 to 1.41 mg/mL; FRAP values ranged from 29.77 to 13.43 µg AAE/g. | [50] | |
| in vitro studies | Methanol leaf extract showed antioxidant power. | The FRAP value was 29.35 µmol Fe2+/g DW. | [24] | |
| in vitro studies | Enzymatic antioxidant activity confirmed. | SOD, CAT, and POX enzymatic activities were IC50 = 30.06 mg; 38.6 mM H2O2/min/g of fresh mass; and 50.33 ΔA/min/g of fresh mass, respectively. | [23] | |
| Antimicrobial activity | in vitro studies | Ethanol extract from flowers and stems showed antibacterial activity against several bacterial strains. | MIC values ranged from 0.625 mg/mL to 5 mg/mL against Bacillus subtilis, Enterobacter aerogenes, Enterococcus faecalis, Gordonia rubripertincta, Klebsiella pneumoniae, Proteus vulgaris, and Salmonella enterica. | [49] |
| in vitro studies | Ethanol extract from the leaves showed antibacterial and antifungal effects. | Activity was observed against Bacillus subtilis, Clostridium perfringens, Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Proteus vulgaris, Pseudomonas aeruginosa, and Salmonella enterica. Activity was confirmed against Candida albicans and Aspergillus niger. | [51] | |
| in vitro studies | Ethanol extract from flowers and stems showed antifungal effects against several strains. | MIC values ranged from 0.625 to 1.25 mg/mL against Candida albicans, Candida parapsilosis, Candida tropicalis, and Saccharomyces cerevisiae. | [49] | |
| Anticancer activity | in vivo (PC3 cells) | Ethanol extract reduced prostate cancer cell viability and induced apoptosis. | Natural juice lowered DNA damage even without added carotenoids; the protective effect was confirmed. | [12] |
| In vivo studies—animal model | ||||
| Anti-inflammatory activity | in vivo (mice) | An HF diet enriched with B. oleracea var. acephala reduced inflammatory gene expression in mice. | IL-6, IL-1β, TNFα, NF-κB, iNOS, and F4/80 expression levels were reduced compared to inflammation-induced controls. | [52] |
| in vivo (mice) | Long-term kale supplementation suppressed pro-inflammatory markers and increased anti-inflammatory cytokines. | MCP-1 was reduced; IL-10 increased; and IL-6, F4/80, CD11c, and TNFα were downregulated. | [53] | |
| Anticancer activity | in vivo (mice) | Hydroalcoholic leaf extract showed antigenotoxic effects without genotoxicity. | DNA damage induced by doxorubicin was inhibited in leukocytes, testicular, brain, liver, and bone cells. | [55] |
| in vivo (mice) | Naturally squeezed juice has been confirmed to have a clear lack of clastogenic and genotoxic effects. | Natural juice lowered DNA damage even without added carotenoids; the protective effect was confirmed. | [54] | |
| Effects on intestinal microflora | in vivo (mice) | Kale altered microbiota composition and function in HF diet-fed mice. | Reduced ratio of Firmicutes to Bacteroidetes and an increase in Coriobacteriaceae and Bacteroides thetaiotaomicron. | [60] |
| Antihypercholesterolemic activity | in vivo (humans) | Daily consumption of kale juice improved lipid profiles in hypercholesterolemic men. | LDL decreased by 10%, HDL increased by 27%, and the HDL/LDL ratio increased by 52%. | [56] |
| in vivo (humans) | Genetic polymorphism influenced the effect of kale juice on cholesterol levels. | 300 mL of juice lowered LDL and increased HDL in GSTT-present genotype individuals. | [57] | |
| Blood sugar-lowering activity | in vivo (humans) | Kale bar consumption significantly lowered HbA1c in type 2 diabetes patients. | In the intervention group, there was a decrease of −1.4 in fasting glycated hemoglobin HbA1c compared to an increase in the control group. | [58] |
| in vivo (humans) | Kale supplementation reduced postprandial glucose levels. | Cmax of glucose was 1.62 g/L for a 14 g dose and 1.63 g/L for a 7 g dose. | [59] | |
| in vivo (humans) | Genetic variation influenced glycemic response to kale juice. | Individuals with GSTM1-present and GSTT1-null genotypes showed significantly lower blood glucose levels. | [57] | |
| Effects on intestinal microflora | in vivo (humans) | Kale improved bowel movement and modified flora composition. | Increased bowel movement; Ruminococcus gnavus decreased, and Eubacterium eligens increased in the experimental group. | [53] |
| Component | USDA Food Data Central [61] (Raw) | Ayaz et al. [62] (Dried Leaves) | Thavarajah et al. [63] * |
|---|---|---|---|
| Macronutrients | |||
| Calories (kcal) | 35 (2% DV) | nd | 36–98 |
| Protein (g) | 2.9 (6% DV) | 27.1 (54% DV) | 1.6–5.9 |
| Fat (g) | 1.5 (2% DV) | 0.158 (<1% DV) | nd |
| Carbohydrates (g) | 4.4 (2% DV) | nd | nd |
| Fiber (g) | 4.1 (15% DV) | nd | nd |
| Sugars (g) | 0.99 (2% DV) | Fructose: 2.01, Glucose: 1.06 | Glucose: 0.69–33.5, Fructose: 0.29–19.3, Sucrose: 0.004–2.12 |
| Saturated fats (g) | 0.18 (1% DV) | nd | nd |
| Vitamins | |||
| Vitamin A, RAE (µg) | 241 (27% DV) | nd | nd |
| Vitamin C (mg) | 93.4 (104% DV) | nd | nd |
| Vitamin K (µg) | 389.6 (325% DV) | nd | nd |
| Minerals | |||
| Calcium, Ca (mg) | 254 (20% DV) | 1970 (197% DV) | 35–300 |
| Iron, Fe (mg) | 1.6 (9% DV) | 72.6 (405% DV) | 0.5–2.3 |
| Magnesium, Mg (mg) | 33 (8% DV) | 240 (60% DV) | 20–100 |
| Zinc, Zn (mg) | 0.39 (4% DV) | 39.4 (358% DV) | 0.2–1.6 |
| Manganese, Mn (mg) | 0.92 (40% DV) | 53.5 (2326% DV) | 0.2–2.3 |
| Copper, Cu (mg) | 0.05 (6% DV) | 5.1 (567% DV) | 0.002–0.116 |
| Potassium, K (mg) | 348 (7% DV) | 13,500 (288% DV) | 188–873 |
| Selenium, Se (µg) | 0.9 (2% DV) | No data | 0–17 |
| Fatty Acids | |||
| Omega-3 (ALA) (g) | 0.378 (24% AI) | 0.0853 (5% AI) | nd |
| Omega-6 (LA) (g) | 0.291 (2% AI) | 0.0186 (<1% AI) | nd |
| Amino acids (selected) | |||
| Lysine (mg) | 175 (8% RDI) | 1500 (72% RDI) | nd |
| Tryptophan (mg) | 35 (13% RDI) | 890 (318% RDI) | nd |
| Name | Description | Function |
|---|---|---|
| Brassica oleracea acephala leaf extract | Brassica oleracea acephala Leaf Extract is the extract of the leaves of Brassica oleracea L., var. acephala, Brassicaceae. | Humectant Skin Conditioning |
| Brassica oleracea acephala seed oil | Brassica oleracea acephala Seed Oil is the oil expressed from the seeds of Brassica oleracea L. var. acephala, Brassicaceae. | Skin Protecting |
| Brassica oleracea acephala Powder | Brassica oleracea acephala Powder is the powder obtained from the dried, ground plant, Brassica oleracea L., var. acephala, Brassicaceae. | Skin Conditioning |
| Hydrolyzed carrot protein/hydrolyzed kale protein/hydrolyzed lemon protein extract | Hydrolyzed Carrot Protein/Hydrolyzed Kale Protein/Hydrolyzed Lemon Protein Extract is the extract of the protein hydrolysates obtained from the roots of Daucus carota sativa, the leaves of Brassica oleracea acephala, and the pulp of Citrus limon derived by acid, enzyme, or another method of hydrolysis. | Hair Conditioning Skin Conditioning—Miscellaneous |
| Formulation | Model System | Key Findings | Mechanism of Action | Clinical Outcomes | References |
|---|---|---|---|---|---|
| Oral supplementation (glucoraphanin-enriched kale) | SAMP1 mouse model | Decelerated skin aging | Nrf2 activation (↑ HO-1, NQO1); Smad7 inhibition → TGF-β/Smad3 activation; ECM remodeling (↑ elastin, HA) | - | [80] |
| Exosome-like nanovesicles (kale-derived) | Human dermal fibroblasts | ↑ ECM synthesis (collagen I, elastin, HA) | miRNA-mediated Smad7 suppression → TGF-β activation | Dose-dependent efficacy | [81] |
| Topical cosmetic (kale + fenugreek extract) | Human fibroblast cell lines | Improved elasticity/barrier function | Antioxidant protection (↓ protein carbonylation) | - | [82] |
| Oral supplement (1650 µg/day carotenoids) | 10-month clinical trial | Skin matrix preservation | ROS scavenging; collagen/elastin ratio modulation (SAAID index) | ↑ Skin carotenoids; improved photoaged skin | [83] |
| 2% topical cream (kale + apple + green tea + L-arginine) | NHEKs (in vitro); AD patients (4-week trial) | Anti-inflammatory + barrier repair | Th2 modulation (↓ IL-24, CCL26); ↑ filaggrin/loricrin; RPF 690 × 1014 radicals/mg | 63.5% ↓ SCORAD; ↓ pruritus/TEWL vs. placebo | [84] |
| Topical serum (5% kale extract) | Human keratinocytes (HaCaT) | Reduced MMP-1/3 (40–60%), increased collagen I synthesis | Nrf2/ARE activation; NF-κB inhibition (reduced TNF-α, IL-6) | Improved wrinkle depth (25%) | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łukaszyk, A.; Kwiecień, I.; Kanik, A.; Blicharska, E.; Tatarczak-Michalewska, M.; Białowąs, W.; Czarnek, K.; Szopa, A. Nutritional, Therapeutic, and Functional Food Perspectives of Kale (Brassica oleracea var. acephala): An Integrative Review. Molecules 2025, 30, 4214. https://doi.org/10.3390/molecules30214214
Łukaszyk A, Kwiecień I, Kanik A, Blicharska E, Tatarczak-Michalewska M, Białowąs W, Czarnek K, Szopa A. Nutritional, Therapeutic, and Functional Food Perspectives of Kale (Brassica oleracea var. acephala): An Integrative Review. Molecules. 2025; 30(21):4214. https://doi.org/10.3390/molecules30214214
Chicago/Turabian StyleŁukaszyk, Aleksandra, Inga Kwiecień, Anita Kanik, Eliza Blicharska, Małgorzata Tatarczak-Michalewska, Wojciech Białowąs, Katarzyna Czarnek, and Agnieszka Szopa. 2025. "Nutritional, Therapeutic, and Functional Food Perspectives of Kale (Brassica oleracea var. acephala): An Integrative Review" Molecules 30, no. 21: 4214. https://doi.org/10.3390/molecules30214214
APA StyleŁukaszyk, A., Kwiecień, I., Kanik, A., Blicharska, E., Tatarczak-Michalewska, M., Białowąs, W., Czarnek, K., & Szopa, A. (2025). Nutritional, Therapeutic, and Functional Food Perspectives of Kale (Brassica oleracea var. acephala): An Integrative Review. Molecules, 30(21), 4214. https://doi.org/10.3390/molecules30214214

