Ultrasound-Assisted Pressurized Fluid Extraction of Antioxidant and Anticancer Molecules from a Mangaba, Cambuí and Red Propolis Blend
Abstract
1. Introduction
2. Results
2.1. Overall Extraction Yield (OEY)
2.2. Molecular Characterization of Extracts Obtained via Sequential and One-Step UAPFE Using HESI(±)-FT Orbitrap Mass Spectrometry
2.3. Total Phenolic Compounds (TPC)
2.4. Assessment of DPPH Radical Scavenging
2.5. Determination of FRAP
2.6. Evaluation of the Cytotoxicity of the Vegetable Blend Extracts
3. Discussion
4. Materials and Methods
4.1. Chemical Products
4.2. Sample Collection and Processing
4.3. Ultrasound-Assisted Pressurized Fluid Extraction (UAPFE)
4.4. Characterization of UAPFE Extracts by Ultra-High-Resolution Mass Spectrometry (UHRMS)
4.5. Determination of Total Phenolic Compounds (TPC)
4.6. Antioxidant Activity
4.6.1. DPPH (2,2-Diphenyl-1-picrylhydrazyl) Assay
4.6.2. Ferric Reducing Antioxidant Power (FRAP) Assay
4.7. Cytotoxicity Assay (SRB Method)
4.8. Statistical Analysis
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CLQM | Multi-user Chemistry Laboratory Center |
DE | Dry extract |
DNA | Deoxyribonucleic acid |
DPPH | 2,2-diphenyl-1-picrylhydrazil |
FRAP | Ferric Reducing Antioxidant Power |
FT−Orbitrap MS | Fourier-Transform Orbitrap Mass Spectrometry |
HCI | Hydrochloric acid |
H−ESI | Heated-Electrospray ionization |
m/z | Mass-to-load ratio |
MAE | Microwave Assisted Extraction |
ND | Not detected |
NI | Unidentified |
PCA | Principal Components Analysis |
PLE | Pressurized liquid extraction |
S/N | Signal/Noise |
SFE | Supercritical Fluid Extraction |
SRB | Sulforhodamine B |
TPTZ | 2,4,6-tris-(2-pyridyl)-s-triazine |
TRIS | Tris(hydroxymethyl)aminomethane |
UAE | ultrasound-assisted extraction |
UAPFE | Pressurized liquid fluid extraction assisted ultrasound |
UAPFE−E | Ultrasound-assisted pressurized liquid extraction with ethanol/water |
UAPFE−P | Ultrasound-assisted extraction with pressurized liquid using propane |
UAPFE−SE | Ultrasound-assisted pressurized liquid extraction with sequential ethanol/water |
UAPFE−SP | Ultrasound-assisted pressurized liquid extraction with sequential propane |
UHRMS | Ultra-High Resolution Mass Spectrometry |
UV-Vis | Ultraviolet-Visible |
References
- Dias, A.L.B.; de Aguiar, A.C.; Rostagno, M.A. Extraction of Natural Products Using Supercritical Fluids and Pressurized Liquids Assisted by Ultrasound: Current Status and Trends. Ultrason. Sonochem. 2021, 74, 105584. [Google Scholar] [CrossRef]
- Aldana-Mejía, J.A.; Ribeiro, V.P.; Meepagala, K.M.; Bastos, J.K.; Ross, S.A. Bioactive Metabolites of Brazilian Red Propolis: Cytotoxic, Antimalarial, and Antimicrobial Properties. Fitoterapia 2025, 181, 106351. [Google Scholar] [CrossRef] [PubMed]
- Pires, L.M.; Santos, M.F.C.; Figueiredo, L.R.; Faleiros, R.; Badoco, F.R.; Silva, K.B.; Ambrósio, S.R.; Bastos, J.K.; SANTOS, R.A.A.; Veneziani, R.C.S. Polyprenylated Benzophenones from Brazilian Red Propolis: Analytical Characterization and Anticancer Activity. Chem. Biodivers. 2024, 21, e202401288. [Google Scholar] [CrossRef] [PubMed]
- Justino, I.A.; Furlan, J.P.R.; Ferreira, I.R.S.; Marincek, A.; Aldana-Mejía, J.A.; Tucci, L.F.F.; Bastos, J.K.; Stehling, E.G.; Marzocchi-Machado, C.M.; Marcato, P.D. Antimicrobial, Antioxidant, and Anticancer Effects of Nanoencapsulated Brazilian Red Propolis Extract: Applications in Cancer Therapy. Processes 2024, 12, 2856. [Google Scholar] [CrossRef]
- Maia, J.D.; de Ávila, C.R.; Mezzomo, N.; Lanza, M. Evaluation of Bioactive Extracts of Mangaba (Hancornia Speciosa) Using Low and High Pressure Processes. J. Supercrit. Fluids 2018, 135, 198–210. [Google Scholar] [CrossRef]
- Santos, P.S.; Freitas, L.D.S.; Muniz, E.N.; Santana, J.G.S.; Da Silva, A.V.C. Phytochemical and Antioxidant Composition in Accessions of the Mangaba Active Germplasm Bank. Revista Caatinga 2021, 34, 228–235. [Google Scholar] [CrossRef]
- Santos, I.B.D.S.; Santos Dos Santos, B.; De Oliveira, J.R.S.; Costa, W.K.; Zagmignan, A.; Da Silva, L.C.N.; Ferreira, M.R.A.; Lermen, V.L.; Lermen, M.S.B.D.S.; Da Silva, A.G.; et al. Antioxidant Action and in Vivo Anti-Inflammatory and Antinociceptive Activities of Myrciaria Floribunda Fruit Peels: Possible Involvement of Opioidergic System. Adv. Pharmacol. Pharm. Sci. 2020, 2020, 1258707. [Google Scholar] [CrossRef]
- Santos, K.S.; Nascimento, A.L.S.; Barbosa, A.M.; De Jesus, A.A.; De Brito, E.S.; Ribeiro, P.R.V.; da Silva Ledo, A.; Da Silva, A.V.C. Cambuí (Myrciaria Floribunda (West Ex Willd.) O. Berg): A Potential Nutritional Supplement for Inhibition of COVID-19 Infections/Cambuí (Myrciaria Floribunda (West Ex Willd.) O. Berg): Um Potencial Suplemento Nutricional Para a Inibição de Infecções Por COVID-19. Braz. J. Dev. 2022, 8, 11975–11987. [Google Scholar] [CrossRef]
- García, Y.M.; Ramos, A.L.C.C.; de Oliveira Júnior, A.H.; Ferreira de Paula, A.C.C.F.; de Melo, A.C.; Andrino, M.A.; Silva, M.R.; Augusti, R.; de Araújo, R.L.B.; de Lemos, E.E.P.; et al. Physicochemical Characterization and Paper Spray Mass Spectrometry Analysis of Myrciaria Floribunda (H. West Ex Willd.) o. Berg Accessions. Molecules 2021, 26, 7206. [Google Scholar] [CrossRef]
- Pan, F.; Liu, X.; Qiao, M.; Liu, J.; Pang, Y.; Zhang, M.; Yu, W. Innovative Composite Systems for Enhancing Plant Polyphenol Stability and Bioavailability. Food Sci. Biotechnol. 2025, 34, 1819–1834. [Google Scholar] [CrossRef]
- Alves, T.P.; Triques, C.C.; Palsikowski, P.A.; da Silva, C.; Fiorese, M.L.; da Silva, E.A.; Fagundes-Klen, M.R. Improved Extraction of Bioactive Compounds from Monteverdia Aquifolia Leaves by Pressurized-Liquid and Ultrasound-Assisted Extraction: Yield and Chemical Composition. J. Supercrit. Fluids 2022, 181, 105468. [Google Scholar] [CrossRef]
- Elmas, E.; Şen, F.B.; Kublay, İ.Z.; Baş, Y.; Tüfekci, F.; Derman, H.; Bekdeşer, B.; Aşçı, Y.S.; Capanoglu, E.; Bener, M.; et al. Green Extraction of Antioxidants from Hazelnut By-Products Using Microwave-Assisted Extraction, Ultrasound-Assisted Extraction, and Pressurized Liquid Extraction. Food Bioprocess Technol. 2025, 18, 5388–5406. [Google Scholar] [CrossRef]
- Santos, M.P.; Souza, M.C.; Sumere, B.R.; da Silva, L.C.; Cunha, D.T.; Bezerra, R.M.N.; Rostagno, M.A. Extraction of Bioactive Compounds from Pomegranate Peel (Punica granatum L.) with Pressurized Liquids Assisted by Ultrasound Combined with an Expansion Gas. Ultrason. Sonochem. 2019, 54, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.D.; Maia, A.I.V.; Rodrigues, T.H.S.; Canuto, K.M.; Ribeiro, P.R.V.; de Cassia Alves Pereira, R.; Vieira, R.F.; de Brito, E.S. Ultrasound-Assisted and Pressurized Liquid Extraction of Phenolic Compounds from Phyllanthus Amarus and Its Composition Evaluation by UPLC-QTOF. Ind. Crops Prod. 2016, 79, 91–103. [Google Scholar] [CrossRef]
- Joshi, C.P.; Baldi, A.; Kumar, N.; Pradhan, J. Harnessing Network Pharmacology in Drug Discovery: An Integrated Approach. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2025, 398, 4689–4703. [Google Scholar] [CrossRef]
- Pedrazini, M.C.; dos Santos, V.A.B.; Groppo, F.C. THERAPEUTICS PERSPECTIVES OF THE Hancornia Speciosa GOMES. Rev. Multidiscip. Saúde 2022, 3, 46–69. [Google Scholar] [CrossRef]
- Arruda dos Santos, R.E. Efeito da Sazonalidade na Composição Química e Atividades Antimicrobiana, Antioxidante e Tripanossomicida de Extratos Brutos de Própolis Vermelha de Alagoas. Master’s Thesis, Universidade Federal de Alagoas, Maceió, Brazil, 2018. [Google Scholar]
- Motallebi, M.; Bhia, M.; Rajani, H.F.; Bhia, I.; Tabarraei, H.; Mohammadkhani, N.; Pereira-Silva, M.; Kasaii, M.S.; Nouri-Majd, S.; Mueller, A.L.; et al. Naringenin: A Potential Flavonoid Phytochemical for Cancer Therapy. Life Sci. 2022, 305, 120752. [Google Scholar] [CrossRef]
- Soares, N.; Souza, D.E. Universidade Federal de Alagoas Escola de Enfermagem e Farmácia Programa de Pós-Graduação em Ciências Farmacêuticas. Ph.D. Thesis, Universidade Federal de Alagoas, Maceió, Brazil, 2016. [Google Scholar]
- Elangovan, B. A Review on Pharmacological Studies of Natural Flavanone: Pinobanksin. 3 Biotech 2024, 14, 111. [Google Scholar] [CrossRef]
- Lopez, B.G.-C. Análise Quimica dos Compostos Bioativos da Própolis Vermelha. Ph.D. Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2017. [Google Scholar]
- Righi, A.A.; Alves, T.R.; Negri, G.; Marques, L.M.; Breyer, H.; Salatino, A. Brazilian Red Propolis: Unreported Substances, Antioxidant and Antimicrobial Activities. J. Sci. Food Agric. 2011, 91, 2363–2370. [Google Scholar] [CrossRef]
- de Alencar, S.M.; de Oliveira Sartori, A.G.; Dag, D.; Batista, P.S.; Rosalen, P.L.; Ikegaki, M.; Kong, F. Dynamic Gastrointestinal Digestion/Intestinal Permeability of Encapsulated and Nonencapsulated Brazilian Red Propolis: Active Compounds Stability and Bioactivity. Food Chem. 2023, 411, 135469. [Google Scholar] [CrossRef]
- Ong, S.K.L.; Shanmugam, M.K.; Fan, L.; Fraser, S.E.; Arfuso, F.; Ahn, K.S.; Sethi, G.; Bishayee, A. Focus on Formononetin: Anticancer Potential and Molecular Targets. Cancers 2019, 11, 611. [Google Scholar] [CrossRef]
- da Silva Frozza, C.O.; Garcia, C.S.C.; Gambato, G.; de Souza, M.D.O.; Salvador, M.; Moura, S.; Padilha, F.F.; Seixas, F.K.; Collares, T.; Borsuk, S.; et al. Chemical Characterization, Antioxidant and Cytotoxic Activities of Brazilian Red Propolis. Food Chem. Toxicol. 2013, 52, 137–142. [Google Scholar] [CrossRef] [PubMed]
- de Mendonça, I.C.G.; de Moraes Porto, I.C.C.; do Nascimento, T.G.; de Souza, N.S.; Oliveira, J.M.d.S.; Arruda, R.E.d.S.; Mousinho, K.C.; dos Santos, A.F.; Basílio-Júnior, I.D.; Parolia, A.; et al. Brazilian Red Propolis: Phytochemical Screening, Antioxidant Activity and Effect against Cancer Cells. BMC Complement. Altern. Med. 2015, 15, 357. [Google Scholar] [CrossRef] [PubMed]
- Rufatto, L.C.; dos Santos, D.A.; Marinho, F.; Henriques, J.A.P.; Roesch Ely, M.; Moura, S. Red Propolis: Chemical Composition and Pharmacological Activity. Asian Pac. J. Trop. Biomed. 2017, 7, 591–598. [Google Scholar] [CrossRef]
- Yao, H.; Yuan, Z.; Wei, G.; Chen, C.; Duan, J.; Li, Y.; Wang, Y.; Zhang, C.; Liu, Y. Thevetiaflavone from Wikstroemia Indica Ameliorates PC12 Cells Injury Induced by OGD/R via Improving ROS-Mediated Mitochondrial Dysfunction. Mol. Med. Rep. 2017, 16, 9197–9202. [Google Scholar] [CrossRef]
- Silva, V.C.; Silva, A.M.G.S.; Basílio, J.A.D.; Xavier, J.A.; Do Nascimento, T.G.; Naal, R.M.Z.G.; Del Lama, M.P.; Leonelo, L.A.D.; Mergulhão, N.L.O.N.; Maranhão, F.C.A.; et al. New Insights for Red Propolis of Alagoas—Chemical Constituents, Topical Membrane Formulations and Their Physicochemical and Biological Properties. Molecules 2020, 25, 5811. [Google Scholar] [CrossRef]
- dos Santos, D.A.; Munari, F.M.; da Silva Frozza, C.O.; Moura, S.; Barcellos, T.; Henriques, J.A.P.; Roesch-Ely, M. Brazilian Red Propolis Extracts: Study of Chemical Composition by ESI-MS/MS (ESI+) and Cytotoxic Profiles against Colon Cancer Cell Lines. Biotechnol. Res. Innov. 2019, 3, 120–130. [Google Scholar] [CrossRef]
- Lee, L.T.; Tsai, H.P.; Wang, C.C.; Chang, C.N.; Liu, W.C.; Hsu, H.C.; Hsieh, C.T.; Chen, Y.C.; Tseng, H.W.; Gau, R.J.; et al. Guttiferone F from the Fruit of Garcinia Multiflora and Its Anti-Hepatocellular Carcinoma Activity. Biomed. Prev. Nutr. 2013, 3, 247–252. [Google Scholar] [CrossRef]
- Luís, S. Elayne Costa da Estudo de Padronização de Extratos de Hancornia Speciosa Gomes como Alternativa Terapêutica para Obesidade. Master’s Thesis, Universidade Federal do Maranhão, São Luís, Brazil, 2018. [Google Scholar]
- Nangare, S.; Vispute, Y.; Tade, R.; Dugam, S.; Patil, P. Pharmaceutical Applications of Citric Acid. Future J. Pharm. Sci. 2021, 7, 54. [Google Scholar] [CrossRef]
- Torres-Rêgo, M.; Furtado, A.A.; Bitencourt, M.A.O.; de Souza Lima, M.C.J.; de Andrade, R.C.L.C.; de Azevedo, E.P.; da Cunha Soares, T.; Tomaz, J.C.; Lopes, N.P.; da Silva-Júnior, A.A.; et al. Anti-Inflammatory Activity of Aqueous Extract and Bioactive Compounds Identified from the Fruits of Hancornia Speciosa Gomes (Apocynaceae). BMC Complement. Altern. Med. 2016, 16, 275. [Google Scholar] [CrossRef]
- Ekhtiar, M.; Ghasemi-Dehnoo, M.; Azadegan-Dehkordi, F.; Bagheri, N. Evaluation of Anti-Inflammatory and Antioxidant Effects of Ferulic Acid and Quinic Acid on Acetic Acid-Induced Ulcerative Colitis in Rats. J. Biochem. Mol. Toxicol. 2025, 39, e70169. [Google Scholar] [CrossRef]
- Costa, B.P.; Nassr, M.T.; Diz, F.M.; Fernandes, K.H.A.; Antunes, G.L.; Grun, L.K.; Barbé-Tuana, F.M.; Nunes, F.B.; Branchini, G.; de Oliveira, J.R. Methoxyeugenol Regulates the P53/P21 Pathway and Suppresses Human Endometrial Cancer Cell Proliferation. J. Ethnopharmacol. 2021, 267, 113645. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Reis, J.H.; De Abreu Barreto, G.; Cerqueira, J.C.; Dos Anjos, J.P.; Andrade, L.N.; Padilha, F.F.; Druzian, J.I.; MacHado, B.A.S. Evaluation of the Antioxidant Profile and Cytotoxic Activity of Red Propolis Extracts from Different Regions of Northeastern Brazil Obtained by Conventional and Ultrasoundassisted Extraction. PLoS ONE 2019, 14, e0219063. [Google Scholar] [CrossRef]
- de Andrade de Carvalho, F.M.; Schneider, J.K.; de Jesus, C.V.F.; de Andrade, L.N.; Amaral, R.G.; David, J.M.; Krause, L.C.; Severino, P.; Soares, C.M.F.; Bastos, E.C.; et al. Brazilian Red Propolis: Extracts Production, Physicochemical Characterization, and Cytotoxicity Profile for Antitumor Activity. Biomolecules 2020, 10, 726. [Google Scholar] [CrossRef] [PubMed]
- Plaskova, A.; Mlcek, J. New Insights of the Application of Water or Ethanol-Water Plant Extract Rich in Active Compounds in Food. Front. Nutr. 2023, 10, 1118761. [Google Scholar] [CrossRef]
- Devequi-Nunes, D.; Machado, B.A.S.; De Abreu Barreto, G.; Silva, J.R.; Da Silva, D.F.; Da Rocha, J.L.C.; Brandão, H.N.; Borges, V.M.; Umsza-Guez, M.A. Chemical Characterization and Biological Activity of Six Different Extracts of Propolis through Conventional Methods and Supercritical Extraction. PLoS ONE 2018, 13, e0207676. [Google Scholar] [CrossRef]
- de Lima, A.B.S.; dos Santos, D.O.; de Almeida, V.V.S.; Oliveira, A.C.; Santos, L.S. Quantificação de Constituintes Fenólicos de Extratos de Própolis Vermelha de Diferentes Concentrações Por HPLC. Res. Soc. Dev. 2022, 11, e1111830536. [Google Scholar] [CrossRef]
- Sorita, G.D.; Caicedo Chacon, W.D.; Strieder, M.M.; Rodriguez-García, C.; Fritz, A.M.; Verruck, S.; Ayala Valencia, G.; Mendiola, J.A. Biorefining Brazilian Green Propolis: An Eco-Friendly Approach Based on a Sequential High-Pressure Extraction for Recovering High-Added-Value Compounds. Molecules 2025, 30, 189. [Google Scholar] [CrossRef]
- Garmus, T.T.; Paviani, L.C.; Queiroga, C.L.; Cabral, F.A. Extraction of Phenolic Compounds from Pepper-Rosmarin (Lippia Sidoides Cham.) Leaves by Sequential Extraction in Fixed Bed Extractor Using Supercritical CO2, Ethanol and Water as Solvents. J. Supercrit. Fluids 2015, 99, 68–75. [Google Scholar] [CrossRef]
- Machado, B.A.S.; Silva, R.P.D.; Barreto, G.D.A.; Costa, S.S.; Da Silva, D.F.; Brandão, H.N.; Da Rocha, J.L.C.; Dellagostin, O.A.; Henriques, J.A.P.; Umsza-Guez, M.A.; et al. Chemical Composition and Biological Activity of Extracts Obtained by Supercritical Extraction and Ethanolic Extraction of Brown, Green and Red Propolis Derived from Different Geographic Regions in Brazil. PLoS ONE 2016, 11, e0145954. [Google Scholar] [CrossRef]
- Náthia-Neves, G.; Tarone, A.G.; Tosi, M.M.; Maróstica Júnior, M.R.; Meireles, M.A.A. Extraction of Bioactive Compounds from Genipap (Genipa americana L.) by Pressurized Ethanol: Iridoids, Phenolic Content and Antioxidant Activity. Food Res. Int. 2017, 102, 595–604. [Google Scholar] [CrossRef]
- Toledo-Merma, P.R.; Cornejo-Figueroa, M.H.; Crisosto-Fuster, A.D.R.; Strieder, M.M.; Chañi-Paucar, L.O.; Náthia-Neves, G.; Rodríguez-Papuico, H.; Rostagno, M.A.; Meireles, M.A.A.; Alcázar-Alay, S.C. Phenolic Compounds Recovery from Pomegranate (Punica granatum L.) By-Products of Pressurized Liquid Extraction. Foods 2022, 11, 1070. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.T.; Veggi, P.C.; Meireles, M.A.A. Optimization and Economic Evaluation of Pressurized Liquid Extraction of Phenolic Compounds from Jabuticaba Skins. J. Food Eng. 2012, 108, 444–452. [Google Scholar] [CrossRef]
- Reis, J.H.d.O.; Machado, B.A.S.; de Abreu Barreto, G.; Dos Anjos, J.P.; Fonseca, L.M.D.S.; Santos, A.A.B.; Pessoa, F.L.P.; Druzian, J.I. Supercritical Extraction of Red Propolis: Operational Conditions and Chemical Characterization. Molecules 2020, 25, 4816. [Google Scholar] [CrossRef] [PubMed]
- Otero, P.; López-Martínez, M.I.; García-Risco, M.R. Application of Pressurized Liquid Extraction (PLE) to Obtain Bioactive Fatty Acids and Phenols from Laminaria Ochroleuca Collected in Galicia (NW Spain). J. Pharm. Biomed. Anal. 2019, 164, 86–92. [Google Scholar] [CrossRef]
- Caesar, L.K.; Cech, N.B. Synergy and Antagonism in Natural Product Extracts: When 1 + 1 Does Not Equal. Nat. Prod. Rep. 2019, 36, 869–888. [Google Scholar] [CrossRef]
- Tanewata, M.; Oikawa, A. Rapid Analysis of Glucosinolates Using Direct-Infusion Mass Spectrometry. Mass Spectrom. 2024, 13, A0150. [Google Scholar] [CrossRef]
- Maia, M.; Figueiredo, A.; Cordeiro, C.; Sousa Silva, M. FT-ICR-MS-Based Metabolomics: A Deep Dive into Plant Metabolism. Mass Spectrom. Rev. 2023, 42, 1535–1556. [Google Scholar] [CrossRef]
- Khoza, B.S.; Chimuka, L.; Mukwevho, E.; Steenkamp, P.A.; Madala, N.E. The Effect of Temperature on Pressurised Hot Water Extraction of Pharmacologically Important Metabolites as Analysed by UPLC-QTOF-MS and PCA. Evid.-Based Complement. Altern. Med. 2014, 2014, 914759. [Google Scholar] [CrossRef]
- El-Kersh, D.M.; El-Ezz, R.F.A.; Ramadan, E.; El-Kased, R.F. In Vitro and in Vivo Burn Healing Study of Standardized Propolis: Unveiling Its Antibacterial, Antioxidant and Antiinflammatory Actions in Relation to Its Phytochemical Profiling. PLoS ONE 2024, 19, e0302795. [Google Scholar] [CrossRef]
- Svečnjak, L.; Marijanović, Z.; Okińczyc, P.; Kuś, P.M.; Jerković, I. Mediterranean Propolis from the Adriatic Sea Islands as a Source of Natural Antioxidants: Comprehensive Chemical Biodiversity Determined by GC-MS, Ftiratr, UHPLC-DAD-QQTOF-MS, DPPH and FRAP Assay. Antioxidants 2020, 9, 337. [Google Scholar] [CrossRef] [PubMed]
- da Costa Silva, V.; do Nascimento, T.G.; Mergulhão, N.L.O.N.; Freitas, J.D.; Duarte, I.F.B.; de Bulhões, L.C.G.; Dornelas, C.B.; de Araújo, J.X.; dos Santos, J.; Silva, A.C.A.; et al. Development of a Polymeric Membrane Impregnated with Poly-Lactic Acid (PLA) Nanoparticles Loaded with Red Propolis (RP). Molecules 2022, 27, 6959. [Google Scholar] [CrossRef] [PubMed]
- Santos, U.P.; Campos, J.F.; Torquato, H.F.V.; Paredes-Gamero, E.J.; Carollo, C.A.; Estevinho, L.M.; De Picoli Souza, K.; Dos Santos, E.L. Antioxidant, Antimicrobial and Cytotoxic Properties as Well as the Phenolic Content of the Extract from Hancornia Speciosa Gomes. PLoS ONE 2016, 11, e0167531. [Google Scholar] [CrossRef] [PubMed]
- Pezzani, R.; Salehi, B.; Vitalini, S.; Iriti, M.; Zuñiga, F.A.; Sharifi-Rad, J.; Martorell, M.; Martins, N. Synergistic Effects of Plant Derivatives and Conventional Chemotherapeutic Agents: An Update on the Cancer Perspective. Medicina 2019, 55, 110. [Google Scholar] [CrossRef]
- Ghazy, M.G.M.; Hanafy, N.A.N. Targeted Therapies for Breast and Lung Cancers by Using Propolis Loaded Albumin Protein Nanoparticles. Int. J. Biol. Macromol. 2024, 260, 129338. [Google Scholar] [CrossRef]
- Tietbohl, L.A.C.; Oliveira, A.P.; Esteves, R.S.; Albuquerque, R.D.D.G.; Folly, D.; Machado, F.P.; Corrêa, A.L.; Santos, M.G.; Ruiz, A.L.G.; Rocha, L. Antiproliferative Activity in Tumor Cell Lines, Antioxidant Capacity and Total Phenolic, Flavonoid and Tannin Contents of Myrciaria Floribunda. An. Acad. Bras. Ciências 2017, 89, 1111–1120. [Google Scholar] [CrossRef]
- de Araújo, R.L.; Savazzi, S.; Fujimori, M.; Deluque, A.; Honório-França, E.L.; Konda, P.B.P.; Honório-França, A.C. Effects of Mangaba (Hancornia Speciosa) Fruit Extract Adsorbed onto PEG Microspheres in MCF-7 Breast Cancer Cells Co-Cultured with Blood Cells. Asian Pac. J. Cancer Prev. 2019, 20, 1995–2001. [Google Scholar] [CrossRef]
- Santos, K.S.; Barbosa, A.M.; Freitas, V.; Muniz, A.V.C.S.; Mendonça, M.C.; Calhelha, R.C.; Ferreira, I.C.F.R.; Franceschi, E.; Padilha, F.F.; Oliveira, M.B.P.P.; et al. Antiproliferative Activity of Neem Leaf Extracts Obtained by a Sequential Pressurized Liquid Extraction. Pharmaceuticals 2018, 11, 76. [Google Scholar] [CrossRef]
- He, W.; Jiang, Y.; Zhang, X.; Zhang, Y.; Ji, H.; Zhang, N. Anticancer Cardamonin Analogs Suppress the Activation of NF-KappaB Pathway in Lung Cancer Cells. Mol. Cell. Biochem. 2014, 389, 25–33. [Google Scholar] [CrossRef]
- Saleem, H.; Khurshid, U.; Anwar, S.; Tousif, M.I.; Mahomoodally, M.F.; Ahemad, N. Buxus Papillosa C.K. Schneid.: A Comprehensive Review on Traditional Uses, Botany, Phytochemistry, Pharmacology, and Toxicology. Biocatal. Agric. Biotechnol. 2022, 46, 102547. [Google Scholar] [CrossRef]
- Aliya, S.; Alhammadi, M.; Park, U.; Tiwari, J.N.; Lee, J.H.; Han, Y.K.; Huh, Y.S. The Potential Role of Formononetin in Cancer Treatment: An Updated Review. Biomed. Pharmacother. 2023, 168, 115811. [Google Scholar] [CrossRef]
- Silva-Rodrigues, G.; Borges, P.H.G.; Correia, G.F.; de Castro, I.M.; Gregio, B.; Maroni, G.M.; de Lima, B.M.; Silva, J.L.; Endo, T.H.; de Mello Santos, M.H.; et al. Visão Geral Sobre os Produtos Naturais e Suas Aplicações: Uma Revisão. Cent. Pesqui. Avançadas Qual. Vida 2024, 16, 1. [Google Scholar] [CrossRef]
- Li, M.; Qian, M.; Jiang, Q.; Tan, B.; Yin, Y.; Han, X. Evidence of Flavonoids on Disease Prevention. Antioxidants 2023, 12, 527. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.M.; Santos, K.S.; Borges, G.R.; Muniz, A.V.C.S.; Mendonça, F.M.R.; Pinheiro, M.S.; Franceschi, E.; Dariva, C.; Padilha, F.F. Separation of Antibacterial Biocompounds from Hancornia Speciosa Leaves by a Sequential Process of Pressurized Liquid Extraction. Sep. Purif. Technol. 2019, 222, 390–395. [Google Scholar] [CrossRef]
- Silva Thomsen, L.B.; de Carvalho Carregosa, J.; Wisniewski, A.; Anastasakis, K.; Biller, P. Continuous Wet Air Oxidation of Aqueous Phase from Hydrothermal Liquefaction of Sewage Sludge. J. Environ. Chem. Eng. 2024, 12, 112672. [Google Scholar] [CrossRef]
- Carregosa, J.D.C. Nova Estratégia Multicamada de Aplicação da Espectrometria de Massas na Química Forense de Petróleo. Ph.D. Thesis, Universidade Federal de Sergipe, São Cristóvão, Brazil, 2023. [Google Scholar]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Barreira, S.V.P.; Nunes, M.A.; Cunha, L.M.; Oliveira, M.B.P.P. Optimization of Antioxidants Extraction from Coffee Silverskin, a Roasting by-Product, Having in View a Sustainable Process. Ind. Crops. Prod. 2014, 53, 350–357. [Google Scholar] [CrossRef]
- de Souza Andrade, A.K.; de Franca, M.N.F.; Santos, J.F.; Macêdo, N.A.; de Lucca Junior, W.; Scher, R.; Cavalcanti, S.C.d.H.; Corrêa, C.B. Anti-Migratory and Cytotoxic Effect of Indole Derivative in C6 Glioma Cells. Toxicol. Vitr. 2024, 96, 105786. [Google Scholar] [CrossRef]
Neutral Molecule | Detection Mode | UAPFE−SE (Area %) | UAPFE−SP (Area %) | UAPFE−E (Area %) | UAPFE−P (Area %) |
---|---|---|---|---|---|
C12H18O12 | [M − H]− | 3.611 | 0.051 | 1.951 | 0.007 |
C12H22O9 | [M − H]− | 2.384 | ND | 1.968 | ND |
C15H12O5 | [M − H]− | 2.136 | 0.083 | 2.251 | ND |
C16H12O4 | [M − H]− | 4.905 | 0.381 | 5.690 | ND |
C16H12O5 | [M − H]− | 4.271 | ND | ND | ND |
C16H8N4 | [M − H]− | 2.350 | ND | ND | 0.146 |
C17H10O2N4 | [M − H]− | 0.877 | 0.247 | 1.082 | 0.118 |
C24H48O2 | [M − H]− | 0.171 | 4.227 | 1.235 | 4.801 |
C26H42O3 | [M − H]− | ND | 2.820 | ND | 3.717 |
C38H50O6 | [M − H]− | 0.916 | 16.865 | ND | 20.930 |
C6H12O6 | [M − H]− | 2.824 | 0.072 | 1.345 | 0.022 |
C6H8O7 | [M − H]− | 8.399 | 0.253 | 5.940 | ND |
C7H12O6 | [M − H]− | 8.419 | 0.079 | 5.801 | 0.013 |
C6H11O3N1 | [M − H]− | 0.087 | ND | 0.064 | ND |
C8H16O2 | [M − H]− | 0.004 | 0.074 | 0.002 | 0.046 |
Molecular Ion (m/z) | Molecular Formula | Cambui | Mangaba | Red Propolis | Classification | Biological Activity |
---|---|---|---|---|---|---|
271.0614 [M − H]− | C15H12O5 | NI | Narigenin [16] | Narigenin [17] | Flavanone | Induces apoptosis and cell cycle arrest at G1 and G2/M phases; Inhibits metastasis via anti-angiogenic mechanisms and VEGF suppression; Reduces osteosarcoma growth [18] |
271.0614 [M − H]− | C15H12O5 | NI | - | Pinobanksin [17] | Flavanonol | Estrogenic activity in T47D cells via stimulation of proliferation [19]; Antioxidant, antiparasitic, and antibacterial properties [20]. |
271.0614 [M − H]− | C15H12O5 | NI | - | 3,4,2′,3′-Tetrahydroxychalcone [21] | Chalcona | Antioxidant activity [22]. |
267.0665 [M − H]− | C16H12O4 | NI | NI | Formononetin [17,23] | Isoflavone | Modulates transcription factors and oncogenic pathways; reduces inflammation linked to cancer survival [24]; Induces apoptosis [24]. |
267.0665 [M − H]− | C16H12O4 | NI | NI | Isoformononetin [24,25] | Isoflavone | Potentiates cytotoxicity in HeLa cells [19]. |
283.0613 [M − H]− | C16H12O5 | NI | NI | 2′-Hydroxyformononetin [17,26] | Isoflavone | Acts as an anti-inflammatory agent [26]. |
283.0613 [M − H]− | C16H12O5 | NI | NI | Biochanin A [17,23,25] | Isoflavone | Inhibits the activity of invasive enzymes and induces cell cycle arrest and apoptosis [27]. |
283.0613 [M − H]− | C16H12O5 | NI | NI | Thevetiaflavone [17,19] | Flavone | Exerts potential cytotoxic activity in various human cancer cell lines [28]. |
601.3534 [M − H]− | C38H50O6 | NI | NI | Xanthochymol [29] | Benzophenone | Displays cytotoxic activity in a range of human tumor cell lines, such as A549 and vincristine-resistant KB cells [19] |
601.3540 [M − H]− | C38H50O6 | NI | NI | Gutiferone F [19,30] | Benzophenone | Induces apoptosis in certain tumor cells, such as hepatocellular carcinoma [19,31] |
191.0197 [M − H]− | C6H8O7 | Citric acid [9] | Citric acid [32] | NI | Carboxylic acid | Antioxidant agent [33]. |
191.0562 [M − H]− | C7H12O6 | Quinic acid [9] | Quinic acid [32,34] | NI | Cyclitol | Functions as an antioxidant, antidiabetic, anticancer, antimicrobial, antiviral, anti-aging, protective, antinociceptive, and analgesic agent [35] |
195.10185 [M + H]+ | C11H14O3 | N/F | NI | Methoxyeugenol [21,22] | Phenylpropanoid | Possesses anti-inflammatory properties and promising anticancer activity against endometrial cancer cells [36]. |
Parameter | HESI (−) | HESI (+) |
---|---|---|
Resolution | 140 K @ m/z 200 | 140 K @ m/z 200 |
Capillary voltage | −3500 V | +4000 V |
Chamber temperature | 100 °C | 100 °C |
Capillary temperature | 300 °C | 300 °C |
Sheath gas | 15 a.u. | 10 a.u. |
Auxiliary gas | 5 a.u. | 10 a.u. |
Counter flow gas | 0 a.u. | 0 a.u. |
S-lens RF | 40 | 40 |
Flow | 25 µL min−1 | 25 µL min−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, D.S.d.; Oliveira, M.R.; Silva, G.A.d.; Corrêa, C.B.; Silva, A.V.C.d.; Carregosa, J.d.C.; Wisniewski, A., Jr.; Oliveira, M.B.P.P.; Dariva, C.; Santos, K.S. Ultrasound-Assisted Pressurized Fluid Extraction of Antioxidant and Anticancer Molecules from a Mangaba, Cambuí and Red Propolis Blend. Molecules 2025, 30, 3857. https://doi.org/10.3390/molecules30193857
Oliveira DSd, Oliveira MR, Silva GAd, Corrêa CB, Silva AVCd, Carregosa JdC, Wisniewski A Jr., Oliveira MBPP, Dariva C, Santos KS. Ultrasound-Assisted Pressurized Fluid Extraction of Antioxidant and Anticancer Molecules from a Mangaba, Cambuí and Red Propolis Blend. Molecules. 2025; 30(19):3857. https://doi.org/10.3390/molecules30193857
Chicago/Turabian StyleOliveira, Diego S. de, Marília R. Oliveira, Glenda A. da Silva, Cristiane B. Corrêa, Ana Veruska C. da Silva, Jhonattas de C. Carregosa, Alberto Wisniewski, Jr., Maria Beatriz P. P. Oliveira, Claudio Dariva, and Klebson S. Santos. 2025. "Ultrasound-Assisted Pressurized Fluid Extraction of Antioxidant and Anticancer Molecules from a Mangaba, Cambuí and Red Propolis Blend" Molecules 30, no. 19: 3857. https://doi.org/10.3390/molecules30193857
APA StyleOliveira, D. S. d., Oliveira, M. R., Silva, G. A. d., Corrêa, C. B., Silva, A. V. C. d., Carregosa, J. d. C., Wisniewski, A., Jr., Oliveira, M. B. P. P., Dariva, C., & Santos, K. S. (2025). Ultrasound-Assisted Pressurized Fluid Extraction of Antioxidant and Anticancer Molecules from a Mangaba, Cambuí and Red Propolis Blend. Molecules, 30(19), 3857. https://doi.org/10.3390/molecules30193857