Ellagitannins and Other Polyphenols Along with Dietary Components of the Rosaceae Medicinal Plants
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiva-Blanch, G.; Urpi-Sarda, M.; Llorach, R.; Rotches-Ribalta, M.; Guillén, M.; Casas, R.; Arranz, S.; Valderas-Martinez, P.; Portoles, O.; Corella, D.; et al. Differential effects of polyphenols and alcohol of red wine on the expression of adhesion molecules and inflammatory cytokines related to atherosclerosis: A randomized clinical trial. Am. J. Clin. Nutr. 2012, 95, 326–334. [Google Scholar] [CrossRef]
- Alvarez-Suarez, J.M.; Giampieri, F.; Tulipani, S.; Casoli, T.; Di Stefano, G.; González-Paramás, A.M.; Santos-Buelga, C.; Busco, F.; Quiles, J.L.; Cordero, M.D.; et al. One-month strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans. J. Nutr. Biochem. 2014, 25, 289–294. [Google Scholar] [CrossRef]
- Wang, D.; Özen, C.; Abu-Reidah, I.M.; Chigurupati, S.; Patra, J.K.; Horbanczuk, J.O.; Józwik, A.; Tzvetkov, N.T.; Uhrin, P.; Atanasov, A.G. Vasculoprotective effects of pomegranate (Punica granatum L.). Front. Pharmacol. 2018, 9, 544. [Google Scholar] [CrossRef]
- Heber, D. Multitargeted therapy of cancer by ellagitannins. Cancer Lett. 2008, 269, 262–268. [Google Scholar] [CrossRef]
- Nobili, S.; Lippi, D.; Witort, E.; Donnini, M.; Bausi, L.; Mini, E.; Capaccioli, S. Natural compounds for cancer treatment and prevention. Pharmacol. Res. 2009, 59, 365–378. [Google Scholar] [CrossRef]
- Espín, J.C.; González-Barrios, B.; Cerdá, B.; López-Bote, C.; Rey, A.I.; Tomás-Barberán, F.A. Iberian pig as a model to clarify obscure points in the bioavailability and metabolism of ellagitannins in humans. J. Agric. Food Chem. 2007, 55, 10476–10485. [Google Scholar] [CrossRef]
- Raya-Morquecho, E.M.; Aguilar-Zarate, P.; Sepúlveda, L.; Michel, M.R.; Iliná, A.; Aguilar, C.N.; Ascacio-Valdés, J.A. Ellagitannins and their derivatives: A review on the metabolization, absorption, and some benefits related to intestinal health. Microbiol. Res. 2025, 16, 113. [Google Scholar] [CrossRef]
- Arnotti, K.; Bamber, M. Fruit and vegetable consumption in overweight or obese individuals: A meta-analysis. West. J. Nurs. Res. 2020, 42, 306–314. [Google Scholar] [CrossRef]
- Saura-Calixto, F. Dietary fiber as a carrier of dietary antioxidants: An essentials physiological function. J. Agric. Food Chem. 2011, 59, 43–49. [Google Scholar] [CrossRef]
- Halarewicz, A. Atlas Ziół: 120 Jadalnych Gatunków; Wydawnictwo SBM: Warszawa, Poland, 2015; pp. 86–89. [Google Scholar]
- Yoshida, T.; Amakura, Y.; Yoshimura, M. Structural features and biological properties of ellagitannins in some plant families of the order Myrtales. Int. J. Mol. Sci. 2010, 11, 79–106. [Google Scholar] [CrossRef]
- Moilanen, J.; Karonen, M.; Tähtinen, P.; Jacquet, R.; Quideau, S.; Salminen, J.P. Biological activity of ellagitannins: Effects as anti-oxidants, pro-oxidants and metal chelators. Phytochemistry 2016, 125, 65–72. [Google Scholar] [CrossRef]
- Larrosa, M.; González-Sarrías, A.; Yáńez-Gascón, M.J.; Selma, M.V.; Azorín-Ortuńo, M.; Toti, S.; Tomás-Barberán, F.A.; Dolara, P.; Espín, J.C. Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-A in a colitis rat model and the effect of colon inflammation on the phenolic metabolism. J. Nutr. Biochem. 2010, 21, 717–725. [Google Scholar] [CrossRef]
- Sangiovanni, E.; Vrhovsek, U.; Rossoni, G.; Colombo, E.; Brunelli, C.; Brembati, L.; Trivulzio, S.; Gasperotti, M.; Mattivi, F.; Bosisio, E.; et al. Ellagitannins from Rubus berries for control of gastric inflammation: In vitro and in vivo studies. PLoS ONE 2013, 8, e71762. [Google Scholar] [CrossRef]
- Larrosa, M.; González-Sarrías, A.; García-Conesa, M.T.; Tomas-Barberan, F.A.; Espin, J.C. Urolithins, ellagic acid-derived metabolites produced by human colonic microflora, exhbit estrogenie and antiestrogenic activities. J. Agric. Food Chem. 2006, 54, 1611–1620. [Google Scholar] [CrossRef]
- Heidari, B.; Saeedi, M.; Khanavi, M. Phytochemistry and biological properties of Sanguisorba spp.: An updated review. Res. J. Pharmacogn. 2024, 11, 87–105. [Google Scholar] [CrossRef]
- Granica, S.; Kluge, H.; Horn, G.; Matkowski, A.; Kiss, A.K. The phytochemical investigation of Agrimonia eupatoria L. and Agrimonia procera Wallr. as valid sources of Agrimoniae herba—The pharmacopoeial plant material. J. Pharm. Biomed. Anal. 2015, 114, 272–279. [Google Scholar] [CrossRef]
- Zaharieva, M.M.; Dimitrova, L.L.; Philipov, S.; Nikolova, I.; Vilhelmova, N.; Grozdanov, P.; Nikolova, N.; Popova, M.; Bankova, V.; Konstantinov, S.M.; et al. In vitro antineoplastic and antiviral activity and in vivo toxicity of Geum urbanum L. extracts. Molecules 2021, 27, 245. [Google Scholar] [CrossRef]
- Lachowicz, S.; Oszmiański, J.; Rapak, A.; Ochmian, I. Profile and content of phenolic compounds in leaves, flowers, roots, and stalks of Sanguisorba officinalis L. determined with the LC-DAD-ESI-QTOF-MS/MS analysis and their in vitro antioxidant, antidiabetic, antiproliferative potency. Pharmaceuticals 2020, 13, 191. [Google Scholar] [CrossRef]
- Pukalskiene, M.; Slapsyte, G.; Dedonyte, V.; Lazutka, J.R.; Mierauskiene, J.; Venskutonis, P.R. Genotoxicity and antioxidant activity of five Agrimonia and Filipendula species plant extracts evaluated by comet and micronucleus assays in human lymphocytes and Ames Salmonella/microsome test. Food Chem. Toxicol. 2018, 113, 303–313. [Google Scholar] [CrossRef]
- Owczarek, A.; Olszewska, M.A.; Gudej, J. Quantitative determination of ellagic acid and gallic acid in Geum rivale L. and G. urbanum L. Acta Biol. Cracoviensia Ser. Bot. 2014, 56, 74–78. [Google Scholar] [CrossRef]
- Karlińska, E.; Kaczorowska, O.; Romanowska, B.; Kosmala, M. Nutritional and polyphenolic composition of Agrimonia procera Wallr. from experimental cultivation with different levels of nitrogen fertilization. Molecules 2022, 27, 7597. [Google Scholar] [CrossRef] [PubMed]
- Karlińska, E.; Romanowska, B.; Kosmala, M. The aerial parts of Agrimonia procera Wallr. and Agrimonia eupatoria L. as a source of polyphenols, and especially agrimoniin and flavonoids. Molecules 2021, 26, 7706. [Google Scholar] [CrossRef]
- Tocai, A.-C.; Ranga, F.; Teodorescu, A.G.; Pallag, A.; Vlad, A.M.; Bandici, L.; Vicas, S.I. Evaluation of polyphenolic composition and antimicrobial properties of Sanguisorba officinalis L. and Sanguisorba minor Scop. Plants 2022, 11, 3561. [Google Scholar] [CrossRef] [PubMed]
- Kunachowicz, H.; Nadolna, I.; Iwanow, K.; Przygoda, B. Wartość Odżywcza Wybranych Produktów Spożywczych i Typowych Potraw; Wydawnictwo Lekarskie PZWL: Warszawa, Poland, 2015. [Google Scholar]
- Ceccanti, C.; Finimundy, T.C.; Barros, L. Nutritional value of wild and domesticated Sanguisorba minor Scop. Plant. Horticult. 2023, 9, 560. [Google Scholar] [CrossRef]
- Fecka, I. Development of chromatographic methods for determination of agrimoniin and related polyphenols in pharmaceutical products. J. AOAC Int. 2009, 92, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Grzeszczuk, M.; Jadczak, D. Comparison of the biological value for two types of salad burnet (Sanguisorba minor Scop.). Zesz. Probl. Postępów Nauk. Rol. 2009, 539, 215–220. [Google Scholar]
- Nguyen, D.H.; Seo, U.M.; Zhao, B.T.; Le, D.D.; Seong, S.H.; Choi, J.S.; Min, B.S.; Woo, M.H. Ellagitannin and flavonoid constituents from Agrimonia pilosa Ledeb. with their protein tyrosine phosphatase and acetylcholinesterase inhibitory activities. Bioorganic Chem. 2017, 72, 293–300. [Google Scholar] [CrossRef]
- Hager, T.J.; Howard, L.R.; Liyanage, R.; Lay, J.O.; Prior, R.L. Ellagitannin composition of blackberry as determined by HPLC-ESI-MS and MALDI-TOF-MS. J. Agric. Food Chem. 2008, 56, 661–669. [Google Scholar] [CrossRef]
- Finimundy, C.T.; Karkanisc, T.; Fernandes, A.; Petropoulosc, S.A.; Calhelha, R.; Petrović, J.; Soković, M.; Rosa, E.; Barros, L.; Ferreira, I.C.F.R. Bioactive properties of Sanguisorba minor L. cultivated in central Greece under different fertilization regimes. Food Chem. 2020, 327, 127043. [Google Scholar] [CrossRef]
- Bastow, K.; Bori, I.; Fukushima, Y.; Kashiwada, Y.; Tanaka, T.; Nonaka, G.; Nishioka, I.; Lee, K.-H. Inhibition of DNA topoisomerases by sanguiin H-6, a cytotoxic dimeric ellagitannin from Sanguisorba officinalis. Planta Medica 1993, 59, 240–245. [Google Scholar] [CrossRef]
- Kashchenko, N.I.; Olennikov, D.N.; Chirikova, N.K. Metabolites of Geum aleppicum and Sibbaldianthe bifurca: Diversity and α-Glucosidase inhibitory potential. Metabolites 2023, 13, 689. [Google Scholar] [CrossRef]
- Ożarowski, A.; Jaroniewski, W. Rośliny Lecznicze i Ich Praktyczne Zastosowanie; Instytut Wydawniczy Związków Zawodowych: Warszawa, Poland, 1987. [Google Scholar]
- Volak, J.; Stodola, J. Rośliny Lecznicze; Państwowe Wydawnictwo Rolnicze i Leśne: Warszawa, Poland, 1987. [Google Scholar]
- Kostryco, M.; Chwil, M. Biologically active compounds in Agrimoni eupatoria L. and their therapeutic effects. World Sci. News 2017, 89, 90–97. [Google Scholar]
- European Pharmacopoeia Ph. Eur, 8th ed.; European Directorate for the Quality of Medicines & HealthCare, EDQM: Strasburg, France, 2015.
- Quideau, S. Chemistry and Biology of Ellagitannins: An Underestimated Class of Bioactive Plant Polyphenols; World Scientific Publishing: Toh Tuck Link, Singapore, 2009. [Google Scholar]
- Milala, J.; Kosmala, M.; Karlińska, E.; Juśkiewicz, J.; Zduńczyk, Z.; Fotschki, B. Ellagitannins from strawberries with different degrees of polymerization showed different metabolism through gastrointestinal tract of rats. J. Agric. Food Chem. 2017, 65, 10738–10748. [Google Scholar] [CrossRef] [PubMed]
- Sójka, M.; Macierzyński, J.; Zaweracz, W.; Buczek, M. Transfer and mass balance of ellagitannins, anthocyanins, flavan-3-ols, and flavonols during the processing of red raspberries (Rubus idaeus L.) to juice. J. Agric. Food Chem. 2016, 64, 5549–5563. [Google Scholar] [CrossRef] [PubMed]
- Kosmala, M.; Jurgonśki, A.; Juśkiewicz, J.; Karlinśka, E.; Macierzyński, J.; Rój, E.; Zduńczyk, Z. Chemical composition of blackberry press cake, polyphenolic extract, and defatted seeds, and their effects on cecal fermentation, bacterial metabolites, and blood lipid profile in rats. J. Agric. Food Chem. 2017, 65, 5470–5479. [Google Scholar] [CrossRef]
- Kosmala, M.; Zduńczyk, Z.; Juśkiewicz, J.; Jurgoński, A.; Karlińska, E.; Macierzyński, J.; Jańczak, R.; Rój, E. Chemical composition of defatted strawberry and raspberry seeds and the effect of these dietary ingredients on polyphenol metabolites, intestinal function, and selected serum parameters in rats. J. Agric. Food Chem. 2015, 63, 2989–2996. [Google Scholar] [CrossRef]
- Sójka, M.; Artur Miszczak, A.; Sikorski, P.; Zagibajło, K.; Karlińska, E.; Kosmala, M. Pesticide residue levels in strawberry processing by-products that are rich in ellagitannins and an assessment of their dietary risk to consumers. NFS J. 2015, 1, 31–37. [Google Scholar] [CrossRef]
- Kosmala, M.; Sójka, M.; Miszczak, A.; Sikorski, P.; Zagibajło, K.; Włodarek, A.; Czajka, A.; Robak, J.; Król, B. Ocena potencjału aplikacyjnego wytłoków, pochodzących z przetwórstwa truskawek i malin na soki. Przemysł Ferment. Owocowo-Warzywny 2015, 5, 15–17. [Google Scholar] [CrossRef]
- Piwowarski, J.P.; Granica, S.; Stefańska, J.; Kiss, A.K. Differences in metabolism of ellagitannins by human gut microbiota ex vivo cultures. J. Nat. Prod. 2016, 79, 3022–3030. [Google Scholar] [CrossRef]
- Piwowarski, J.P.; Stanislawska, I.; Granica, S.; Stefańska, J.; Kiss, A.K. Phase II conjugates of urolithins isolated from human urine and potential role of β-glucuronidases in their disposition. Drug Metab. Dispos. 2017, 45, 657–665. [Google Scholar] [CrossRef]
- Espin, J.C.; Larrosa, M.; Garcia-Conesa, M.T.; Tomas-Barberán, F.A. Biological significance of urolithins, the gut microbial ellagic acid-derived metabolites: The evidence so far. Evid. Based Compl. Alt. Med. 2013, 2013, 2704. [Google Scholar] [CrossRef]
- García-Villalba, R.; Beltrán, D.; Espin, J.C.; Selma, M.V.; Tomás-Barberán, F.A. Time course production of urolithins from ellagic acid by human gut microbiota. J. Agric. Food Chem. 2013, 61, 8797–8806. [Google Scholar] [CrossRef]
- García-Villalba, R.; Espín, J.C.; Tomás-Barberán, F.A. Chromatographic and spectroscopic characterization of urolithins for their determination in biological samples after the intake of foods containing ellagitannins and ellagic acid. J. Chromatogr. A 2016, 1428, 162–175. [Google Scholar] [CrossRef] [PubMed]
- Bialonska, D.; Ramnani, P.; Kasimsetty, S.G.; Muntha, K.R.; Gibson, G.R.; Ferreira, D. The influence of pomegranate by-product and punicalagins on selected groups of human intestinal microbiota. Int. J. Food Microbol. 2010, 140, 175–182. [Google Scholar] [CrossRef]
- Pfundstein, B.; Haubner, R.; Würtele, G.; Gehres, N.; Ulrich, C.M.; Owen, R.W. Pilot walnut intervention study of urolithin bioavailability in human volunteers. J. Agric. Food Chem. 2014, 62, 10264–10273. [Google Scholar] [CrossRef] [PubMed]
- Bazylko, A.; Piwowarski, J.P.; Filipek, A.; Bonarewicz, J.; Tomczyk, M. In vitro antioxidant and antiinflammatory activities of extracts from Potentilla recta and its main ellagitannin, agrimoniin. J. Ethnopharmacol. 2013, 149, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Selma, M.V.; Beltrán, D.; Luna, M.C.; Romo-Vaquero, M.; García-Villalba, R.; Mira, A.; Espín, J.C.; Tomás-Barberán, F.A. Isolation of human intestinal bacteria capable of producing the bioactive metabolite isourolithin A from ellagic acid. Front. Microbiol. 2017, 8, 1521. [Google Scholar] [CrossRef]
- Giampieri, F.; Tulipani, S.; Alvarez-Suarez, J.; Quiles, J.L.; Mezzetti, B.; Battino, M. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition 2012, 28, 9–19. [Google Scholar] [CrossRef]
- Cerdá, B.; Tomás-Barberán, F.A.; Espín, J.C. Metabolism of antioxidant and chemopreventive ellagitannins from strawberries, raspberries, walnuts and oak-aged wine in humans: Identification of biomarkers and individual variability. J. Agric. Food Chem. 2005, 53, 227–235. [Google Scholar] [CrossRef]
- Kaume, L.; Howard, L.R.; Devareddy, L. The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability, and health benefits. J. Agric. Food Chem. 2012, 60, 5716–5727. [Google Scholar] [CrossRef]
- Fotschki, B.; Juśkiewicz, J.; Kołodziejczyk, K.; Jurgoński, A.; Kosmala, M.; Milala, J.; Ognik, K.; Zduńczyk, Z. Protective effects of ellagitannin-rich strawberry extracts on biochemical and metabolic disturbances in rats fed a diet high in fructose. Nutrients 2018, 10, 445. [Google Scholar] [CrossRef]
- Jurgoński, A.; Juśkiewicz, J.; Fotschki, B.; Kołodziejczyk, K.; Milala, J.; Kosmala, M.; Grzelak-Błaszczyk, K.; Markiewicz, L. Metabolism of strawberry mono- and dimeric ellagitannins in rats fed a diet containing fructo-oligosaccharides. Eur. J. Nutr. 2017, 56, 853–864. [Google Scholar] [CrossRef]
- Juśkiewicz, J.; Jurgoński, A.; Kołodziejczyk, K.; Kosmala, M.; Milala, J.; Zduńczyk, Z.; Fotschki, B.; Żary-Sikorska, E. Blood glucose lowering efficacy of strawberry extracts rich in ellagitannins with different degree of polymerization in rats. Pol. J. Food Nutr. Sci. 2016, 66, 109–117. [Google Scholar] [CrossRef]
- Juśkiewicz, J.; Król, B.; Kosmala, M.; Milala, J.; Zduńczyk, Z.; Żary-Sikorska, E. Physiological properties of dietary ellagitannin-rich preparations obtained from strawberry pomace using different extraction methods. Pol. J. Food Nutr. Sci. 2015, 65, 199–209. [Google Scholar] [CrossRef][Green Version]
- Jaroslawska, J.; Juskiewicz, J.; Wroblewska, M.; Jurgowski, A.; Krol, B.; Zdunczyk, Z. Polyphenol-rich strawberry pomace reduces serum and liver lipids and alters gastrointestinal metabolite formation in fructose-fed rats. J. Nutr. 2011, 141, 1777–1783. [Google Scholar] [CrossRef] [PubMed]
- Giménez, J.A.; González-Sarrías, A.; Larrosa, M.; Tomás-Barberán, F.A.; Espín, J.C.; García-Conesa, M.T. Ellagitannin metabolites, urolithin A glucuronide and its aglycone urolithin A, ameliorate TNF-α-induced inflammation and associated molecular markers in human aortic endothelial cells. Mol. Nut. Food Res. 2012, 56, 784–796. [Google Scholar] [CrossRef] [PubMed]
- García-Villalba, R.; Giménez-Bastida, J.A.; Cortés-Martín, A.; Ávila Gálvez, M.Á.; Tomás-Barberán, F.A.; Selma, M.V.; Espín, J.C.; González-Sarrías, A. Urolithins: A comprehensive update on their metabolism, bioactivity, and associated gut microbiota. Mol. Nutr. Food Res. 2022, 66, 2101019. [Google Scholar] [CrossRef]
- González-Barrio, R.; Truchado, P.; Ito, H.; Espín, J.C.; Tomás-Barberan, F.A. UV and MS identification of urolithins and nasutins, the bioavailable metabolites of ellagitannins and ellagic acid in different mammals. J. Agric. Food Chem. 2011, 59, 1152–1162. [Google Scholar] [CrossRef] [PubMed]
- Cerdá, B.; Espín, J.C.; Parra, S.; Martínez, P.; Tomás-Barberán, F.A. The potent in vitro antioxidant ellagitannins from pomegranate juice are metabolised into bioavailable but poor antioxidant hydroxy-6H-dibenzopyran-6-one derivatives by the colonic microflora of healthy humans. Eur. J. Nutr. 2004, 43, 205–220. [Google Scholar] [CrossRef]
- Seeram, N.P.; Aronson, W.J.; Zhang, Y.; Henning, S.M.; Moro, A.; Lee, R.P.; Sartippour, M.; Harris, D.M.; Rettig, M.; Suchard, M.A.; et al. Pomegranate ellagitannin-derived metabolites inhibit prostate cancer growth and localize to the mouse prostate gland. J. Agric. Food Chem. 2007, 55, 7732–7737. [Google Scholar] [CrossRef] [PubMed]
- Fotschki, B.; Juśkiewicz, J.; Jurgoński, A.; Kołodziejczyk, K.; Milala, J.; Kosmala, M.; Zduńczyk, Z. Anthocyanins in strawberry polyphenolic extract enhance the beneficial effects of diets with fructooligosaccharides in the rat cecal environment. PLoS ONE 2016, 11, e0149081. [Google Scholar] [CrossRef] [PubMed]
- Baert, N.; Pellikaan, W.F.; Karoten, M.; Salminen, J.-P. A study of the structure-activity relationship of oligomeric ellagitannins on ruminal fermentation in vitro. J. Dairy Sci. 2016, 99, 8041–8052. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.-J.; Xie, Q.; Chen, M.S.; Cheng, Y.-L.; Zhang, B.; Tu, Z.; Zhang, L. Fabrication of Rubus chingii Hu ellagitannins-loaded W/O/W double emulsion gels stabilized by WPI/pectin complexes: Physicochemical properties, digestion characteristics, and transformation of ellagitannins. Food Chem. 2025, 495, 146489. [Google Scholar] [CrossRef] [PubMed]
- Latimer, G.W. Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Analytical Chemistry International: Rockville, MD, USA, 2012. [Google Scholar]



| DM | TDF | IDF | SDF | Ash | Protein | Fat | Carbs | Vit C | Phenolics | |
|---|---|---|---|---|---|---|---|---|---|---|
| G. burnet | 19.7 ± 0.1 b | 6.5 ± 0.1 c | 5.7 ± 0.1 c | 0.7 ± 0.1 b | 1.8 ± 0.0 c | 4.0 ± 0.4 a | 0.7 ± 0.0 a | 3.8 ± 0.0 a | 0.1 ± 0.0 | 3.0 ± 0.2 b |
| W. avens | 18.7 ± 0.1 c | 8.2 ± 0.1 b | 7.7 ± 0.0 b | 0.5 ± 0.1 c | 2.2 ± 0.1 a | 2.8 ± 0.0 b | 0.4 ± 0.0 b | 3.0 ± 0.0 c | 0.1 ± 0.0 | 2.1 ± 0.1 c |
| F. agrimony | 23.9 ± 0.0 a | 11.1 ± 0.1 a | 10.2 ± 0.1 a | 0.9 ± 0.1 a | 2.0 ± 0.1 b | 3.6 ± 0.4 a | 0.4 ± 0.0 b | 3.4 ± 0.0 b | 0.1 ± 0.0 | 3.4 ± 0.0 a |
| mg/100 g DM | Great Burnet | Wood Avens | Fragrant Agrimony |
|---|---|---|---|
| Flavan-3-ols | 0 ± 0 c | 73 ± 10 b | 3909 ± 25 a |
| Ellagitannins | 12,947 ± 90 a | 9689 ± 302 b | 5972 ± 250 c |
| Hydroxycinnamic acids | 129 ± 20 b | 739 ± 35 a | 125 ± 32 b |
| Ellagic acid | 622 ± 30 a | 84 ± 20 b | 0 ± 0 c |
| Flavonols | 835 ± 14 a | 54 ± 14 b | 789 ± 60 a |
| SUM | 14,554 ± 122 a | 10,857 ± 132 b | 13,933 ± 101 a |
| Tentative Name | RT | MS/MS, m/z | [M–H]− | References |
|---|---|---|---|---|
| Neochlorogenic acid | 9.1 | 191.06 | 353.09 | [19] standard |
| Chlorogenic acid | 10.8 | 191.06 | 353.09 | [19] standard |
| Galloyl-bis-HHDP glucose isomer | 11.8 | 467.03; 783.06 | 935.07 z = 1 | [30,31] |
| Lambertianin C isomer | 29.2 | 783.06; 934.06; 1401.59, | 1869.45 z = 3 | [30,31] |
| Sanguiin H6 | 30.3 | 309.06; 934.06 | 1870.13 z = 1 | [19,24,31,32] |
| Lambertianin C isomer | 31.4 | 783.06; 934.06; 1567.13 | 1869.13 z = 1 | [30,31] |
| Galloyl-bis-HHDP glucose isomer | 32.0 | 783.06; 433.04; 301.06 | 935.07 z = 1 | [24,30,31] |
| Ellagic acid pentoside isomer | 35.9 | 301.06 | 433.04 | [24,31] |
| Ellagic acid | 38.2 | 301.06 | [24,31] standard | |
| Ellagic acid pentoside isomer | 36.7 | 301.06 | 433.04 | [24,31] |
| Quercetin glucoside | 39.0 | 301.04 | 463.03 | [19] standard |
| Quercetin glucuronide | 39.5 | 301.04 | 477.06 | [24,31] standard |
| Quercetin rhamnoside | 42.0 | 301.05 | 447.09 | standard |
| Tentative Name | RT | MS/MS, m/z | [M–H]− | References |
|---|---|---|---|---|
| Galloyl-bis-HHDP glucose isomer | 11.8 | 467.01; 783.06 | 935.07 z = 1 | [1,30,31] |
| p-Coumaric acid | 20.5 | 341.09 z = 1 | ||
| p-Coumaric acid | 21.1 | 341.09 z = 1 | ||
| o-caffeoylquinic acid | 24.7 | 353.06 z = 1 | ||
| Gemin A | 32.9 | 1764.65; 1569.15, 937.10; 783.07; 613.05; 465.07; 301.06 | 1871.01 z = 1 | [33] |
| Ellagic acid pentoside isomer | 35.6 | 301.06 | 433.04 z = 1 | [33] |
| Quercetin glucoside | 39.0 | 301.04 | 463.03 z = 1 | [33] standard |
| Quercetin glucuronide | 39.5 | 301.04 | 477.06 z = 1 | [33] standard |
| Kaempferol-3-O-glucoside | 41.7 | 285.01 | 463.03 z = 1 | [33] standard |
| Tentative Name | RT | MS/MS, m/z | [M-H]− | References |
|---|---|---|---|---|
| β-peduculagin | 7.8 | 613.01; 481.01; 301.06 | 783.07 z = 1 | [22] |
| α-peduculagin | 9.4 | 613.01; 481.01; 301.06 | 783.07 z = 1 | [22] |
| o-caffeoylquinic acid | 17.3 | 353.06 z = 1 | [22] | |
| Epicatechin | 21.5 | 289.07 z = 1 | [22] | |
| Catechin | 23.8 | 289.07 z = 1 | [22] | |
| Agrimoniin | 36.02 | 1647.58; 1567.15; 1265.14; 1085.08; 935.08; 738.07; 633.07; 613.05; 301.06 | [934.08] z = 2 | [22] standard |
| Quercetin-3-O-rhamnoglucoside | 37.7 | 301.05 | 609.15 z = 1 | [22] standard |
| Quercetin-3-O-galactoside | 38.0 | 301.04 | 463.09 z = 1 | [22] standard |
| Kaempferol-3-O-glucoside | 39.3 | 285.04 | 447.04 z = 1 | [22] standard |
| Luteolin-7-O-glucuronide | 39.8 | 285.02 | 461.07 z = 1 | [22] standard |
| Apigenin 7-O-glucuronide | 42.8 | 269.01 | 445.08 z = 1 | [22] standard |
| Kaemferol-3-O-β-d-(6′′-E-p-coumaryl)-glucopyranoside | 45.9 | 285.01 | 593.13 z = 1 | [22] standard |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosmala, M.; Milala, J.; Karlińska, E. Ellagitannins and Other Polyphenols Along with Dietary Components of the Rosaceae Medicinal Plants. Molecules 2025, 30, 4574. https://doi.org/10.3390/molecules30234574
Kosmala M, Milala J, Karlińska E. Ellagitannins and Other Polyphenols Along with Dietary Components of the Rosaceae Medicinal Plants. Molecules. 2025; 30(23):4574. https://doi.org/10.3390/molecules30234574
Chicago/Turabian StyleKosmala, Monika, Joanna Milala, and Elżbieta Karlińska. 2025. "Ellagitannins and Other Polyphenols Along with Dietary Components of the Rosaceae Medicinal Plants" Molecules 30, no. 23: 4574. https://doi.org/10.3390/molecules30234574
APA StyleKosmala, M., Milala, J., & Karlińska, E. (2025). Ellagitannins and Other Polyphenols Along with Dietary Components of the Rosaceae Medicinal Plants. Molecules, 30(23), 4574. https://doi.org/10.3390/molecules30234574

