2-(Methoxycarbonyl)thiophen-3-yl-diazonium Salts: Efficient Precursors for the Formation of C–C Bonds in Thiophene-Containing Heterocyclic Systems
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thakur, S.; Kumar, D.; Jaiswal, S.; Goel, K.K.; Rawat, P.; Srivastava, V.; Dhiman, S.; Jadhav, H.R.; Dwivedi, A.R. Medicinal chemistry-based perspectives on thiophene and its derivatives: Exploring structural insights to discover plausible druggable leads. RSC Med. Chem. 2025, 16, 481–510. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.; Verma, P.K. Therapeutic importance of synthetic thiophene. Chem. Cent. J. 2018, 12, 137. [Google Scholar] [CrossRef] [PubMed]
- Hamad, H. The anti-cancer effectiveness of some heterocyclic compounds containing sulfur atom. Results Chem. 2025, 15, 102182. [Google Scholar] [CrossRef]
- da Cruz, R.M.D.; Mendonça-Junior, F.J.B.; de Mélo, N.B.; Scotti, L.; de Araújo, R.S.A.; de Almeida, R.N.; de Moura, R.O. Thiophene-Based Compounds with Potential Anti-Inflammatory Activity. Pharmaceuticals 2021, 14, 692. [Google Scholar] [CrossRef]
- Keddis, P.M.; My Tu, T.K.; Scherer, H.; Kany, A.M.; Hafez, D.E.; Darwish, S.S.; Abadi, A.H.; Hirsch, A.K.H.; Engel, M.; Hamed, M.M. From Dyrk1A inhibitors to a novel class of antiviral agents: Targeting Enterovirus EV-A71 with 2-aryl-substituted thiophene scaffolds. Eur. J. Med. Chem. 2025, 287, 117348. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, C.; Gao, X.; Wang, C.; Li, Y.; Yang, C.; Ma, E.; Cheng, M. Design, synthesis, and biological evaluation of novel 3-naphthylthiophene derivatives as potent SIRT2 inhibitors for the treatment of myocardial fibrosis. Bioorg. Chem. 2025, 154, 108033. [Google Scholar] [CrossRef]
- Fernandes, R.S.; Shetty, N.S.; Mahesha, P.; Gaonkar, S.L. A Comprehensive Review on Thiophene Based Chemosensors. J. Fluoresc. 2022, 32, 19–56. [Google Scholar] [CrossRef]
- Yang, N.; Zhang, S.; Cui, Y.; Wang, J.; Cheng, S.; Hou, J. Molecular design for low-cost organic photovoltaic materials. Nat. Rev. Mater. 2025, 10, 404–424. [Google Scholar] [CrossRef]
- Anan, J.; Fosu, E.A.; Obuah, C.; Ainooson, M.K.; Aniagyei, A.; Hamenu, L.; Oppong, A.; Muller, A. A DFT and TD-DFT studies of the photosensitizing capabilities of thiophene-based dyes. Comput. Theor. Chem. 2024, 1237, 114633. [Google Scholar] [CrossRef]
- Sharma, S.J.; Sekar, N. The role of secondary donor in thiophene-based azo dyes for dye-sensitized solar cells and non-linear optics. J. Photochem. Photobiol. A Chem. 2024, 455, 115770. [Google Scholar] [CrossRef]
- Zhu, C.; Han, J.; Liang, F.; Zhu, M.; Zhang, G.; James, T.D.; Wang, Z. Advances in multi-target fluorescent probes for imaging and analyzing biomarkers in Alzheimer’s disease. Coord. Chem. Rev. 2024, 517, 216002. [Google Scholar] [CrossRef]
- Bonafoux, D.; Bonar, S.; Christine, L.; Clare, M.; Donnelly, A.; Guzova, J.; Kishore, N.; Lennon, P.; Libby, A.; Mathialagan, S. Inhibition of IKK-2 by 2-[(aminocarbonyl)amino]-5-acetylenyl-3-thiophenecarboxamides. Bioorg. Med. Chem. Lett. 2005, 15, 2870–2875. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Liu, L.; Li, M.; Hu, X.; Zhang, X.; Xia, W.; Wang, Z.; Song, X.; Huang, Y.; Dong, Z. Development of 3-arylaminothiophenic-2-carboxylic acid derivatives as new FTO inhibitors showing potent antileukemia activities. Eur. J. Med. Chem. 2025, 289, 117444. [Google Scholar] [CrossRef] [PubMed]
- Sinha, N.; Karche, N.P.; Verma, M.K.; Walunj, S.S.; Nigade, P.B.; Jana, G.; Kurhade, S.P.; Hajare, A.K.; Tilekar, A.R.; Jadhav, G.R. Discovery of Novel, Potent, Brain-Permeable, and Orally Efficacious Positive Allosteric Modulator of α7 Nicotinic Acetylcholine Receptor [4-(5-(4-Chlorophenyl)-4-methyl-2-propionylthiophen-3-yl)benzenesulfonamide]: Structure–Activity Relationship and Preclinical Characterization. J. Med. Chem. 2020, 63, 944–960. [Google Scholar] [CrossRef]
- Liu, H.; El-Salfiti, M.; Lautens, M. Expeditious Synthesis of Tetrasubstituted Helical Alkenes by a Cascade of Palladium-Catalyzed C–H Activations. Angew. Chem. Int. Ed. 2012, 51, 9846–9850. [Google Scholar] [CrossRef]
- Kumar, P.; Panhotra, S.; Muskan; Changotra, A.; Lata, S.; Mehta, A.; Maitra, T.; Gupta, P. Palladium immobilized on functionalized halloysite: A robust catalyst for ligand free Suzuki–Miyaura cross coupling and synthesis of pyrano [2,3-c]pyrazole motifs via four component cascade reaction and their in-silico antitubercular screening. Appl. Catal. A 2025, 689, 120003. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, C.; Zhou, L.; Lou, Y.; Yang, K.; Song, Q. Ni-Catalyzed Radical-Promoted Defluoroalkylborylation of Trifluoromethyl Alkenes To Access gem-Difluorohomoallylic Boronates. Org. Lett. 2022, 24, 2446–2451. [Google Scholar] [CrossRef]
- Dutta, S.; Maity, A.; Yang, S.; Mallick, R.K.; Gogoi, M.P.; Gandon, V.; Sahoo, A.K. Synthetic Strategy for Unsymmetrical α-Fluoro-α′-aryl Ketones. Org. Lett. 2025, 27, 808–813. [Google Scholar] [CrossRef]
- Fredrich, S.; Bonasera, A.; Valderrey, V.; Hecht, S. Sensitive Assays by Nucleophile-Induced Rearrangement of Photoactivated Diarylethenes. J. Am. Chem. Soc. 2018, 140, 6432–6440. [Google Scholar] [CrossRef]
- Luo, N.; Liu, L.; Luo, J.; Zhou, Z.; Sun, C.L.; Hua, X.; Luo, L.; Wang, J.; Geng, H.; Shao, X. Alternating Donor-Acceptor Ladder-Type Heteroarene for Efficient Photothermal Conversion via Boosting Non-Radiative Decay. Angew. Chem. Int. Ed. 2025, 64, e202418047. [Google Scholar] [CrossRef]
- Barale, M.; Turcas, I.; Gousseau, V.; Escadeillas, M.; Caytan, E.; Taupier, G.; Molard, Y.; Fihey, A.; Boixel, J. Photo-modulation of the two-photon excited fluorescence of dithienylethene bis-(1-pyrenyl) compounds: An experimental and theoretical study. Dyes Pigm. 2025, 232, 112473. [Google Scholar] [CrossRef]
- Conboy, G.; Taylor, R.G.D.; Findlay, N.J.; Kanibolotsky, A.L.; Inigo, A.R.; Ghosh, S.S.; Ebenhoch, B.; Jagadamma, L.K.; Thalluri, G.K.V.V.; Sajjad, M.T. Novel 4,8-benzobisthiazole copolymers and their field-effect transistor and photovoltaic applications. J. Mater. Chem. C 2017, 5, 11927–11936. [Google Scholar] [CrossRef]
- Malamas, M.S.; Erdei, J.; Gunawan, I.; Barnes, K.; Hui, Y.; Johnson, M.; Robichaud, A.; Zhou, P.; Yan, Y.; Solvibile, W. New pyrazolyl and thienyl aminohydantoins as potent BACE1 inhibitors: Exploring the S2′ region. Bioorg. Med. Chem. Lett. 2011, 21, 5164–5170. [Google Scholar] [CrossRef] [PubMed]
- Salamoun, J.M.; McQueeney, K.E.; Patil, K.; Geib, S.J.; Sharlow, E.R.; Lazo, J.S.; Wipf, P. Photooxygenation of an amino-thienopyridone yields a more potent PTP4A3 inhibitor. Org. Biomol. Chem. 2016, 14, 6398–6402. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, A.; Alqahtani, A.M.; Mojally, M.; Qarah, A.F.; Alessa, A.H.; Alatawi, O.M.; Attar, R.M.S.; El-Metwaly, N.M. Synthesis of new methylthiourea-thiophene, -thiazole, and -pyrazole conjugates: Molecular modelling and docking studies as antimicrobial agents. J. Mol. Struct. 2024, 1305, 137833. [Google Scholar] [CrossRef]
- Alalawy, A.I.; Alatawi, K.; Alenazi, N.A.; Qarah, A.F.; Alatawi, O.M.; Alnoman, R.B.; Alharbi, A.; El-Metwaly, N.M. Synthesis, molecular modeling, and anticancer activity of new thiophene and thiophene-pyrazole analogues incorporating benzene-sulfonamide moiety as carbonic anhydrase isozymes (CA-IX and CA-XII). J. Mol. Struct. 2024, 1295, 136609. [Google Scholar] [CrossRef]
- Bolli, M.H.; Velker, J.; Müller, C.; Mathys, B.; Birker, M.; Bravo, R.; Bur, D.; de Kanter, R.; Hess, P.; Kohl, C. Novel S1P1 Receptor Agonists—Part 2: From Bicyclo [3.1.0]hexane-Fused Thiophenes to Isobutyl Substituted Thiophenes. J. Med. Chem. 2014, 57, 78–97. [Google Scholar] [CrossRef]
- Bolli, M.H.; Müller, C.; Mathys, B.; Abele, S.; Birker, M.; Bravo, R.; Bur, D.; Hess, P.; Kohl, C.; Lehmann, D. Novel S1P1 Receptor Agonists—Part 1: From Pyrazoles to Thiophenes. J. Med. Chem. 2013, 56, 9737–9755. [Google Scholar] [CrossRef]
- Lee, H.S.; Kim, S.H.; Kim, J.N. Regioselective synthesis of poly-substituted thiophenes from Baylis–Hillman adducts. Tetrahedron Lett. 2009, 50, 6480–6483. [Google Scholar] [CrossRef]
- Fraňová, P.; Šafář, P.; Moncoľ, J.; Žídeková, I.; Daïch, A.; Marchalín, Š. Diastereoselective Entry to Novel Aminoindolizidines with Fused Furan, Thiophene, and Pyrrole Ring Starting from L-Glutamic Acid. Eur. J. Org. Chem. 2025, 28, e202401219. [Google Scholar] [CrossRef]
- Chen, F.; Lai, S.-Q.; Zhu, F.-F.; Meng, Q.; Jiang, Y.; Yu, W.; Han, B. Cu-Catalyzed Radical Cascade Annulations of Alkyne-Tethered N-Alkoxyamides with Air: Facile Access to Isoxazolidine/1,2-Oxazinane-Fused Isoquinolin-1(2H)-ones. ACS Catal. 2018, 8, 8925–8931. [Google Scholar] [CrossRef]
- Jones, S.A.; Botello, J.A.; Singh, J.; Damstedt, G.L.; Payne, J.C.; Griffin, E.D.; Osayawe, O.J.; Castle, S.L. Microwave-Promoted Synthesis of 1-Tetralones via Iminyl Radical-Mediated 1,5-Hydrogen Atom Transfer. J. Org. Chem. 2025, 90, 2547–2552. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; An, Z.; Qi, Z.; Zhuang, D.; Chang, A.; Yang, Y.; Yan, R. Ring-opening/annulation reaction of cyclopropyl ethanols: Concise access to thiophene aldehydes via C–S bond formation. Org. Chem. Front. 2019, 6, 3705–3709. [Google Scholar] [CrossRef]
- Sathishkannan, G.; Srinivasan, K. [3+3] Annulation of donor–acceptor cyclopropanes with mercaptoacetaldehyde: Application to the synthesis of tetrasubstituted thiophenes. Chem. Commun. 2014, 50, 4062–4064. [Google Scholar] [CrossRef]
- Chen, D.; Wan, J.-P.; Liu, Y. Rh-Catalyzed and Self-Directed Aromatic C–H Activation of Enaminones to Divergent Alkenylated and Annulated Compounds. Org. Lett. 2025, 27, 2371–2376. [Google Scholar] [CrossRef]
- Filipski, K.J.; Martinez-Alsina, L.A.; Reese, M.R.; Evrard, E.; Buzon, L.M.; Cameron, K.O.; Zhang, Y.; Coffman, K.J.; Bradow, J.; Kormos, B.L. Discovery of First Branched-Chain Ketoacid Dehydrogenase Kinase (BDK) Inhibitor Clinical Candidate PF-07328948. J. Med. Chem. 2025, 68, 2466–2482. [Google Scholar] [CrossRef]
- Kim, J.; Jung, Y.K.; Kim, C.; Shin, J.S.; Scheers, E.; Lee, J.-Y.; Han, S.B.; Lee, C.-K.; Neyts, J.; Ha, J.-D. A Novel Series of Highly Potent Small Molecule Inhibitors of Rhinovirus Replication. J. Med. Chem. 2017, 60, 5472–5492. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Batra, S. Direct Transformation of Arylamines to Aryl Halides via Sodium Nitrite and N-Halosuccinimide. Chemistry 2018, 24, 14622–14626. [Google Scholar] [CrossRef]
- Stuhr, R.; Jacobi von Wangelin, A. Organic Photoredox Carbonylation of Arenediazonium under Mild Conditions. Synlett 2024, 35, 1889–1892. [Google Scholar] [CrossRef]
- Song, S.; Peng, M.; Zhang, Z.; Hu, H.; Wei, Y.; Yan, S.J.; Wang, Y.; Yu, F. Divergent Synthesis of 2-Chromonyl-3-hydrazono-chromones and 2-Alkoxy-3-hydrazono-chromones through Switchable Annulation Reactions of o-Hydroxyphenylenaminones with Aryldiazonium Salts. Org. Lett. 2024, 26, 4980–4985. [Google Scholar] [CrossRef]
- Liu, Q.-H.; Kang, S.-L.; Cui, Z.-S.; Liu, Y.-H.; Zhang, M.; Zhang, Z.-H. Visible light-driven C–H arylation of heteroarenes with aryl diazonium salts in water catalyzed by a Z-scheme CuInS2/K-C3N4 heterojunction. Green Chem. 2024, 26, 4803–4810. [Google Scholar] [CrossRef]
- Hari, D.P.; Schroll, P.; König, B. Metal-Free, Visible-Light-Mediated Direct C–H Arylation of Heteroarenes with Aryl Diazonium Salts. J. Am. Chem. Soc. 2012, 134, 2958–2961. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yang, Z.; Wang, Z.; Xu, C.; Huang, L.; Wang, S.; Zhang, H.; Lei, A. Electrochemical Arylation of Electron-Deficient Arenes through Reductive Activation. Angew. Chem. Int. Ed. 2019, 58, 15747–15751. [Google Scholar] [CrossRef]
- Melchior de Oliveira Leão, L.P.; de Oliveira, V.C.; Duarte Chorro, T.H.; Gorbatov, S.A.; Duarte Correia, C.R. Second-Generation One-Pot Enantioselective Heck-Matsuda Arylations of Unactivated Olefins Directly from Anilines and Nitroarenes. Adv. Synth. Catal. 2025, 367, e202500024. [Google Scholar] [CrossRef]
- Herrera, C.L.; Oliveira, R.L.; Silva, R.C.; Correia, C.R.D.; Pastre, J.C. Enantioselective Heterogeneous Heck–Matsuda Reaction with Polymer-Supported PyOx Ligands. Synlett 2024, 35, 1135–1140. [Google Scholar] [CrossRef]
- Krause, A.; Sperlich, E.; Schmidt, B. Matsuda–Heck arylation of itaconates: A versatile approach to heterocycles from a renewable resource. Org. Biomol. Chem. 2021, 19, 4292–4302. [Google Scholar] [CrossRef]
- Barbero, M.; Dughera, S. Gold catalyzed Heck-coupling of arenediazonium o-benzenedisulfonimides. Org. Biomol. Chem. 2018, 16, 295–301. [Google Scholar] [CrossRef]
- Huang, J.; Wang, C.; Wang, X.; Yuan, H.; Li, H.; Zhu, M.; Hu, Z.; Han, Q.-S.; Shi, M. Photoinduced radical sulfur dioxide insertion with asymmetric cyclization of alkenes: Accessing β-chiral sulfones bearing S-stereocentric cyclic sulfinamides. Sci. China Chem. 2025, 68, 257–263. [Google Scholar] [CrossRef]
- Antenucci, A.; Barbero, M.; Dughera, S.; Ghigo, G. Copper catalysed Gomberg-Bachmann-Hey reactions of arenediazonium tetrafluoroborates and heteroarenediazonium o-benzenedisulfonimides. Synthetic and mechanistic aspects. Tetrahedron 2020, 76, 131632. [Google Scholar] [CrossRef]
- Fu, Y.; Guo, L.-L.; Chen, X.; Chen, H.; Liu, J.-J.; Li, F.-R.; Xiao, C.-Q.; Du, Z. Pd/Cu Co-Catalyzed ortho-Arylation of Aryl Iodides via Radical Intermediates with Aryl Diazonium Salts. Adv. Synth. Catal. 2023, 365, 4248–4255. [Google Scholar] [CrossRef]
- Li, J.; Song, B.; Cai, M. Photosensitizer-free, visible light-mediated heterogeneous gold-catalyzed cross-coupling of aryldiazonium salts with allyltrimethylsilane. Synth. Commun. 2024, 54, 478–490. [Google Scholar] [CrossRef]
- Song, B.; Li, J.; Hao, W.; Cai, M. External oxidant-free, ligand-assisted heterogeneous gold-catalyzed C(sp2)–C(sp) cross-coupling of aryldiazonium salts with terminal alkynes. Catal. Sci. Technol. 2024, 14, 4354–4365. [Google Scholar] [CrossRef]
- Li, J.; Chen, J.; Zhu, H.; Cai, M. Photosensitizer-free, visible light-mediated recyclable gold-catalyzed cross-coupling of aryldiazonium salts and alkynyltrimethylsilanes. New J. Chem. 2023, 47, 14894–14905. [Google Scholar] [CrossRef]
- Gao, G.; Han, C.-J.; Liu, Q.-H.; Mo, L.-P.; Zhang, Z.-H. Photocatalytic synthesis of aryltriazenes by CulnS2/K-C3N4 heterojunctions. Mol. Catal. 2025, 572, 114764. [Google Scholar] [CrossRef]
- Kindt, S.; Heinrich, M.R. Recent Advances in Meerwein Arylation Chemistry. Synthesis 2016, 48, 1597–1606. [Google Scholar] [CrossRef]
- Mo, F.; Qiu, D.; Zhang, L.; Wang, J. Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chem. Rev. 2021, 121, 5741–5829. [Google Scholar] [CrossRef] [PubMed]
- Ostapiuk, Y.V.; Barabash, O.V.; Ostapiuk, M.Y.; Goreshnik, E.; Obushak, M.D.; Schmidt, A. Thiocyanatoarylation of Methyl Vinyl Ketone under Meerwein Conditions for the Synthesis of 2-Aminothiazole-Based Heterocyclic Systems. Org. Lett. 2022, 24, 4575–4579. [Google Scholar] [CrossRef]
- Barabash, O.V.; Ostapiuk, M.Y.; Kravets, M.; Obushak, M.D.; Schmidt, A.; Ostapiuk, Y.V. Pyrazol-3-yldiazonium Salts as Key Reagents for C–C Bond Formation and Pyrazole-Containing Heterocycle Synthesis. Synthesis 2025, 57, 2351–2362. [Google Scholar] [CrossRef]
- Barabash, O.V.; Ostapiuk, Y.V.; Ostapiuk, M.Y.; Herzberger, C.; Kravets, M.; Schmidt, A. Pyrazolyldiazonium Salts in the Synthesis of 4-Amino-1,3′-bipyrazoles. Eur. J. Org. Chem. 2024, 27, e202301049. [Google Scholar] [CrossRef]
- Batsyts, S.; Shehedyn, M.; Goreshnik, E.A.; Obushak, M.D.; Schmidt, A.; Ostapiuk, Y.V. 2-Bromo-2-chloro-3-arylpropanenitriles as C-3 Synthons for the Synthesis of Functionalized 3-Aminothiophenes. Eur. J. Org. Chem. 2019, 48, 7842. [Google Scholar] [CrossRef]
- Ostapiuk, Y.V.; Shehedyn, M.; Barabash, O.V.; Demydchuk, B.; Batsyts, S.; Herzberger, C.; Schmidt, A. Bromoarylation of Methyl 2-Chloroacrylate under Meerwein Conditions for the Synthesis of Substituted 3-Hydroxythiophenes. Synthesis 2022, 54, 732–740. [Google Scholar] [CrossRef]
- Hreniukh, V.P.; Finiuk, N.S.; Shalai, Y.R.; Manko, B.O.; Manko, B.V.; Ostapiuk, Y.V.; Kulachkovskyy, O.R.; Obushak, M.D.; Stoika, R.S.; Babsky, A.M. Effects of thiazole derivatives on intracellular structure and functions in murine lymphoma cells. Ukr. Biochem. J. 2020, 92, 121–130. [Google Scholar] [CrossRef]
- Finiuk, N.S.; Ivasechko, I.I.; Klyuchivska, O.Y.; Ostapiuk, Y.V.; Hreniukh, V.P.; Shalai, Y.R.; Matiychuk, V.S.; Obushak, M.D.; Babsky, A.M.; Stoika, R.S. Apoptosis induction in human leukemia cells by novel 2-amino-5-benzylthiazole derivatives. Ukr. Biochem. J. 2019, 91, 29–39. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, X.; Wu, P.; Yu, Z. Photoredox-Catalyzed C–H Arylation of Internal Alkenes to Tetrasubstituted Alkenes: Synthesis of Tamoxifen. Org. Lett. 2017, 19, 6248–6251. [Google Scholar] [CrossRef]
- Felipe-Blanco, D.; Gonzalez-Gomez, J.C. Salicylic Acid-Catalyzed Arylation of Enol Acetates with Anilines. Adv. Synth. Catal. 2018, 360, 2773–2778. [Google Scholar] [CrossRef]
- Shyyka, O.Y.; Martyak, R.L.; Tupychak, M.A.; Pokhodylo, N.T.; Obushak, M.D. Facile synthetic route to benzo[c]chromenones and thieno [2,3-c]chromenones. Synth. Commun. 2017, 48, 2399–2405. [Google Scholar] [CrossRef]
- Felipe-Blanco, D.; Gonzalez-Gomez, J.C. Metal-Free Arylation-Lactonization Sequence of γ-Alkenoic Acids Using Anilines as Aryl Radical Precursors. Eur. J. Org. Chem. 2019, 2019, 7735–7744. [Google Scholar] [CrossRef]
- Yao, C.-J.; Sun, Q.; Rastogi, N.; König, B. Intermolecular Formyloxyarylation of Alkenes by Photoredox Meerwein Reaction. ACS Catal. 2015, 5, 2935–2938. [Google Scholar] [CrossRef]
- Khan, R.K.M.; Zhao, Y.; Scully, T.D.; Buchwald, S.L. Catalytic Arylhydroxylation of Dehydroalanine in Continuous Flow for Simple Access to Unnatural Amino Acid. Chemistry 2018, 24, 15215–15218. [Google Scholar] [CrossRef]
- Raduán, M.; Padrosa, J.; Pla-Quintana, A.; Parella, T.; Roglans, A. Functionalization of the 3-Position of Thiophene and Benzo[b]thiophene Moieties by Palladium-Catalyzed C–C Bond Forming Reactions using Diazonium Salts. Adv. Synth. Catal. 2011, 353, 2003–2012. [Google Scholar] [CrossRef]
- Hu, Z.; Belitz, F.; Zhang, G.; Papp, F.; Gooßen, L.J. Ru-Catalyzed (E)-Specific ortho-C–H Alkenylation of Arenecarboxylic Acids by Coupling with Alkenyl Bromides. Org. Lett. 2021, 23, 3541–3545. [Google Scholar] [CrossRef] [PubMed]
- Obushak, M.D.; Matiychuk, V.S.; Turytsya, V.V. A new approach to the synthesis of 3,4-dihydroisocoumarin derivatives. Tetrahedron Lett. 2009, 50, 6112–6115. [Google Scholar] [CrossRef]
- Turytsya, V.V.; Ostapiuk, Y.V.; Matiychuk, V.V.; Obushak, M.D. Synthesis of 3-Aryl/methoxycarbonyl-3,4-dihydroisocoumarin-6-carboxylic Acid Derivatives. J. Heterocycl. Chem. 2014, 51, 1898–1901. [Google Scholar] [CrossRef]
- Mandal, A.; Bera, R.; Baidya, M. Regioselective C–H Alkenylation and Unsymmetrical Bis-olefination of Heteroarene Carboxylic Acids with Ruthenium Catalysis in Water. J. Org. Chem. 2021, 86, 62–73. [Google Scholar] [CrossRef]
- González-Gallardo, N.; Saavedra, B.; Guillena, G.; Ramón, D.J. A jackpot C–H activation protocol using simple ruthenium catalyst in deep eutectic solvents. Green Chem. 2022, 24, 4941–4951. [Google Scholar] [CrossRef]
- Ueyama, T.; Mochida, S.; Fukutani, T.; Hirano, K.; Satoh, T.; Miura, M. Ruthenium-Catalyzed Oxidative Vinylation of Heteroarene Carboxylic Acids with Alkenes via Regioselective C−H Bond Cleavage. Org. Lett. 2011, 13, 706–708. [Google Scholar] [CrossRef]
- Suganuma, M.; Kitagawa, D.; Hamatani, S.; Kobatake, S. Effect of substitution position of aryl groups on the thermal back reactivity of aza-diarylethene photoswitches and prediction by density functional theory. Beilstein J. Org. Chem. 2025, 21, 242–252. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, H.; Li, M.; Wu, D.; Tang, H.; Zhang, X.; Huang, M.; Zhao, B. Tuning molecular aggregation to enhance photovoltaic performance of polymers by isomerizing benzodithiophene moiety. Synth. Met. 2025, 310, 117783. [Google Scholar] [CrossRef]
- Wannberg, J.; Gising, J.; Henriksson, M.; Duy Vo, D.; Sävmarker, J.; Sallander, J.; Gutiérrez-de-Terán, H.; Larsson, J.; Hamid, S.; Ablahad, H. N-(Heteroaryl)thiophene sulfonamides as angiotensin AT2 receptor ligands. Eur. J. Med. Chem. 2024, 265, 116122. [Google Scholar] [CrossRef]
- Hampton, C.S.; Sitaula, S.; Billon, C.; Haynes, K.; Avdagic, A.; Wanninayake, U.; Adeyemi, C.M.; Chatterjee, A.; Griffett, K.; Banerjee, S. Rational design of bioorthogonally activatable PROTAC for tumor-targeted protein degradation. J. Med. Chem. 2023, 66, 14843–14852. [Google Scholar] [CrossRef]
- Fan, H.; Zhou, Z.; Yu, D.; Sun, J.; Wang, L.; Jia, Y.; Tian, J.; Mi, W.; Sun, H. Selective degradation of BRD4 suppresses lung cancer cell proliferation using GSH-responsive PROTAC precursors. Bioorg. Chem. 2023, 140, 106793. [Google Scholar] [CrossRef]
- Karnik, K.S.; Sarkate, A.P.; Lokwani, D.K.; Tiwari, S.V.; Azad, R.; Wakte, P.S. Molecular dynamic simulations based discovery and development of thiazolidin-4-one derivatives as EGFR inhibitors targeting resistance in non-small cell lung cancer (NSCLC). J. Biomol. Struct. Dyn. 2022, 41, 4696–4710. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Fang, L.; Cai, J.; Fang, S.; Zhu, H.; Lin, F.; Cai, X. Design and discovery of novel heteroaryl substituted pregnenolone derivatives as potent anti-neuroinflammatory agents targeting LPS-stimulated BV-2 microglial cells. Steroids 2025, 216, 109588. [Google Scholar] [CrossRef] [PubMed]
- Nazeer, W.; Qamar, M.U.; Rasool, N.; Taibi, M.; Salamatullah, A.M. Synthesis of 2-Ethylhexyl 5-Bromothiophene-2-Carboxylates; Antibacterial Activities against Salmonella Typhi, Validation via Docking Studies, Pharmacokinetics, and Structural Features Determination through DFT. Molecules 2024, 29, 3005. [Google Scholar] [CrossRef] [PubMed]
- Romagnoli, R.; Baraldi, P.G.; Remusat, V.; Carrion, M.D.; Cara, C.L.; Preti, D.; Fruttarolo, F.; Pavani, M.G.; Tabrizi, M.A.; Tolomeo, M. Synthesis and Biological Evaluation of 2-(3‘,4‘,5‘-Trimethoxybenzoyl)-3-Amino 5-Aryl Thiophenes as a New Class of Tubulin Inhibitors. J. Med. Chem. 2006, 49, 6425–6428. [Google Scholar] [CrossRef]
- Hampton, C.S.; Sitaula, S.; Billon, C.; Haynes, K.; Avdagic, A.; Wanninayake, U.; Adeyemi, C.M.; Chatterjee, A.; Griffett, K.; Banerjee, S. Development and pharmacological evaluation of a new chemical series of potent pan-ERR agonists, identification of SLU-PP-915. Eur. J. Med. Chem. 2023, 258, 115582. [Google Scholar] [CrossRef]
- Wan, Z.K.; Lee, J.; Xu, W.; Erbe, D.V.; Joseph-McCarthy, D.; Follows, B.C.; Zhang, Y.L. Monocyclic thiophenes as protein tyrosine phosphatase 1B inhibitors: Capturing interactions with Asp48. Bioorg. Med. Chem. Lett. 2006, 16, 4941–4945. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostapiuk, Y.V.; Barabash, O.V.; Ostapiuk, M.Y.; Kravets, M.; Schmidt, A.; Obushak, M.D. 2-(Methoxycarbonyl)thiophen-3-yl-diazonium Salts: Efficient Precursors for the Formation of C–C Bonds in Thiophene-Containing Heterocyclic Systems. Molecules 2025, 30, 3758. https://doi.org/10.3390/molecules30183758
Ostapiuk YV, Barabash OV, Ostapiuk MY, Kravets M, Schmidt A, Obushak MD. 2-(Methoxycarbonyl)thiophen-3-yl-diazonium Salts: Efficient Precursors for the Formation of C–C Bonds in Thiophene-Containing Heterocyclic Systems. Molecules. 2025; 30(18):3758. https://doi.org/10.3390/molecules30183758
Chicago/Turabian StyleOstapiuk, Yurii V., Oksana V. Barabash, Mary Y. Ostapiuk, Mykola Kravets, Andreas Schmidt, and Mykola D. Obushak. 2025. "2-(Methoxycarbonyl)thiophen-3-yl-diazonium Salts: Efficient Precursors for the Formation of C–C Bonds in Thiophene-Containing Heterocyclic Systems" Molecules 30, no. 18: 3758. https://doi.org/10.3390/molecules30183758
APA StyleOstapiuk, Y. V., Barabash, O. V., Ostapiuk, M. Y., Kravets, M., Schmidt, A., & Obushak, M. D. (2025). 2-(Methoxycarbonyl)thiophen-3-yl-diazonium Salts: Efficient Precursors for the Formation of C–C Bonds in Thiophene-Containing Heterocyclic Systems. Molecules, 30(18), 3758. https://doi.org/10.3390/molecules30183758