Nitrogen Monoxide Releasing Nitric Ester Derivatives of Ibuprofen and Naproxen as COX Inhibitors, Anti-Inflammatory and Hypolipidemic Compounds
Abstract
1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. In Vitro Studies
2.2.1. Inhibition of Cyclooxygenase (COX)-1 and-2 Activity
2.2.2. Inhibition of Lipoxygenase (LOX) Activity
2.2.3. General Remarks on Enzyme Inhibition Assays
2.2.4. Nitrogen Monoxide Release
2.2.5. Effect on Lipid Peroxidation
2.3. In Vivo Studies
2.3.1. Effect on Acute Inflammation Produced by Carrageenan Administration
2.3.2. Effect on Lipidemic Indices in Hyperlipidemic Rats
2.4. In Silico Study
3. Materials and Methods
3.1. General
3.2. Synthesis
3.2.1. Synthesis of Intermediate Compounds
3.2.2. General Method for the Synthesis of the Final Compounds 5–9:
3.3. Biological Experiments
3.3.1. In Vitro Assays
- Inhibition of Cyclooxygenase (COX)-1 and -2 Activity
- Inhibition of Lipoxygenase (LOX) Activity
- Nitrogen Monoxide Release
3.3.2. In Vivo Experiments
- Effect on Acute Inflammation Produced by Carrageenan Administration
- Effect on Lipidemic Indices in Hyperlipidemic Rats
3.4. Molecular Docking Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Magrone, T.; Jirillo, E. Mechanisms of Neutrophil-mediated Disease: Innovative Therapeutic Interventions. Curr. Pharm. Des. 2012, 18, 1609–1619. [Google Scholar] [CrossRef]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-steroidal anti-inflammatory drugs (NSAIDs) and organ damage: A current perspective. Biochem. Pharmacol. 2020, 180, 114147. [Google Scholar] [CrossRef]
- Wallace, J.L. Nitric oxide in the gastrointestinal tract: Opportunities for drug development. Br. J. Pharmacol. 2018, 176, 147–154. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, J.; Luo, L.; Yu, Y.; Sun, T. Nitric Oxide and Tumors: From Small-Molecule Donor to Combination Therapy. ACS Biomater. Sci. Eng. 2022, 9, 139–152. [Google Scholar] [CrossRef]
- Ding, Q.-G.; Zang, J.; Gao, S.; Gao, Q.; Duan, W.; Li, X.; Xu, W.; Zhang, Y. Nitric oxide donor hybrid compounds as promising anticancer agents. Drug Discov. Ther. 2016, 10, 276–284. [Google Scholar] [CrossRef][Green Version]
- Kamm, A.; Przychodzen, P.; Kuban-Jankowska, A.; Jacewicz, D.; Dabrowska, A.M.; Nussberger, S.; Wozniak, M.; Gorska-Ponikowska, M. Nitric oxide and its derivatives in the cancer battlefield. Nitric Oxide 2019, 93, 102–114. [Google Scholar] [CrossRef]
- Pieretti, J.C.; Pelegrino, M.T.; Nascimento, M.H.; Tortella, G.R.; Rubilar, O.; Seabra, A.B. Small molecules for great solutions: Can nitric oxide-releasing nanomaterials overcome drug resistance in chemotherapy? Biochem. Pharmacol. 2020, 176, 113740. [Google Scholar] [CrossRef] [PubMed]
- Dou, C.; Han, X.; Xie, H.; Liao, H.; Xiao, X.; Huang, Z.; Luo, G.; Zhang, X.; Yao, W. Protective role of nitric oxide donors on endothelium in ischemia-reperfusion injury: A meta-analysis of randomized controlled trials. BMC Anesthesiol. 2023, 23, 1–10. [Google Scholar] [CrossRef]
- Han, B.; Song, M.; Li, L.; Sun, X.; Lei, Y. The Application of Nitric Oxide for Ocular Hypertension Treatment. Molecules 2021, 26, 7306. [Google Scholar] [CrossRef] [PubMed]
- Ziakas, G.N.; Rekka, E.A.; Gavalas, A.M.; Eleftheriou, P.T.; Tsiakitzis, K.C.; Kourounakis, P.N. Nitric oxide releasing derivatives of tolfenamic acid with anti-inflammatory activity and safe gastrointestinal profile. Bioorganic Med. Chem. 2005, 13, 6485–6492. [Google Scholar] [CrossRef]
- Borhade, N.; Pathan, A.R.; Halder, S.; Karwa, M.; Dhiman, M.; Pamidiboina, V.; Gund, M.; Deshattiwar, J.J.; Mali, S.V.; Deshmukh, N.J.; et al. NO-NSAIDs. Part 3: Nitric Oxide-Releasing Prodrugs of Non-steroidal Anti-inflammatory Drugs. Chem. Pharm. Bull. 2012, 60, 465–481. [Google Scholar] [CrossRef]
- Teixeira, D.F.; Santos, A.M.; Oliveira, A.M.S.; Nascimento Júnior, J.A.C.; Frank, L.A.; Santana Souza, M.T.; Camargo, E.A.; Serafin, M.R. Pharmaceuticals agents for preventing NSAID-induced gastric ulcers: A patent review. Expert Rev. Clin. Pharmacol. 2021, 14, 677–686. [Google Scholar] [CrossRef]
- Consalvi, S.; Poce, G.; Ragno, R.; Sabatino, M.; La Motta, C.; Sartini, S.; Calderone, V.; Martelli, A.; Ghelardini, C.; Mannelli, L.D.C.; et al. A Series of COX-2 Inhibitors Endowed with NO-Releasing Properties: Synthesis, Biological Evaluation, and Docking Analysis. ChemMedChem 2016, 11, 1804–1811. [Google Scholar] [CrossRef]
- Sava, A.; Buron, F.; Routier, S.; Panainte, A.; Bibire, N.; Profire, L. New nitric oxide-releasing indomethacin derivatives with 1,3-thiazolidine-4-one scaffold: Design, synthesis, in silico and in vitro studies. Biomed. Pharmacother. 2021, 139, 111678. [Google Scholar] [CrossRef] [PubMed]
- Reginato, M.M.; Paiva, D.R.; Sensato, F.R.; Monteiro, H.P.; Reis, A.K.C.A. Conformational study of the electronic interactions and nitric oxide release potential of new S-nitrosothiols esters derivatives of ibuprofen, naproxen and phenyl acids substituted (SNO-ESTERS): Synthesis, infrared spectroscopy analysis and theoretical calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 207, 132–142. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Phan, K.Q.; Tagawa, H.; Sasaki, K.; Feng, H.; Kishimura, A.; Mori, T.; Katayama, Y. Modification of nitric oxide donors onto a monoclonal antibody boosts accumulation in solid tumors. Int. J. Pharm. 2020, 583, 119352. [Google Scholar] [CrossRef]
- Stroppel, A.S.; Paolillo, M.; Ziegler, T.; Feil, R.; Stafforst, T. Npom-Protected NONOate Enables Light-Triggered NO/cGMP Signalling in Primary Vascular Smooth Muscle Cells. ChemBioChem 2018, 19, 1312–1318. [Google Scholar] [CrossRef]
- Zang, Y.; Huang, L.; Chen, X.; Li, C.; Ma, J.; Chen, X.; Zhang, D.; Lai, F. Novel nitric oxide-releasing derivatives of pyranocarbazole as antitumor agents: Design, synthesis, biological evaluation, and nitric oxide release studies. Eur. J. Med. Chem. 2022, 244, 114832. [Google Scholar] [CrossRef]
- Tziona, P.; Theodosis-Nobelos, P.; Papagiouvannis, G.; Petrou, A.; Drouza, C.; Rekka, E.A. Enhancement of the Anti-Inflammatory Activity of NSAIDs by Their Conjugation with 3,4,5-Trimethoxybenzyl Alcohol. Molecules 2022, 27, 2104. [Google Scholar] [CrossRef] [PubMed]
- Galanakis, D.; Kourounakis, A.P.; Tsiakitzis, K.C.; Doulgkeris, C.; Rekka, E.A.; Gavalas, A.; Kravaritou, C.; Charitos, C.; Kourounakis, P.N. Synthesis and pharmacological evaluation of amide conjugates of NSAIDs with L -cysteine ethyl ester, combining potent antiinflammatory and antioxidant properties with significantly reduced gastrointestinal toxicity. Bioorganic Med. Chem. Lett. 2004, 14, 3639–3643. [Google Scholar] [CrossRef] [PubMed]
- Tziona, P.; Theodosis-Nobelos, P.; Rekka, E.A. Medicinal Chemistry Approaches of Controlling Gastrointestinal Side Effects of Non-Steroidal Anti-Inflammatory Drugs. Endogenous Protective Mechanisms and Drug Design. Med. Chem. 2017, 13, 408–420. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Pillinger, M.H.; Abramson, S.B. Prostaglandin E2 synthesis and secretion: The role of PGE2 synthases. Clin. Immunol. 2006, 119, 229–240. [Google Scholar] [CrossRef]
- Abdel-Rahman, D.M.; Messiha, B.A.S.; Ali, F.E.M.; Azouz, A.A. Regulation of renal nitric oxide and eNOS/iNOS expression by tadalafil participates in the mitigation of amphotericin B-induced renal injury: Down-regulation of NF-κB/iNOS/caspase-3 signaling. Naunyn Schmiedebergs Arch. Pharmacol. 2024, 397, 3141–3153. [Google Scholar] [CrossRef]
- Inserte, J.; Molla, B.; Aguilar, R.; Través, P.G.; Barba, I.; Martín-Sanz, P.; Boscá, L.; Casado, M.; Garcia-Dorado, D. Constitutive COX-2 activity in cardiomyocytes confers permanent cardioprotection Constitutive COX-2 expression and cardioprotection. J. Mol. Cell. Cardiol. 2009, 46, 160–168. [Google Scholar] [CrossRef] [PubMed]
- López, D.E.; Ballaz, S.J. The Role of Brain Cyclooxygenase-2 (Cox-2) Beyond Neuroinflammation: Neuronal Homeostasis in Memory and Anxiety. Mol. Neurobiol. 2020, 57, 5167–5176. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, P.; Bangali, H.; Hammoud, A.; Mustafa, Y.F.; Al-Hetty, H.R.A.K.; Alkhafaji, A.T.; Deorari, M.M.; Al-Taee, M.M.; Zabibah, R.S.; Alsalamy, A. COX 2-inhibitors; a thorough and updated survey into combinational therapies in cancers. Med Oncol. 2024, 41, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, N. A comprehensive review on the advancements of dual COX-2/5-LOX inhibitors as anti-inflammatory drugs. Chem. Biol. Drug Des. 2025, 105, e70114. [Google Scholar] [CrossRef]
- Somvanshi, R.K.; Singh, A.K.; Saxena, M.; Mishra, B.; Dey, S. Development of novel peptide inhibitor of Lipoxygenase based on biochemical and BIAcore evidences. Biochim. Et Biophys. Acta (BBA)–Proteins Proteom. 2008, 1784, 1812–1817. [Google Scholar] [CrossRef]
- Skrzypczak-Jankun, E.; McCabe, N.P.; Selman, S.H.; Jankun, J. Curcumin inhibits lipoxygenase by binding to its central cavity: Theoretical and X-ray evidence. Int. J. Mol. Med. 2000, 6, 521–527. [Google Scholar] [CrossRef]
- Parinandi, N.L.; Liaugminas, A.; Oliver, P.J.; Varadharaj, S.; Yenigalla, A.; Elliott, A.C.; Arutla, S.; Campbell, S.J.; Kotha, S.R.; Sherwani, S.I.; et al. Classic Phytochemical Antioxidant and Lipoxygenase Inhibitor, Nordihydroguaiaretic Acid, Activates Phospholipase D through Oxidant Signaling and Tyrosine Phosphorylation Leading to Cytotoxicity in Lung Vascular Endothelial Cells. Cell Biochem. Biophys. 2023, 81, 205–229. [Google Scholar] [CrossRef]
- Kurhaluk, N.; Tkaczenko, H. L-Arginine and Nitric Oxide in Vascular Regulation—Experimental Findings in the Context of Blood Donation. Nutrients 2025, 17, 665. [Google Scholar] [CrossRef] [PubMed]
- Nouni, C.; Theodosis-Nobelos, P.; Rekka, E.A. Antioxidant and Hypolipidemic Activities of Cinnamic Acid Derivatives. Molecules 2023, 28, 6732. [Google Scholar] [CrossRef]
- Morris, C.J. Carrageenan-induced paw edema in the rat and mouse. Methods Mol. Biol. 2003, 225, 115–121. [Google Scholar] [CrossRef]
- Fan, J.; Watanabe, T. Atherosclerosis: Known and unknown. Pathol. Int. 2022, 72, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Tasouli-Drakou, V.; Ogurek, I.; Shaikh, T.; Ringor, M.; DiCaro, M.V.; Lei, K. Atherosclerosis: A Comprehensive Review of Molecular Factors and Mechanisms. Int. J. Mol. Sci. 2025, 26, 1364. [Google Scholar] [CrossRef]
- Levine, S.; Saltzman, A. A procedure for inducing sustained hyperlipemia in rats by administration of a surfactant. J. Pharmacol. Toxicol. Methods 2007, 55, 224–226. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, N.; Santoro, F.; De Gennaro, L.; Correale, M.; Guastafierro, F.; Gaglione, A.; Di Biase, M.; Brunetti, N.D. Fenofibrate/simvastatin fixed-dose combination in the treatment of mixed dyslipidemia: Safety, efficacy, and place in therapy. Vasc. Heal. Risk Manag. 2017, 13, 29–41. [Google Scholar] [CrossRef]
- Cookson, M.W.; Kinsella, J.P. Inhaled Nitric Oxide in Neonatal Pulmonary Hypertension. Clin. Perinatol. 2023, 51, 95–111. [Google Scholar] [CrossRef]
- Kang, M.G.; Ahn, J.-H.; Hwang, J.-Y.; Hwang, S.-J.; Koh, J.-S.; Park, Y.; Bae, J.S.; Chun, K.J.; Kim, J.S.; Kim, J.H.; et al. Long-acting cilostazol versus isosorbide mononitrate for patients with vasospastic angina: A randomized controlled trial. Coron. Artery Dis. 2024, 35, 459–464. [Google Scholar] [CrossRef]
- Goel, H.; Carey, M.D.; Elshaikh, A.; Krinock, M.D.; Goyal, D.; Nadar, S.K. Cardioprotective and Antianginal Efficacy of Nicorandil: A Comprehensive Review. J. Cardiovasc. Pharmacol. 2023, 82, 69–85. [Google Scholar] [CrossRef]
Compound | COX-1 % Inhibition | COX-2 % Inhibition |
---|---|---|
Ibuprofen | 68 | 46 |
Naproxen | 34 | 17 |
5 | 67 | 95 |
6 | 34 | 37 |
7 | 47 | 27 |
8 | 58 | 23 |
9 | 73 | 17 |
Compound | IC50 (μM) * | Compound | IC50 (μM) * |
---|---|---|---|
Ibuprofen | 200 | 7 | 51 |
Naproxen | 218 | 8 | 184 |
5 | 78 | NDGA | 1.3 |
6 | 264 |
Compound (μΜ) | NO Release (μΜ) | |||
---|---|---|---|---|
5 | 6 | 7 | 8 | |
500 | 163.7 | 97.1 | 79.5 | 95.5 |
250 | 89.4 | 50.4 | 39.5 | 51.5 |
125 | 42.3 | 23.8 | 18.6 | 24.8 |
62.5 | 20.8 | 12.0 | 9.6 | 11.7 |
31.25 | 8.5 | 5.3 | 5.4 | 6.3 |
Compound | % Edema Inhibition |
---|---|
Ibuprofen | 36 ** |
Naproxen | 11 * |
1 | 14 * |
2 | 20 * |
5 | 73 *** |
6 | 66 *** |
7 | 36** |
8 | 44 ** |
9 | 46 * (#) |
Compound | Percent Reduction | ||
---|---|---|---|
TC | TG | LDL | |
5 | 56.7 | 54.8 | 59.8 |
6 | 58.4 | 60.4 | 58.7 |
Simvastatin | 73.0 | - | 70.0 |
Ibuprofen (300 μmol/kg) | 41.0 | 38.0 | 41.6 |
Comp. | Ovine COX-1 (PDB:1EQG) | Mus Musculus COX-2 (PDB: 1CX2) | ||
---|---|---|---|---|
Binding Free Energy (kcal/mol) | Hydrogen Bonds | Binding Free Energy (kcal/mol) | Hydrogen Bonds | |
5 | −7.71 | O-Tyr355, O-Ser530 | −9.24 | O-Arg120, O-Tyr355, O-Tyr355 |
Ibuprofen | −9.22 | O-Arg120, O-Arg120, O-Tyr355 | - | - |
SC-558 | - | - | −9.17 | O-His90, F-Arg120, H-Arg513 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tziona, P.; Theodosis-Nobelos, P.; Lepesiotis, D.; Gavalas, A.; Rekka, E.A. Nitrogen Monoxide Releasing Nitric Ester Derivatives of Ibuprofen and Naproxen as COX Inhibitors, Anti-Inflammatory and Hypolipidemic Compounds. Molecules 2025, 30, 3744. https://doi.org/10.3390/molecules30183744
Tziona P, Theodosis-Nobelos P, Lepesiotis D, Gavalas A, Rekka EA. Nitrogen Monoxide Releasing Nitric Ester Derivatives of Ibuprofen and Naproxen as COX Inhibitors, Anti-Inflammatory and Hypolipidemic Compounds. Molecules. 2025; 30(18):3744. https://doi.org/10.3390/molecules30183744
Chicago/Turabian StyleTziona, Paraskevi, Panagiotis Theodosis-Nobelos, Dimitris Lepesiotis, Antonis Gavalas, and Eleni A. Rekka. 2025. "Nitrogen Monoxide Releasing Nitric Ester Derivatives of Ibuprofen and Naproxen as COX Inhibitors, Anti-Inflammatory and Hypolipidemic Compounds" Molecules 30, no. 18: 3744. https://doi.org/10.3390/molecules30183744
APA StyleTziona, P., Theodosis-Nobelos, P., Lepesiotis, D., Gavalas, A., & Rekka, E. A. (2025). Nitrogen Monoxide Releasing Nitric Ester Derivatives of Ibuprofen and Naproxen as COX Inhibitors, Anti-Inflammatory and Hypolipidemic Compounds. Molecules, 30(18), 3744. https://doi.org/10.3390/molecules30183744