Optimizing Ultrasonic-Assisted Extraction Process of Paralepista flaccida: A Comparative Study of Antioxidant, Anticholinesterase, and Antiproliferative Activities via Response Surface Methodology and Artificial Neural Network Modeling
Abstract
1. Introduction
2. Results and Discussion
2.1. Optimization of Extraction Conditions
2.2. Antioxidant Activity
2.3. Anticholinesterase Activity
2.4. Antiproliferative Activity
2.5. Phenolic Contents
3. Materials and Methods
3.1. Extraction Procedure Method
3.2. Standards and Chemicals
3.3. Response Surface Methodology (RSM)
3.4. Artificial Neural Network–Genetic Algorithm (ANN-GA)
3.5. Extraction for Bioactivity
3.6. Antioxidant Activity Tests
3.6.1. Total Antioxidant and Oxidant Analysis
3.6.2. DPPH Free Radical Scavenging Activity
3.6.3. Ferric Reducing Antioxidant Power Assay
3.7. Anticholinesterase Activity Test
3.8. Antiproliferative Activity Test
3.9. Phenolic Analysis
3.10. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DMSO | Dimethyl sulfoxide |
DTNB | 5.5dithiobis-(2-nitrobenzoic acid) |
MTT | (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) |
OSI | Oxidative stress index |
TAS | Total antioxidant status |
TOS | Total oxidant status |
References
- Al Qutaibi, M.; Kagne, S.R. Exploring the phytochemical compositions, antioxidant activity, and nutritional potentials of edible and medicinal mushrooms. Int. J. Microbiol. 2024, 2024, 6660423. [Google Scholar] [CrossRef] [PubMed]
- Łysakowska, P.; Sobota, A.; Wirkijowska, A. Medicinal mushrooms: Their bioactive components, nutritional value and application in functional food production—A review. Molecules 2023, 28, 5393. [Google Scholar] [CrossRef] [PubMed]
- Wasser, S.P. Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomed. J. 2014, 37, 6. [Google Scholar] [CrossRef] [PubMed]
- Wasser, S.P. Medicinal properties and clinical effects of medicinal mushrooms. In Edible and Medicinal Mushrooms: Technology and Applications; Taylor, A., Smith, B., Eds.; John Wiley & Sons Ltd.: New York, NY, USA, 2017; pp. 503–540. [Google Scholar]
- Lindequist, U. Medicinal mushrooms as multicomponent mixtures—Demonstrated with the example of Lentinula edodes. J. Fungi 2024, 10, 153. [Google Scholar] [CrossRef]
- Gariboldi, M.B.; Marras, E.; Ferrario, N.; Vivona, V.; Prini, P.; Vignati, F.; Perletti, G. Anti-cancer potential of edible/medicinal mushrooms in breast cancer. Int. J. Mol. Sci. 2023, 24, 10120. [Google Scholar] [CrossRef]
- Clémençon, H. Stellate chlamydospores and thromboplerous hyphae in the mycelium of the agaric Lepista flaccida. Mycol. Prog. 2003, 2, 69–72. [Google Scholar] [CrossRef]
- Erbiai, E.H.; Maouni, A.; Pinto da Silva, L.; Saidi, R.; Legssyer, M.; Lamrani, Z.; Esteves da Silva, J.C. Antioxidant properties, bioactive compounds contents, and chemical characterization of two wild edible mushroom species from Morocco: Paralepista flaccida (Sowerby) Vizzini and Lepista nuda (Bull.) Cooke. Molecules 2023, 28, 1123. [Google Scholar] [CrossRef]
- Canpolat, S.; Düşgün, C.; Ildız, E.; Canpolat, E.Y.; İşlek, C. Antioxidant potential and fatty acid composition of Lactarius sanguifluus. Prospect. Pharm. Sci. 2024, 22, 1–6. [Google Scholar] [CrossRef]
- Colak, S.; Comlekcioglu, N.; Aygan, A.; Kocabas, Y.Z.; Comlekcioglu, U. Phytochemical properties and bioactive potential of various Astragalus spp. from Turkey. Food Biosci. 2025, 64, 105901. [Google Scholar] [CrossRef]
- Gürgen, A.; Unal, O.; Sevindik, M. Biological activities of the golden chantarelle mushroom Cantharellus cibarius (Agaricomycetes) extracts obtained as a result of single and multi-objective optimization studies. Int. J. Med. Mushrooms 2024, 26, 63–74. [Google Scholar] [CrossRef]
- Sevindik, M.; Gürgen, A.; Khassanov, V.T.; Bal, C. Biological activities of ethanol extracts of Hericium erinaceus obtained as a result of optimization analysis. Foods 2024, 13, 1560. [Google Scholar] [CrossRef]
- Gürgen, A.; Sevindik, M. Single and multi-objective optimization of the red pine mushroom Lactarius deliciosus (Agaricomycetes) extraction conditions using artificial intelligence methods and biological activities of optimized extracts. Int. J. Med. Mushrooms 2025, 27, 59–73. [Google Scholar] [CrossRef]
- Sevindik, M.; Bal, C.; Krupodorova, T.; Gürgen, A.; Eraslan, E.C. Extract optimization and biological activities of Otidea onotica using Artificial Neural Network-Genetic Algorithm and response surface methodology techniques. BMC Biotechnol. 2025, 25, 25. [Google Scholar] [CrossRef]
- Gürgen, A.; Sevindik, M. Application of artificial neural network coupling multiobjective particle swarm optimization algorithm to optimize Pleurotus ostreatus extraction parameters. J. Food Process. Preserv. 2022, 46, e16949. [Google Scholar] [CrossRef]
- Bal, C. Biological activities of Leucoagaricus leucothites mushroom: Evaluation of antioxidant, anticholinesterase and antiproliferative effects. Int. J. Chem. Technol. 2025, 9, 147–152. [Google Scholar] [CrossRef]
- Huo, Y.; Ma, S.; He, X.; Wang, Y.; Yuan, H. Steroids from the mushroom Ganoderma shandongense and their AChE inhibitory activities. Steroids 2025, 216, 109574. [Google Scholar] [CrossRef]
- Tel, G.; Ozturk, M.; Duru, M.E.; Turkoglu, A. Antioxidant and anticholinesterase activities of five wild mushroom species with total bioactive contents. Pharm. Biol. 2015, 53, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Im, K.H.; Nguyen, T.K.; Kim, J.K.; Choi, J.; Lee, T.S. Evaluation of anticholinesterase and inflammation inhibitory activity of medicinal mushroom Phellinus pini (Basidiomycetes) fruiting bodies. Int. J. Med. Mushrooms 2016, 18, 11. [Google Scholar] [CrossRef] [PubMed]
- Garrab, M.; Edziri, H.; El Mokni, R.; Mastouri, M.; Mabrouk, H.; Douki, W. Phenolic composition, antioxidant and anticholinesterase properties of the three mushrooms Agaricus silvaticus Schaeff., Hydnum rufescens Pers. and Meripilus giganteus (Pers.) Karst. in Tunisia. S. Afr. J. Bot. 2019, 124, 359–363. [Google Scholar] [CrossRef]
- Draczkowski, P.; Tomaszuk, A.; Halczuk, P.; Strzemski, M.; Matosiuk, D.; Jozwiak, K. Determination of affinity and efficacy of acetylcholinesterase inhibitors using isothermal titration calorimetry. Biochim. Biophys. Acta-Gen. Subj. 2016, 1860, 967–974. [Google Scholar] [CrossRef]
- Bentharavithana, J.; Islam, T.; Xu, B. Medicinal mushrooms in colon cancer therapy: Mechanisms of action of bioactive compounds and therapeutic potential. Int. J. Mol. Sci. 2025, 26, 5304. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, S.; Ramalingam, E.; Azeez, S.; Thiyagarajan, D.; Sudarson, J. Anti-proliferative potential of extracellular beta-glucans isolated from Trametes hirsuta in carcinoma and leukemic cell lines. Int. J. Biol. Macromol. 2025, 304, 140644. [Google Scholar] [CrossRef] [PubMed]
- Bézivin, C.; Lohézic, F.; Sauleau, P.; Amoros, M.; Boustie, J. Cytotoxic activity of Tricholomatales determined with murine and human cancer cell lines. Pharm. Biol. 2002, 40, 196–199. [Google Scholar] [CrossRef]
- Patil, N.D.; Thakur, S.; Bains, A.; Kaur, S.; Ali, N.; Arora, R.; Parvez, M.K.; Goksen, G.; Janghu, S.; Chawla, P. Exploration of Calocybe indica mushroom phenolic acid-kidney bean protein complex: Functional properties, amino acid profiles, in-vitro digestibility, and application in vegan product development. Food Chem. 2024, 460, 140401. [Google Scholar] [CrossRef]
- Erel, O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin. Biochem. 2004, 37, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Erel, O. A new automated colorimetric method for measuring total oxidant status. Clin. Biochem. 2005, 38, 1103–1111. [Google Scholar] [CrossRef]
- Korkmaz, N. Extract optimization of Ulva lactuca L. and biological activities of optimized extracts. BMC Biotech. 2025, 25, 21. [Google Scholar] [CrossRef]
- Akkaya, O.B.; Çelik, İ.S.; Ertaş, E.; Çömlekcioğlu, N.; Aygan, A. Determination of antimicrobial, anticarcinogenic activity of bioactive components of Hypericum perforatum L. Plant. Int. J. Chem. Technol. 2024, 8, 73–82. [Google Scholar] [CrossRef]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Koçer, O. Determination of optimum extract conditions and evaluation of biological activity potential of Salvia cilicica Boiss. Sci. Rep. 2025, 15, 9277. [Google Scholar] [CrossRef]
Experiment Number | Extraction Temperature (°C) | Extraction Time (min) | Ethanol/Water Ratio (%) | TAS (mmol/L) |
---|---|---|---|---|
1 | 30 | 30 | 0 | 3.270 ± 0.026 j |
2 | 30 | 45 | 0 | 3.470 ± 0.022 k |
3 | 30 | 60 | 0 | 2.148 ± 0.013 a |
4 | 30 | 30 | 50 | 3.460 ± 0.029 k |
5 | 30 | 45 | 50 | 3.647 ± 0.024 m |
6 | 30 | 60 | 50 | 2.337 ± 0.036 c |
7 | 30 | 30 | 100 | 3.273 ± 0.022 j |
8 | 30 | 45 | 100 | 3.551 ± 0.034 l |
9 | 30 | 60 | 100 | 2.271 ± 0.021 b |
10 | 45 | 30 | 0 | 3.528 ± 0.018 l |
11 | 45 | 45 | 0 | 3.746 ± 0.028 n |
12 | 45 | 60 | 0 | 2.670 ± 0.021 e |
13 | 45 | 30 | 50 | 3.739 ± 0.028 n |
14 | 45 | 45 | 50 | 3.945 ± 0.022 p |
15 | 45 | 60 | 50 | 2.721 ± 0.014 f |
16 | 45 | 30 | 100 | 3.565 ± 0.036 l |
17 | 45 | 45 | 100 | 3.834 ± 0.032 o |
18 | 45 | 60 | 100 | 2.543 ± 0.017 d |
19 | 60 | 30 | 0 | 2.938 ± 0.028 g |
20 | 60 | 45 | 0 | 3.267 ± 0.030 j |
21 | 60 | 60 | 0 | 2.170 ± 0.023 a |
22 | 60 | 30 | 50 | 3.170 ± 0.028 i |
23 | 60 | 45 | 50 | 3.438 ± 0.031 k |
24 | 60 | 60 | 50 | 2.338 ± 0.023 c |
25 | 60 | 30 | 100 | 3.105 ± 0.019 h |
26 | 60 | 45 | 100 | 3.272 ± 0.022 j |
27 | 60 | 60 | 100 | 2.336 ± 0.018 b |
Parameters | RSM Extract Values | ANN-GA Extract Values |
---|---|---|
DPPH (mg TE/g extract) | 137.35 ± 2.08 a | 121.34 ± 1.93 a |
TAS (mmol/L) | 4.054 ± 0.022 a | 3.976 ± 0.014 b |
FRAP (mg TE/g extract) | 99.35 ± 2.32 a | 89.50 ± 1.33 a |
TOS (µmol/L) | 10.352 ± 0.067 a | 11.069 ± 0.128 b |
OSI (TOS/(TASx10)) | 0.255 ± 0.001 a | 0.278 ± 0.003 b |
Sample | AChE μg/mL | BChE μg/mL |
---|---|---|
RSM extract | 65.31 ± 1.50 b | 107.82 ± 1.29 b |
ANN-GA extract | 73.39 ± 1.59 c | 120.34 ± 1.55 c |
Galantamine | 7.61 ± 0.20 a | 16.47 ± 0.19 a |
Phenolic Compounds | RSM Extract (mg/g) | ANN-GA Extract (mg/g) |
---|---|---|
Catechinhyrate | 1.36 ± 8.75 a | 1.26 ± 6.79 b |
Vanillic acid | 0.38 ± 3.96 a | 0.41 ± 2.72 b |
Syringic acid | 0.57 ± 8.00 a | 051 ± 2.71 b |
Gallic acid | 7.27 ± 8.92 a | 6.94 ± 5.27 b |
Protocatechuic acid | 2.17 ± 1.72 a | 1.76 ± 2.20 b |
4-hydroxybenzoic acid | 3.87 ± 4.22 b | 4.01 ± 2.43 a |
Caffeic acid | 2.33 ± 3.73 a | 2.17 ± 1.54 b |
2-hydoxycinamic acid | 5.17 ± 2.79 a | 3.26 ± 1.59 b |
Quercetin | 2.04 ± 1.27 a | 2.00 ± 1.92 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sevindik, M.; Gürgen, A.; Korkmaz, A.F.; Akata, I. Optimizing Ultrasonic-Assisted Extraction Process of Paralepista flaccida: A Comparative Study of Antioxidant, Anticholinesterase, and Antiproliferative Activities via Response Surface Methodology and Artificial Neural Network Modeling. Molecules 2025, 30, 3317. https://doi.org/10.3390/molecules30163317
Sevindik M, Gürgen A, Korkmaz AF, Akata I. Optimizing Ultrasonic-Assisted Extraction Process of Paralepista flaccida: A Comparative Study of Antioxidant, Anticholinesterase, and Antiproliferative Activities via Response Surface Methodology and Artificial Neural Network Modeling. Molecules. 2025; 30(16):3317. https://doi.org/10.3390/molecules30163317
Chicago/Turabian StyleSevindik, Mustafa, Ayşenur Gürgen, Aras Fahrettin Korkmaz, and Ilgaz Akata. 2025. "Optimizing Ultrasonic-Assisted Extraction Process of Paralepista flaccida: A Comparative Study of Antioxidant, Anticholinesterase, and Antiproliferative Activities via Response Surface Methodology and Artificial Neural Network Modeling" Molecules 30, no. 16: 3317. https://doi.org/10.3390/molecules30163317
APA StyleSevindik, M., Gürgen, A., Korkmaz, A. F., & Akata, I. (2025). Optimizing Ultrasonic-Assisted Extraction Process of Paralepista flaccida: A Comparative Study of Antioxidant, Anticholinesterase, and Antiproliferative Activities via Response Surface Methodology and Artificial Neural Network Modeling. Molecules, 30(16), 3317. https://doi.org/10.3390/molecules30163317