Bioactive Compounds as Modulators of N-Formyl Peptide Signaling in Chronic Diseases
Abstract
1. Introduction
2. N-Formyl Peptides and Their Receptors
3. N-Formyl Peptides in Pathological Conditions
3.1. Gastrointestinal Disorders
3.2. Diabetes
3.3. Kidney Diseases
3.4. Obesity
3.5. Cancer
3.6. Cardiovascular Diseases
3.7. Neurodegenerative Diseases
4. Potential Adjuvant Effects of Bioactive Food Compounds on N-Formyl Peptide Signaling Pathways
5. Final Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
10-fTHF | 10-Formyltetrahydrofolate |
AD | Alzheimer’s disease |
AKI | Acute kidney injury |
ANXA1 | Annexin A1 |
Ca | Calcium |
CB | Cytochalasin |
CKD | Chronic kidney disease |
CNS | Central nervous system |
CVD | Cardiovascular disease |
CXCL | Chemokine (C-X-C motif) ligand |
CXCR2 | C-X-C motif chemokine receptor 2 |
DAMPs | Damage-associated molecular patterns |
EGFR | Epidermal growth factor receptor |
ERK | Extracellular signal-regulated kinase |
ERK1/2 | Extracellular signal-regulated kinase 1/2 |
F-ACTIN | Filamentous actin |
FMIT | Mitochondrial N-formyl peptides |
FMT | Formyltransferase |
FPRs | Formyl peptide receptors |
fMet | N-Formylmethionine |
fMIFL | N-Formyl-methionine-isoleucine-phenylalanine-leucine |
fMIVIL | N-Formyl-methionine-isoleucine-valine-isoleucine-leucine |
fMLFK | N-Formyl-Met-Leu-Phe-Lys |
fMLP | N-Formyl-methionyl-leucyl-phenylalanine |
fMMYALF | N-Formyl-methionine-methionine-tyrosine-alanine-leucine-phenylalanine |
fMLKLIV | N-Formyl-methionine-leucine-lysine-leucine-isoleucine-valine |
fMYFINILTL | N-Formyl-methionine-tyrosine-phenylalanine-isoleucine-asparagine-isoleucine-leucine-threonine-leucine |
FMLP/CB | Formyl-L-methionyl-L-leucyl-L-phenyl-alanine/cytochalasin B |
fMLP/FMLP | N-Formyl-methionyl-leucyl-phenylalanine |
FPR1 | Formyl peptide receptor 1 |
FPR2 | Formyl peptide receptor 2 |
GPCRs | G protein-coupled receptors |
GLUT | Glucose transporter |
HO1 | Heme oxygenase-1 |
H2O2 | Hydrogen peroxide |
HDL-C | High-density lipoprotein cholesterol |
HFD | High-fat diet |
HIF-1α | Hypoxia-inducible factor 1 alpha |
IL | Interleukin |
IL-6 | Interleukin-6 |
I/RI | Ischemia–reperfusion injury |
ICAM-1 | Intercellular adhesion molecule 1 |
IECs | Intestinal epithelial cells |
IκBα | Inhibitor of kappa B alpha |
JNK | c-Jun N-terminal kinase |
LPS | Lipopolysaccharide |
LXA4 | Lipoxin A4 |
LL-37 | Leucine-leucine-37 |
LTB4 | Leukotriene B4 |
MAPK | Mitogen-activated protein kinase |
MCT-2 | Mitocryptide-2 |
MDA | Malondialdehyde |
MetAP | Methionine aminopeptidase |
MAPKs | Mitogen-activated protein kinases |
MCP-1 | Monocyte chemoattractant protein-1 |
mPTP | Mitochondrial permeability transition pore |
MS | Multiple sclerosis |
MUC | Mucin |
NADPH | Nicotinamide adenine dinucleotide phosphate reduced |
NF-κB | Factor nuclear kappa B |
NQO1 | NAD(P)H quinone dehydrogenase 1 |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
NLRP3 | Pyrin domain-containing 3 |
NLRs | NOD-like receptors |
NOX | Nitrogen oxide |
NSCs | Neural stem cells |
O2•− | Superoxide anion |
ORM | Obesity-resistant mice |
PAMPs | Pathogen-associated molecular patterns |
Peptide deformylase | |
PSM | Phenol-soluble modulins |
PSMα | Modulins of the alpha type |
MAPK | p38 mitogen-activated protein kinase |
PD | Parkinson’s disease |
PGE2 | Prostaglandin E2 |
PI3K-AKT | Phosphoinositide 3-kinase/Protein kinase B |
PMA | Phorbol myristate acetate |
RCT | Randomized controlled trial |
ROS | Reactive oxygen species |
RvD1 | Resolvin D1 |
shRNA | Short hairpin RNA |
SIRT1 | Sirtuin 1 |
SOD | Superoxide dismutase |
TNF-α | Tumor necrosis factor alpha |
T2D | Type 2 diabetes mellitus |
TBARS | Thiobarbituric acid-reactive substances |
TGs | Triglycerides |
VEGF | Vascular endothelial growth factor |
VLDL | Very-low-density lipoprotein |
WKYMVM | Trp-Lys-Tyr-Val-Met |
WT | Wild-type |
α-SMA | alpha-Smooth muscle actin |
References
- Chen, G.; Wang, X.; Liao, Q.; Ge, Y.; Jiao, H.; Chen, Q.; Liu, Y.; Lyu, W.; Zhu, L.; Van Zundert, G.C.P.; et al. Structural Basis for Recognition of N-Formyl Peptides as Pathogen-Associated Molecular Patterns. Nat. Commun. 2022, 13, 5232. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Han, J.; Jung, Y. Formyl Peptide Receptor 2 Is an Emerging Modulator of Inflammation in the Liver. Exp. Mol. Med. 2023, 55, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Li, L.; Ding, J.; Huang, J.; Shao, A.; Tang, B. The Role of Formyl Peptide Receptors in Neurological Diseases via Regulating Inflammation. Front. Cell. Neurosci. 2021, 15, 753832. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Tran, E.; Odiba, J.O.; Qin, C.X.; Ritchie, R.H.; Baell, J.B. The Formyl Peptide Receptors FPR1 and FPR2 as Targets for Inflammatory Disorders: Recent Advances in the Development of Small-Molecule Agonists. Eur. J. Med. Chem. 2024, 265, 115989. [Google Scholar] [CrossRef] [PubMed]
- Forsman, H.; Wu, Y.; Mårtensson, J.; Björkman, L.; Granberg, K.L.; Dahlgren, C.; Sundqvist, M. AZ2158 Is a More Potent Formyl Peptide Receptor 1 Inhibitor than the Commonly Used Peptide Antagonists in Abolishing Neutrophil Chemotaxis. Biochem. Pharmacol. 2023, 211, 115529. [Google Scholar] [CrossRef] [PubMed]
- Cuffaro, D.; Digiacomo, M.; Macchia, M. Dietary Bioactive Compounds: Implications for Oxidative Stress and Inflammation. Nutrients 2023, 15, 4966. [Google Scholar] [CrossRef] [PubMed]
- Schepetkin, I.A.; Özek, G.; Özek, T.; Kirpotina, L.N.; Kokorina, P.I.; Khlebnikov, A.I.; Quinn, M.T. Neutrophil Immunomodulatory Activity of Nerolidol, a Major Component of Essential Oils from Populus balsamifera Buds and Propolis. Plants 2022, 11, 3399. [Google Scholar] [CrossRef] [PubMed]
- Marcker, K.; Sanger, F. N-Formyl-Methionyl-S-RNA. J. Mol. Biol. 1964, 8, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.M. On the Release of the Formyl Group from Nascent Protein. J. Mol. Biol. 1968, 33, 571–589. [Google Scholar] [CrossRef] [PubMed]
- Thach, R.E.; Dewey, K.F.; Brown, J.C.; Doty, P. Formylmethionine Codon AUG as an Initiator of Polypeptide Synthesis. Science 1966, 153, 416–418. [Google Scholar] [CrossRef] [PubMed]
- Tan, R.; Hoare, M.; Welle, K.A.; Swovick, K.; Hryhorenko, J.R.; Ghaemmaghami, S. Folding Stabilities of Ribosome-Bound Nascent Polypeptides Probed by Mass Spectrometry. Proc. Natl. Acad. Sci. USA 2023, 120, e2303167120. [Google Scholar] [CrossRef] [PubMed]
- Waller, J.P. The NH2-Terminal Residues of the Proteins from Cell-Free Extracts of E. coli. J. Mol. Biol. 1963, 7, 483–496. [Google Scholar] [CrossRef] [PubMed]
- Sherman, F.; Stewart, J.W.; Tsunasawa, S. Methionine or Not Methionine at the Beginning of a Protein. BioEssays 1985, 3, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Sandikci, A.; Gloge, F.; Martinez, M.; Mayer, M.P.; Wade, R.; Bukau, B.; Kramer, G. Dynamic Enzyme Docking to the Ribosome Coordinates N-Terminal Processing with Polypeptide Folding. Nat. Struct. Mol. Biol. 2013, 20, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Bhakta, S.; Akbar, S.; Sengupta, J. Cryo-EM Structures Reveal Relocalization of MetAP in the Presence of Other Protein Biogenesis Factors at the Ribosomal Tunnel Exit. J. Mol. Biol. 2019, 431, 1426–1439. [Google Scholar] [CrossRef] [PubMed]
- Itagaki, K.; Riça, I.; Konecna, B.; Kim, H.I.; Park, J.; Kaczmarek, E.; Hauser, C.J. Role of Mitochondria-Derived Danger Signals Released After Injury in Systemic Inflammation and Sepsis. Antioxid. Redox Signal 2021, 35, 1273–1290. [Google Scholar] [CrossRef] [PubMed]
- Mader, D.; Liebeke, M.; Winstel, V.; Methling, K.; Leibig, M.; Götz, F.; Lalk, M.; Peschel, A. Role of N-Terminal Protein Formylation in Central Metabolic Processes in Staphylococcus aureus. BMC Microbiol. 2013, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.E.; Marcker, K.A. N-Formylmethionyl Transfer RNA in Mitochondria from Yeast and Rat Liver. J. Mol. Biol. 1968, 38, 241–243. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.H.; Meyer, R.; Eisenstadt, J.M.; Brawerman, G. Involvement of N-Formylmethionine in Initiation of Protein Synthesis in Cell-Free Extracts of Euglena Gracilis. J. Mol. Biol. 1967, 25, 571–574. [Google Scholar] [CrossRef] [PubMed]
- Wenceslau, C.F.; McCarthy, C.G.; Goulopoulou, S.; Szasz, T.; NeSmith, E.G.; Webb, R.C. Mitochondrial-Derived N-Formyl Peptides: Novel Links between Trauma, Vascular Collapse and Sepsis. Med. Hypotheses 2013, 81, 532–535. [Google Scholar] [CrossRef] [PubMed]
- Rongvaux, A. Innate Immunity and Tolerance toward Mitochondria. Mitochondrion 2018, 41, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.; Johri, S.; Chakraborty, K. Immunomodulatory Role of Mitochondrial DAMPs: A Missing Link in Pathology? FEBS J. 2023, 290, 4395–4418. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.X.; Norling, L.V.; Vecchio, E.A.; Brennan, E.P.; May, L.T.; Wootten, D.; Godson, C.; Perretti, M.; Ritchie, R.H. Formylpeptide Receptor 2: Nomenclature, Structure, Signalling and Translational Perspectives: IUPHAR Review 35. Br. J. Pharmacol. 2022, 179, 4617–4639. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Y.; Wang, L.; Guo, J.; Sun, D.; Wang, Y.; Liu, W.; Xu, H.E.; Zhang, C. Molecular Recognition of Formylpeptides and Diverse Agonists by the Formylpeptide Receptors FPR1 and FPR2. Nat. Commun. 2022, 13, 1054. [Google Scholar] [CrossRef] [PubMed]
- He, H.Q.; Ye, R. The Formyl Peptide Receptors: Diversity of Ligands and Mechanism for Recognition. Molecules 2017, 22, 455. [Google Scholar] [CrossRef] [PubMed]
- Ledderose, C.; Hashiguchi, N.; Valsami, E.A.; Rusu, C.; Junger, W.G. Optimized Flow Cytometry Assays to Monitor Neutrophil Activation in Human and Mouse Whole Blood Samples. J. Immunol. Methods 2023, 512, 113403. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Lin, Z.; Ma, Y. Suppression of Fpr2 Expression Protects against Endotoxin-Induced Acute Lung Injury by Interacting with Nrf2-Regulated TAK1 Activation. Biomed. Pharmacother. 2020, 125, 109943. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Fan, J.; Zhan, F.; Li, X.; Li, B.; Lu, P.; Yao, X.; Shen, Z.; Liu, Z.; Wang, C.; et al. The Role of FPR2-Mediated Ferroptosis in Formyl Peptide-Induced Acute Lung Injury against Endothelial Barrier Damage and Protective Effect of the Mitochondria-Derived Peptide MOTS-c. Int. Immunopharmacol. 2024, 131, 111911. [Google Scholar] [CrossRef] [PubMed]
- Jaén, R.I.; Sánchez-García, S.; Fernández-Velasco, M.; Boscá, L.; Prieto, P. Resolution-Based Therapies: The Potential of Lipoxins to Treat Human Diseases. Front. Immunol. 2021, 12, 658840. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Gong, W.; Huang, J.; Yoshimura, T.; Ming Wang, J. Developmental and Homeostatic Signaling Transmitted by the G-Protein Coupled Receptor FPR2. Int. Immunopharmacol. 2023, 118, 110052. [Google Scholar] [CrossRef] [PubMed]
- Perretti, M.; Dalli, J. Resolution Pharmacology: Focus on Pro-Resolving Annexin A1 and Lipid Mediators for Therapeutic Innovation in Inflammation. Annu. Rev. Pharmacol. Toxicol. 2023, 63, 449–469. [Google Scholar] [CrossRef] [PubMed]
- Prevete, N.; Poto, R.; Marone, G.; Varricchi, G. Unleashing the Power of Formyl Peptide Receptor 2 in Cardiovascular Disease. Cytokine 2023, 169, 156298. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, L.E.; Hill, S.J. Transactivation of G Protein-Coupled Receptors (GPCRs) and Receptor Tyrosine Kinases (RTKs): Recent Insights Using Luminescence and Fluorescence Technologies. Curr. Opin. Endocr. Metab. Res. 2021, 16, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, F.; Montuori, N. The N-Formyl Peptide Receptors: Much More than Chemoattractant Receptors. Relevance in Health and Disease. Front. Immunol. 2025, 16, 1568629. [Google Scholar] [CrossRef] [PubMed]
- Kuley, R.; Stultz, R.D.; Duvvuri, B.; Wang, T.; Fritzler, M.J.; Hesselstrand, R.; Nelson, J.L.; Lood, C. N-Formyl Methionine Peptide-Mediated Neutrophil Activation in Systemic Sclerosis. Front. Immunol. 2022, 12, 785275. [Google Scholar] [CrossRef] [PubMed]
- Trojan, E.; Tylek, K.; Schröder, N.; Kahl, I.; Brandenburg, L.O.; Mastromarino, M.; Leopoldo, M.; Basta-Kaim, A.; Lacivita, E. The N-Formyl Peptide Receptor 2 (FPR2) Agonist MR-39 Improves Ex Vivo and In Vivo Amyloid Beta (1–42)-Induced Neuroinflammation in Mouse Models of Alzheimer’s Disease. Mol. Neurobiol. 2021, 58, 6203–6221. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, J.; Tao, S.; Liang, Z.; Xie, R.; Liu, N.; Deng, R.; Zhang, Y.; Deng, D.; Jiang, G. Mitochondrial Damage-associated Molecular Patterns: A New Insight into Metabolic Inflammation in Type 2 Diabetes Mellitus. Diabetes Metab. Res. 2024, 40, e3733. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ding, T.; Tang, D.; Wang, J.; Huang, P. Formyl Peptide Receptor 1 Promotes Podocyte Injury through Regulation of Mitogen-Activated Protein Kinase Pathways. Exp. Biol. Med. 2022, 247, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Cheng, Y.C.; Yeh, T.H.; Liu, H.F.; Weng, Y.H.; Chen, R.S.; Chen, Y.C.; Lu, J.C.; Hwang, T.L.; Wei, K.C.; et al. HCH6-1, an Antagonist of Formyl Peptide Receptor-1, Exerts Anti-Neuroinflammatory and Neuroprotective Effects in Cellular and Animal Models of Parkinson’s Disease. Biochem. Pharmacol. 2023, 212, 115524. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.; Liu, Y.; Hu, J.; Lu, L.; Dou, Z.; Dai, H.; Wang, H.; Yang, W. Identification of FPR3 as a Unique Biomarker for Targeted Therapy in the Immune Microenvironment of Breast Cancer. Front. Pharmacol. 2021, 11, 593247. [Google Scholar] [CrossRef]
- Cimmino, T.P.; Pagano, E.; Stornaiuolo, M.; Esposito, G.; Ammendola, R.; Cattaneo, F. Formyl-Peptide Receptor 2 Signalling Triggers Aerobic Metabolism of Glucose through Nox2-Dependent Modulation of Pyruvate Dehydrogenase Activity. Open Biol. 2023, 13, 230336. [Google Scholar] [CrossRef] [PubMed]
- Pecchillo Cimmino, T.; Pagano, E.; Stornaiuolo, M.; Esposito, G.; Ammendola, R.; Cattaneo, F. Formyl-Peptide Receptor 2 Signaling Redirects Glucose and Glutamine into Anabolic Pathways in Metabolic Reprogramming of Lung Cancer Cells. Antioxidants 2022, 11, 1692. [Google Scholar] [CrossRef] [PubMed]
- Yipeng, Z.; Chao, C.; Ranran, L.; Tingting, P.; Hongping, Q. Metabolism: A Potential Regulator of Neutrophil Fate. Front. Immunol. 2024, 15, 1500676. [Google Scholar] [CrossRef] [PubMed]
- Pecchillo Cimmino, T.; Panico, I.; Scarano, S.; Stornaiuolo, M.; Esposito, G.; Ammendola, R.; Cattaneo, F. Formyl Peptide Receptor 2-Dependent cPLA2 and 5-LOX Activation Requires a Functional NADPH Oxidase. Antioxidants 2024, 13, 220. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.S.; Bae, Y.S. Formyl Peptide Receptors in the Mucosal Immune System. Exp. Mol. Med. 2020, 52, 1694–1704. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.L.; Lee, E.J.; Murphy, P.M. Impaired Antibacterial Host Defense in Mice Lacking the N. -Formylpeptide Receptor. J. Exp. Med. 1999, 189, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Molloy, M.J.; Grainger, J.R.; Bouladoux, N.; Hand, T.W.; Koo, L.Y.; Naik, S.; Quinones, M.; Dzutsev, A.K.; Gao, J.L.; Trinchieri, G.; et al. Intraluminal Containment of Commensal Outgrowth in the Gut during Infection-Induced Dysbiosis. Cell Host Microbe 2013, 14, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Di Paola, R.; Fusco, R.; Gugliandolo, E.; D’Amico, R.; Cordaro, M.; Impellizzeri, D.; Perretti, M.; Cuzzocrea, S. Formyl Peptide Receptor 1 Signalling Promotes Experimental Colitis in Mice. Pharmacol. Res. 2019, 141, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Wollam, J.; Riopel, M.; Xu, Y.J.; Johnson, A.M.F.; Ofrecio, J.M.; Ying, W.; El Ouarrat, D.; Chan, L.S.; Han, A.W.; Mahmood, N.A.; et al. Microbiota-Produced N. -Formyl Peptide fMLF Promotes Obesity-Induced Glucose Intolerance. Diabetes 2019, 68, 1415–1426. [Google Scholar] [CrossRef] [PubMed]
- Lind, S.; Dahlgren, C.; Holmdahl, R.; Olofsson, P.; Forsman, H. Functional Selective FPR1 Signaling in Favor of an Activation of the Neutrophil Superoxide Generating NOX2 Complex. J. Leukoc. Biol. 2021, 109, 1105–1120. [Google Scholar] [CrossRef] [PubMed]
- Carlson, R.M.; Vavricka, S.R.; Eloranta, J.J.; Musch, M.W.; Arvans, D.L.; Kles, K.A.; Walsh-Reitz, M.M.; Kullak-Ublick, G.A.; Chang, E.B. fMLP Induces Hsp27 Expression, Attenuates NF-κB Activation, and Confers Intestinal Epithelial Cell Protection. Am. J. Physiol. -Gastrointest. Liver Physiol. 2007, 292, G1070–G1078. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; McCulloch, J.; Das Neves, R.; Rodrigues, G.; Hsieh, W.T.; Gong, W.; Yoshimura, T.; Huang, J.; O’hUigin, C.; Difilippantonio, S.; et al. The Beneficial Effects of Commensal E. coli for Colon Epithelial Cell Recovery Are Related with Formyl Peptide Receptor 2 (Fpr2) in Epithelial Cells. Gut Pathog. 2023, 15, 28. [Google Scholar] [CrossRef] [PubMed]
- Birkl, D.; O’Leary, M.N.; Quiros, M.; Azcutia, V.; Schaller, M.; Reed, M.; Nishio, H.; Keeney, J.; Neish, A.S.; Lukacs, N.W.; et al. Formyl Peptide Receptor 2 Regulates Monocyte Recruitment to Promote Intestinal Mucosal Wound Repair. FASEB J. 2019, 33, 13632–13643. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Leoni, G.; Wentworth, C.C.; Kwal, J.M.; Wu, H.; Ardita, C.S.; Swanson, P.A.; Lambeth, J.D.; Jones, R.M.; Nusrat, A.; et al. Redox signaling regulates commensal-mediated mucosal homeostasis and restitution and requires formyl peptide receptor 1. Mucosal Immunol. 2014, 7, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Hagi, A.; Hayashi, H.; Kishi, K.; Wang, L.; Ebina, Y. Activation of G-Protein Coupled fMLP or PAF Receptor Directly Triggers Glucose Transporter Type 1 (GLUT1) Translocation in Chinese Hamster Ovary (CHO) Cells Stably Expressing fMLP or PAF Receptor. J. Med. Investig. 2000, 47, 19–28. [Google Scholar]
- Wang, L.; Hayashi, H.; Kishi, K.; Huang, L.; Hagi, A.; Tamaoka, K.; Hawkins, P.T.; Ebina, Y. Gi-Mediated Translocation of GLUT4 Is Independent of P85/P110alpha and P110gamma Phosphoinositide 3-Kinases but Might Involve the Activation of Akt Kinase. Biochem. J. 2000, 345, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Miao, Z.; Gao, Y.; Xie, Z.; Liu, M.; Zou, W. Formyl Peptide Receptor 2: A Potential Therapeutic Target for Inflammation-Related Diseases. Pharmacol. Rep. 2025, 77, 593–609. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.; Chen, H.; Chen, S.; Ji, H.; He, T.; Chen, H.; Zhu, R.; Le, Y.; Sang, A.; Yu, Y. LL37/FPR2 Regulates Neutrophil mPTP Promoting the Development of Neutrophil Extracellular Traps in Diabetic Retinopathy. FASEB J. 2024, 38, e23697. [Google Scholar] [CrossRef] [PubMed]
- Marshall, S.A.; Qin, C.X.; Jelinic, M.; O’Sullivan, K.; Deo, M.; Walsh, J.; Li, M.; Parry, L.J.; Ritchie, R.H.; Leo, C.H. The Novel Small-Molecule Annexin-A1 Mimetic, Compound 17b, Elicits Vasoprotective Actions in Streptozotocin-Induced Diabetic Mice. Int. J. Mol. Sci. 2020, 21, 1384. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Kim, D.; Jang, J.H.; Ghim, J.; Park, S.; Song, P.; Kwon, Y.; Kim, J.; Hwang, D.; Bae, Y.S.; et al. Proteomic Analysis of the Palmitate-Induced Myotube Secretome Reveals Involvement of the Annexin A1-Formyl Peptide Receptor 2 (FPR2) Pathway in Insulin Resistance*. Mol. Cell. Proteom. 2015, 14, 882–892. [Google Scholar] [CrossRef] [PubMed]
- Maciuszek, M.; Cacace, A.; Brennan, E.; Godson, C.; Chapman, T.M. Recent Advances in the Design and Development of Formyl Peptide Receptor 2 (FPR2/ALX) Agonists as pro-Resolving Agents with Diverse Therapeutic Potential. Eur. J. Med. Chem. 2021, 213, 113167. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Zayas, J.; Singh, S.K.; Delgado, K.; Wood, S.J.; Mohamed, M.F.; Frausto, D.M.; Albalawi, Y.A.; Price, T.P.; Estupinian, R.; et al. Overriding Impaired FPR Chemotaxis Signaling in Diabetic Neutrophil Stimulates Infection Control in Murine Diabetic Wound. eLife 2022, 11, e72071. [Google Scholar] [CrossRef] [PubMed]
- Rivera Nieves, A.M.; Wauford, B.M.; Fu, A. Mitochondrial Bioenergetics, Metabolism, and beyond in Pancreatic β-Cells and Diabetes. Front. Mol. Biosci. 2024, 11, 1354199. [Google Scholar] [CrossRef] [PubMed]
- Gorudko, I.V.; Kostevich, V.A.; Sokolov, A.V.; Shamova, E.V.; Buko, I.V.; Konstantinova, E.E.; Vasiliev, V.B.; Cherenkevich, S.N.; Panasenko, O.M. Functional Activity of Neutrophils in Diabetes Mellitus and Coronary Heart Disease: Role of Myeloperoxidase in the Development of Oxidative Stress. Bull. Exp. Biol. Med. 2012, 154, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.; Liu, S.; Shi, J.; Chen, H.; Wang, Z.; Le, Y.; Chen, H.; Zhu, R.; Yu, Y. The G-Protein-Coupled Formyl Peptide Receptor 2 Promotes Endothelial-Mesenchymal Transition in Diabetic Retinopathy. Ophthalmic Res. 2023, 66, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Rezzola, S.; Corsini, M.; Chiodelli, P.; Cancarini, A.; Nawaz, I.M.; Coltrini, D.; Mitola, S.; Ronca, R.; Belleri, M.; Lista, L.; et al. Inflammation and N-Formyl Peptide Receptors Mediate the Angiogenic Activity of Human Vitreous Humour in Proliferative Diabetic Retinopathy. Diabetologia 2017, 60, 719–728. [Google Scholar] [CrossRef] [PubMed]
- Mafra, D.; Kemp, J.A.; Borges, N.A.; Wong, M.; Stenvinkel, P. Gut Microbiota Interventions to Retain Residual Kidney Function. Toxins 2023, 15, 499. [Google Scholar] [CrossRef] [PubMed]
- Caimi, G.; Montana, M.; Carollo, C.; Porretto, F.; Vaccaro, F.; Canino, B.; Lo Presti, R. Polymorphonuclear Leukocyte Integrins in Chronic Renal Failure. Clin. Hemorheol. Microcirc. 2005, 32, 43–49. [Google Scholar] [PubMed]
- Rysz, J.; Banach, M.; Stolarek, R.A.; Pasnik, J.; Ciałkowska-Rysz, A.; Markuszewski, L.; Baj, Z. TNF-α Priming Effect on Polymorphonuclear Leukocyte Reactive Oxygen Species Generation and Adhesion Molecule Expression in Hemodialyzed Patients. Arch. Immunol. Ther. Exp. 2006, 54, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Neymeyer, H.; Labes, R.; Reverte, V.; Saez, F.; Stroh, T.; Dathe, C.; Hohberger, S.; Zeisberg, M.; Müller, G.A.; Salazar, J.; et al. Activation of Annexin A1 Signalling in Renal Fibroblasts Exerts Antifibrotic Effects. Acta Physiol. 2015, 215, 144–158. [Google Scholar] [CrossRef] [PubMed]
- Rui-zhi, T.; Ke-huan, X.; Yuan, L.; Xiao, L.; Bing-wen, Z.; Tong-tong, L.; Li, W. Renoprotective Effect of Isoliquiritigenin on Cisplatin-Induced Acute Kidney Injury through Inhibition of FPR2 in Macrophage. J. Pharmacol. Sci. 2022, 148, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhuo, S.; Zhu, T.; Yao, P.; Yang, M.; Mei, H.; Li, N.; Ma, F.; Wang, J.M.; Chen, S.; et al. Fpr2 Deficiency Alleviates Diet-Induced Insulin Resistance Through Reducing Body Weight Gain and Inhibiting Inflammation Mediated by Macrophage Chemotaxis and M1 Polarization. Diabetes 2019, 68, 1130–1142. [Google Scholar] [CrossRef] [PubMed]
- Tourki, B.; Kain, V.; Pullen, A.B.; Norris, P.C.; Patel, N.; Arora, P.; Leroy, X.; Serhan, C.N.; Halade, G.V. Lack of Resolution Sensor Drives Age-Related Cardiometabolic and Cardiorenal Defects and Impedes Inflammation-Resolution in Heart Failure. Mol. Metab. 2020, 31, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Tikhonova, I.; Dyukina, A.; Shaykhutdinova, E.; Safronova, V. Modified Signaling of Membrane Formyl Peptide Receptors in NADPH-Oxidase Regulation in Obesity-Resistant Mice. Membranes 2023, 13, 306. [Google Scholar] [CrossRef] [PubMed]
- Brotfain, E.; Hadad, N.; Shapira, Y.; Avinoah, E.; Zlotnik, A.; Raichel, L.; Levy, R. Neutrophil Functions in Morbidly Obese Subjects. Clin. Exp. Immunol. 2015, 181, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Bian, X.; Le, Y.; Gong, W.; Hu, J.; Zhang, X.; Wang, L.; Iribarren, P.; Salcedo, R.; Howard, O.M.Z.; et al. Formylpeptide Receptor FPR and the Rapid Growth of Malignant Human Gliomas. JNCI J. Natl. Cancer Inst. 2005, 97, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Hu, J.; Bian, X.; Chen, K.; Gong, W.; Dunlop, N.M.; Howard, O.M.Z.; Wang, J.M. Transactivation of the Epidermal Growth Factor Receptor by Formylpeptide Receptor Exacerbates the Malignant Behavior of Human Glioblastoma Cells. Cancer Res. 2007, 67, 5906–5913. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.L.; Ji, C.D.; Tang, J.; Wang, Y.X.; Xiang, D.F.; Li, H.Q.; Liu, W.W.; Wang, J.X.; Yan, H.Z.; Wang, Y.; et al. FPR2 Promotes Invasion and Metastasis of Gastric Cancer Cells and Predicts the Prognosis of Patients. Sci. Rep. 2017, 7, 3153. [Google Scholar] [CrossRef] [PubMed]
- Snapkov, I.; Öqvist, C.O.; Figenschau, Y.; Kogner, P.; Johnsen, J.I.; Sveinbjørnsson, B. The Role of Formyl Peptide Receptor 1 (FPR1) in Neuroblastoma Tumorigenesis. BMC Cancer 2016, 16, 490. [Google Scholar] [CrossRef] [PubMed]
- Chakravarti, N.; Peddareddigari, V.G.R.; Warneke, C.L.; Johnson, M.M.; Overwijk, W.W.; Hwu, P.; Prieto, V.G. Differential Expression of the G-Protein–Coupled Formyl Peptide Receptor in Melanoma Associates with Aggressive Phenotype. Am. J. Dermatopathol. 2013, 35, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Le, Y.; Hu, J.; Gong, W.; Shen, W.; Li, B.; Dunlop, N.M.; Halverson, D.O.; Blair, D.G.; Wang, J.M. Expression of Functional Formyl Peptide Receptors by Human Astrocytoma Cell Lines. J. Neuroimmunol. 2000, 111, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Q.; Su, N.; Gong, P.; Zhang, H.B.; Liu, J.; Wang, D.; Sun, Y.P.; Zhang, Y.; Qian, F.; Zhao, B.; et al. The Expression of Formyl Peptide Receptor 1 Is Correlated with Tumor Invasion of Human Colorectal Cancer. Sci. Rep. 2017, 7, 5918. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, H.; Yang, T.; Su, Z.; Fang, D.; Wang, Y.; Fang, J.; Hou, X.; Le, Y.; Chen, K.; et al. Formylpeptide Receptor 1 Mediates the Tumorigenicity of Human Hepatocellular Carcinoma Cells. OncoImmunology 2016, 5, e1078055. [Google Scholar] [CrossRef] [PubMed]
- Cuomo, P.; Papaianni, M.; Capparelli, R.; Medaglia, C. The Role of Formyl Peptide Receptors in Permanent and Low-Grade Inflammation: Helicobacter pylori Infection as a Model. Int. J. Mol. Sci. 2021, 22, 3706. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhao, J.; Jia, C.; Zhou, L.; Cai, Y.; Ni, J.; Ma, J.; Zheng, M.; Lu, A. FPR2 Enhances Colorectal Cancer Progression by Promoting EMT Process. Neoplasma 2019, 66, 785–791. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Yang, M.; Ding, Y.; Yu, L.; Chen, J. Formyl Peptide Receptor�2 Expression Predicts Poor Prognosis and Promotes Invasion and Metastasis in Epithelial Ovarian Cancer. Oncol. Rep. 2017, 38, 3297–3308. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Seok, O.H.; Ju, S.; Kim, S.Y.; Kim, J.M.; Lee, C.; Hwang, C.S. Detection of Nα-Terminally Formylated Native Proteins by a Pan-N-Formyl Methionine-Specific Antibody. J. Biol. Chem. 2023, 299, 104652. [Google Scholar] [CrossRef] [PubMed]
- Le Naour, J.; Montégut, L.; Pan, Y.; Scuderi, S.A.; Cordier, P.; Joseph, A.; Sauvat, A.; Iebba, V.; Paillet, J.; Ferrere, G.; et al. Formyl Peptide Receptor-1 (FPR1) Represses Intestinal Oncogenesis. OncoImmunology 2023, 12, 2237354. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Li, H.; Zhang, L.; Zhi, H. Mechanisms of Mitochondrial Damage-Associated Molecular Patterns Associated with Inflammatory Response in Cardiovascular Diseases. Inflamm. Res. 2025, 74, 18. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, R.; Li, Y.; Zhang, T.; Wu, N.; Zhang, J.; Guo, Z. Identification of Transcription Factor-Gene Regulatory Network in Acute Myocardial Infarction. Heart Lung Circ. 2017, 26, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Caso, V.M.; Manzo, V.; Pecchillo Cimmino, T.; Conti, V.; Caso, P.; Esposito, G.; Russo, V.; Filippelli, A.; Ammendola, R.; Cattaneo, F. Regulation of Inflammation and Oxidative Stress by Formyl Peptide Receptors in Cardiovascular Disease Progression. Life 2021, 11, 243. [Google Scholar] [CrossRef] [PubMed]
- Salamah, M.F.; Ravishankar, D.; Vaiyapuri, R.; Moraes, L.A.; Patel, K.; Perretti, M.; Gibbins, J.M.; Vaiyapuri, S. The Formyl Peptide fMLF Primes Platelet Activation and Augments Thrombus Formation. J. Thromb. Haemost. 2019, 17, 1120–1133. [Google Scholar] [CrossRef] [PubMed]
- Kagaya, H.; Kim, A.S.; Chen, M.; Lin, P.; Yin, X.; Spite, M.; Conte, M.S. Dynamic Changes in Proresolving Lipid Mediators and Their Receptors Following Acute Vascular Injury in Male Rats. Physiol. Rep. 2024, 12, e16178. [Google Scholar] [CrossRef] [PubMed]
- Ansari, J.; Kaur, G.; Gavins, F. Therapeutic Potential of Annexin A1 in Ischemia Reperfusion Injury. Int. J. Mol. Sci. 2018, 19, 1211. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Norling, L.V.; Garrido Mesa, J.; Silva, M.D.P.; Burton, S.E.; Reutelingsperger, C.; Perretti, M.; Cooper, D. Annexin A1 Attenuates Cardiac Diastolic Dysfunction in Mice with Inflammatory Arthritis. Proc. Natl. Acad. Sci. USA 2021, 118, e2020385118. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhang, L.; Chen, X.; Xue, X.; Guo, Q.; Liu, M.; Zhao, J. Formylpeptide Receptors Promote the Migration and Differentiation of Rat Neural Stem Cells. Sci. Rep. 2016, 6, 25946. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, G.; Chen, X.; Xue, X.; Guo, Q.; Liu, M.; Zhao, J. Formyl Peptide Receptors Promotes Neural Differentiation in Mouse Neural Stem Cells by ROS Generation and Regulation of PI3K-AKT Signaling. Sci. Rep. 2017, 7, 206. [Google Scholar] [CrossRef] [PubMed]
- Busch, L.; Al Taleb, Z.; Tsai, Y.L.; Nguyen, V.T.T.; Lu, Q.; Synatschke, C.V.; Endres, K.; Bufe, B. Amyloid Beta and Its Naturally Occurring N-Terminal Variants Are Potent Activators of Human and Mouse Formyl Peptide Receptor 1. J. Biol. Chem. 2022, 298, 102642. [Google Scholar] [CrossRef] [PubMed]
- Korimová, A.; Klusáková, I.; Hradilová-Svíženská, I.; Kohoutková, M.; Joukal, M.; Dubový, P. Mitochondrial Damage-Associated Molecular Patterns of Injured Axons Induce Outgrowth of Schwann Cell Processes. Front. Cell. Neurosci. 2018, 12, 457. [Google Scholar] [CrossRef] [PubMed]
- Busch, L.; Vieten, S.; Brödel, S.; Endres, K.; Bufe, B. Emerging Contributions of Formyl Peptide Receptors to Neurodegenerative Diseases. Biol. Chem. 2022, 403, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Cussell, P.J.G.; Gomez Escalada, M.; Milton, N.G.N.; Paterson, A.W.J. The N-Formyl Peptide Receptors: Contemporary Roles in Neuronal Function and Dysfunction. Neural Regen. Res. 2020, 15, 1191. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Lin, X.; Zong, X.; Han, S.; Wang, M.; Su, Y.; Ma, L.; Chu, X.; Yi, C.; Zhao, Q.; et al. Structural Basis of FPR2 in Recognition of Aβ42 and Neuroprotection by Humanin. Nat. Commun. 2022, 13, 1775. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, D.; Gong, P.; Lin, A.; Zhang, Y.; Ye, R.D.; Yu, Y. Formyl Peptide Receptor 2 Deficiency Improves Cognition and Attenuates Tau Hyperphosphorylation and Astrogliosis in a Mouse Model of Alzheimer’s Disease. J. Alzheimer’s Dis. 2019, 67, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Schröder, N.; Schaffrath, A.; Welter, J.A.; Putzka, T.; Griep, A.; Ziegler, P.; Brandt, E.; Samer, S.; Heneka, M.T.; Kaddatz, H.; et al. Inhibition of Formyl Peptide Receptors Improves the Outcome in a Mouse Model of Alzheimer Disease. J. Neuroinflammation 2020, 17, 131. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, S.M.; Empadinhas, N. The Microbiome-Mitochondria Dance in Prodromal Parkinson’s Disease. Front. Physiol. 2018, 9, 471. [Google Scholar] [CrossRef] [PubMed]
- Bihler, K.; Kress, E.; Esser, S.; Nyamoya, S.; Tauber, S.C.; Clarner, T.; Stope, M.B.; Pufe, T.; Brandenburg, L.O. Formyl Peptide Receptor 1-Mediated Glial Cell Activation in a Mouse Model of Cuprizone-Induced Demyelination. J. Mol. Neurosci. 2017, 62, 232–243. [Google Scholar] [CrossRef] [PubMed]
- Kilic, A.K.; Esendagli, G.; Sayat, G.; Talim, B.; Karabudak, R.; Kurne, A.T. Promotion of Experimental Autoimmune Encephalomyelitis upon Neutrophil Granulocytes’ Stimulation with Formyl-Methionyl-Leucyl-Phenylalanine (fMLP) Peptide. Autoimmunity 2015, 48, 423–428. [Google Scholar] [CrossRef] [PubMed]
- Schepetkin, I.A.; Khlebnikov, A.I.; Kirpotina, L.N.; Quinn, M.T. Antagonism of Human Formyl Peptide Receptor 1 with Natural Compounds and Their Synthetic Derivatives. Int. Immunopharmacol. 2016, 37, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Wanten, G.; Rops, A.; van Emst-De Vries, S.E.; Naber, T.; Willems, P.H.G.M. Prompt Inhibition of fMLP-Induced Ca2+ Mobilization by Parenteral Lipid Emulsions in Human Neutrophils. J. Lipid Res. 2002, 43, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Ko, H.C.; Wang, Y.H.; Liou, K.T.; Chen, C.M.; Chen, C.H.; Wang, W.Y.; Chang, S.; Hou, Y.C.; Chen, K.T.; Chen, C.F.; et al. Anti-Inflammatory Effects and Mechanisms of the Ethanol Extract of Evodia rutaecarpa and Its Bioactive Components on Neutrophils and Microglial Cells. Eur. J. Pharmacol. 2007, 555, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Michel, P.; Wajs-Bonikowska, A.; Magiera, A.; Wosiak, A.; Balcerczak, E.; Czerwińska, M.E.; Olszewska, M.A. Anti-Inflammatory and Antioxidant Effects of (6S,9R)-Vomifoliol from Gaultheria Procumbens L.: In Vitro and Ex Vivo Study in Human Immune Cell Models. Int. J. Mol. Sci. 2025, 26, 1571. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, O.; Ruan, L.; Hou, X.; Cui, Y.; Wang, J.M.; Le, Y. The Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate Inhibits Leukocyte Activation by Bacterial Formylpeptide through the Receptor FPR. Int. Immunopharmacol. 2009, 9, 1126–1130. [Google Scholar] [CrossRef] [PubMed]
- Cui, K.; Lu, W.; Zhu, L.; Shen, X.; Huang, J. Caffeic Acid Phenethyl Ester (CAPE), an Active Component of Propolis, Inhibits Helicobacter pylori Peptide Deformylase Activity. Biochem. Biophys. Res. Commun. 2013, 435, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Calvello, R.; Cianciulli, A.; Porro, C.; Moda, P.; De Nuccio, F.; Nicolardi, G.; Giannotti, L.; Panaro, M.A.; Lofrumento, D.D. Formyl Peptide Receptor (FPR)1 Modulation by Resveratrol in an LPS-Induced Neuroinflammatory Animal Model. Nutrients 2021, 13, 1418. [Google Scholar] [CrossRef] [PubMed]
- Charman, A.; Muriithi, E.W.; Milne, E.; Wheatley, D.J.; Armstrong, R.A.; Belcher, P.R. Fish Oil before Cardiac Surgery: Neutrophil Activation Is Unaffected but Myocardial Damage Is Moderated. Prostaglandins Leukot. Essent. Fat. Acids 2005, 72, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Imhof, A.; Blagieva, R.; Marx, N.; Koenig, W. Drinking Modulates Monocyte Migration in Healthy Subjects: A Randomised Intervention Study of Water, Ethanol, Red Wine and Beer with or without Alcohol. Diabetes Vasc. Dis. Res. 2008, 5, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.M.D.O.E.; Machado, I.D.; Santin, J.R.; De Melo, I.L.P.; Pedrosa, G.V.; Genovese, M.I.; Farsky, S.H.P.; Mancini-Filho, J. Aqueous Extract of Rosmarinus Officinalis L. Inhibits Neutrophil Influx and Cytokine Secretion. Phytother. Res. 2015, 29, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Pastene, E.; Speisky, H.; Troncoso, M.; Alarcón, J.; Figueroa, G. In Vitro Inhibitory Effect of Apple Peel Extract on the Growth of Helicobacter pylori and Respiratory Burst Induced on Human Neutrophils. J. Agric. Food Chem. 2009, 57, 7743–7749. [Google Scholar] [CrossRef] [PubMed]
- Hapner, C.D.; Deuster, P.; Chen, Y. Inhibition of Oxidative Hemolysis by Quercetin, but Not Other Antioxidants. Chem.-Biol. Interact. 2010, 186, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Liao, H.R.; Chen, P.Y.; Kuo, W.L.; Chang, T.H.; Sung, P.J.; Wen, Z.H.; Chen, J.J. Limonoids from the Seeds of Swietenia Macrophylla and Their Anti-Inflammatory Activities. Molecules 2015, 20, 18551–18564. [Google Scholar] [CrossRef] [PubMed]
- Schwager, J.; Bompard, A.; Weber, P.; Raederstorff, D. Ascorbic Acid Modulates Cell Migration in Differentiated HL-60 Cells and Peripheral Blood Leukocytes. Mol. Nutr. Food Res. 2015, 59, 1513–1523. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Hwang, T.L.; Chen, L.C.; Chang, T.H.; Wei, C.S.; Chen, J.J. Isoflavones and Anti-Inflammatory Constituents from the Fruits of Psoralea Corylifolia. Phytochemistry 2017, 143, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.C.; Yu, H.P.; Syu, Y.T.; Fang, J.Y.; Lin, C.F.; Chang, S.H.; Lee, Y.T.; Hwang, T.L. Honokiol Suppresses Formyl Peptide-Induced Human Neutrophil Activation by Blocking Formyl Peptide Receptor 1. Sci. Rep. 2017, 7, 6718. [Google Scholar] [CrossRef] [PubMed]
- Tseng, W.R.; Ahmed, A.F.; Huang, C.Y.; Tsai, Y.Y.; Tai, C.J.; Orfali, R.S.; Hwang, T.L.; Wang, Y.H.; Dai, C.F.; Sheu, J.H. Bioactive Capnosanes and Cembranes from the Soft Coral Klyxum flaccidum. Mar. Drugs 2019, 17, 461. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.C.; Wang, S.W.; Chen, C.Y.; Hwang, T.L.; Cheng, M.J.; Sung, P.J.; Liao, K.W.; Chen, J.J. Secoiridoid Glucosides and Anti-Inflammatory Constituents from the Stem Bark of Fraxinus chinensis. Molecules 2020, 25, 5911. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.W.; Wang, S.W.; Hu, Y.Y.; Hwang, T.L.; Cheng, M.J.; Chen, I.S.; Sung, P.J.; Chen, J.J. Anti-Inflammatory Alkaloids from the Root Bark of Hernandia nymphaeifolia. Phytochemistry 2020, 173, 112326. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Hou, X.; Chen, J.; Xie, L.; Yang, L.; Le, Y. Sesamin Inhibits Bacterial Formylpeptide-Induced Inflammatory Responses in a Murine Air-Pouch Model and in THP-1 Human Monocytes. J. Nutr. 2010, 140, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Broering, M.F.; Nunes, R.; De Faveri, R.; De Faveri, A.; Melato, J.; Correa, T.P.; Vieira, M.E.; Malheiros, A.; Meira Quintão, N.L.; Santin, J.R. Effects of Tithonia diversifolia (Asteraceae) Extract on Innate Inflammatory Responses. J. Ethnopharmacol. 2019, 242, 112041. [Google Scholar] [CrossRef] [PubMed]
References | Sample/Study | Intervention | Results |
---|---|---|---|
In Vitro Studies | |||
Wanten et al. [109] | FMLP-activated neutrophils | Lipid emulsions (fish oil, olive oil, and soya oil) | ↓ Cytosolic Ca concentration ↓ Stimulatory effect of FMLP ↓ FMLP-induced cytosolic Ca |
Ko et al. [110] | FMLP-induced ROS production in neutrophils | Ethanol extract of E. rutaecarpa (IC50 μg/mL) | ↓ FMLP-induced ROS production ↓ NADPH oxidase activity ↓ LPS-induced NO generation |
Pastene et al. [118] | Human neutrophils | Apple peel extract (IC50 μg/mL) | ↓ Multiplication of two H. pylori strains ↓ respiratory burst of neutrophils induced by H. pylori, PMA, and FMLP |
Hapner et al. [119] | Human neutrophils | Lipid-soluble polyphenols (muscadine, curcumin, quercetin, α-tocopherol, and α-tocotrienol) | ↓ O2•−, H2O2 ↓ FMLP-induced neutrophil oxidative bursts |
Cui et al. [113] | E. coli BL21(DE3) | 4.02 µM caffeic acid phenethyl ester | ↑ Inhibition of HpPDF ↑ Inhibition of f-MAS |
Chen et al. [120] | FMLP-activated neutrophils | Swietenia macrophylla extract (IC50 μM) | ↓ O2•− ↓ LPS-induced NO generation |
Schwager et al. [121] | Granulocyte/macrophage colony-stimulating factor, IL-8, and FMLP | 50–1000 mol/L L-ascorbic acid for 4–6 days. | ↔ CXCR2 and FMLPR expression ↓ Less cells migrate toward IL-8 and FMLP |
Chen et al. [122] | FMLP/CB-activated neutrophils | Isoflavone derivatives from Psoraleae fructus (IC50 μM) | ↓ FMLP/CB-induced elastase activity ↓ O2•− ↓ LPS-induced NO generation |
Liu et al. [123] | Human neutrophils activated by a bacterial FPR1 activator, FMLP | 1, 3 and 10 μM honokiol | ↓ O2•− and elastase levels ↓ FPR1 expression ↔ FPR2 expression ↓ FPR1 agonist-induced Ca mobilization ↓ Phosphorylation of p38 MAPK, ERK, JNK ↓ Mitochondrial N-formyl peptide, fMMYALF, levels |
Tseng et al. [124] | FMLP/CB-activated neutrophils | Ethyl acetate extract of K. flaccidum (IC50 μM) | ↓ FMLP/CB-induced elastase activity ↓ O2•− ↓ LPS-induced NO generation |
Chang et al. [125] | FMLP/CB-activated neutrophils | Fraxinus chinensis Roxb. (Oleaceae) extract (IC50 μM) | ↓ O2•− ↓ FMLP/CB-induced elastase activity ↓ LPS-induced NO generation ↑ MAPKs and IκBα expression |
Lai et al. [126] | FMLP/CB-activated neutrophils | Compounds isolated from the root bark of H. nymphaeifolia (IC50 μM) | ↓ O2•− ↓ FMLP-induced elastase release ↓ LPS-induced NO generation |
Schepetkin et al. [7] | Human neutrophils preincubated for 10 min with 5 nM FMLP or WKYMVM | 3.1, 6.33, 12.5, or 25 µL/dL essential oils extracted from P. balsamifera buds, propolis, and pure nerolidol | ↓ FMLP-induced neutrophil chemotaxis ↓ Activation of FPR1 and FPR2 |
In Vivo Studies | |||
Calvello et al. [114] | 129SV male mice (LPS-induced neuroinflammation) | 50 mg/kg resveratrol for 10 days | ↓ IL-1β and TNF-α gene and protein expression in the striatum and hippocampus ↑ FPR1 and SIRT1 expression and IL-10 levels |
In Vitro and In Vivo Studies | |||
Zhu et al. [3] | In vitro: human monocyte cell line THP-1 In vivo: KM mice (murine air-pouch model) | In vitro: from 5 to 500 μM green tea polyphenol-epigallocatechin-3-gallate for 24 h In vivo: 20 mg/kg/day of green tea polyphenol-epigallocatechin-3-gallate for 2 days | In vitro: ↓ FMLP-induced leukocyte cell migration, ↓ FMLP stimulation of Ca flux ↓ Phosphorylation of ERK1/2 ↓ FPR-mediated leukocyte migration In vivo: ↓ fMLP-induced leukocyte migration |
Cui et al. [127] | In vitro: human monocyte cell line THP-1 In vivo: C57BL/6 mice (murine air-pouch model) | In vitro: sesamin (12.5 and 50 μmol/L) In vivo: intraperitoneal administration of sesamin (12 mg·kg−1·d−1) for 2 days | In vitro: ↓ FMLP-induced chemotaxis ↓ FMLP-induced nuclear factor-κB activation ↓ FMLP-induced ERK1/2 phosphorylation ↔ FMLP-induced calcium flux In vivo: ↓ leukocyte infiltration into the air pouch induced by FMLP |
Silva et al. [117] | In vitro: peritoneal neutrophils In vivo: male Wistar rats | In vitro: 1, 10, or 100 μg/mL R. officinalis extract In vivo: 100, 200, or 400 mg/kg R. officinalis extract orally for four hours | In vitro: ↓ neutrophil chemotaxis, NO production ↓ shedding of L-selectin and β2 integrin expression ↓ FMLP-induced migration In vivo: ↓ SOD, TBARS, LTB4, PGE2, IL-6, and TNF-α levels |
Broering et al. [128] | In vitro: LPS-stimulated neutrophils In vivo: male Swiss mice (carrageenan-induced inflammation) | In vitro: T. diversifolia extract (1, 10, or 100 μg/mL) In vivo: pretreatment one hour before with T. diversifolia extract (0.1, 1, or 3 mg/kg) orally | In vitro: ↓ TNF, IL-1β and IL-6 levels, neutrophil chemotaxis, and NO production ↔ levels of CXCL-1 ↓ FMLP-induced migration In vivo: ↓ leukocyte migration, ↓ connective tissue edema ↓ TNF, IL-1β and CXCL-1 levels ↔ IL-6 levels |
Human Studies | |||
Charman et al. [115] | RCT: 22 subjects before cardiac surgery Ex vivo: neutrophil activation by superoxide anion generation | RCT: 8 g/day fish oil (omega 3) for 6 weeks | RCT: ↓ plasma VLDL and TG levels ↑ HDL cholesterol levels, ↓ troponin levels ↔ generation or myeloperoxidase release Ex vivo: ↔ FMLP-stimulated neutrophil O2•− levels |
Imhof et al. [116] | 42 healthy subjects/RCT | Ethanol (concentration 12.5%), beer (5.6%), red wine (12.5%), or dealcoholized beverages for 3 weeks | Ethanol: ↓ MCP-1-stimulated migration and FMLP levels, ↓ ICAM-1 levels, ↓ TNF-α levels Dealcoholized red wine: ↓ MCP-1-stimulated migration and FMLP levels, ↓ ICAM-1 levels, Red wine: ↑ HDL-C levels, ↑ selectin levels, ↓ ICAM-1 levels Dealcoholized beer: ↑ TNF-α levels |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarenga, L.; Cardozo, L.F.M.F.; Ribeiro, M.; Kussi, F.; Esgalhado, M.; Mafra, D. Bioactive Compounds as Modulators of N-Formyl Peptide Signaling in Chronic Diseases. Molecules 2025, 30, 2981. https://doi.org/10.3390/molecules30142981
Alvarenga L, Cardozo LFMF, Ribeiro M, Kussi F, Esgalhado M, Mafra D. Bioactive Compounds as Modulators of N-Formyl Peptide Signaling in Chronic Diseases. Molecules. 2025; 30(14):2981. https://doi.org/10.3390/molecules30142981
Chicago/Turabian StyleAlvarenga, Livia, Ludmila F. M. F. Cardozo, Márcia Ribeiro, Fernanda Kussi, Marta Esgalhado, and Denise Mafra. 2025. "Bioactive Compounds as Modulators of N-Formyl Peptide Signaling in Chronic Diseases" Molecules 30, no. 14: 2981. https://doi.org/10.3390/molecules30142981
APA StyleAlvarenga, L., Cardozo, L. F. M. F., Ribeiro, M., Kussi, F., Esgalhado, M., & Mafra, D. (2025). Bioactive Compounds as Modulators of N-Formyl Peptide Signaling in Chronic Diseases. Molecules, 30(14), 2981. https://doi.org/10.3390/molecules30142981