Amelanchier Medik. Species: An Underutilized Source of Bioactive Compounds with Potential for Pharmacological and Nutraceutical Applications
Abstract
1. Introduction
2. Results and Discussion
2.1. Nomenclature and Taxonomy
2.2. Phytochemical Composition of Amelanchier Species
2.2.1. Hydroxycinnamic Acid Content of Amelanchier Species
2.2.2. Flavonoid and Proanthocyanidin Content of Amelanchier Species
2.2.3. Vitamin and Mineral Content of Amelanchier Species
2.2.4. Sugar Content of Amelanchier Species
2.2.5. Terpenoid Content of Amelanchier Species
2.2.6. Carotenoid Content of Amelanchier Species
2.2.7. Cyanogenic Glycoside Content of Amelanchier Species
2.2.8. Organic Acid Content of Amelanchier Species
2.2.9. Fatty Acid Content of Amelanchier Species
2.3. Biological Activities and Traditional Uses of Amelanchier Species
2.3.1. Antioxidant Properties
2.3.2. Anti-Inflammatory and Anticancer Properties
2.3.3. Antidiabetic Properties
2.3.4. Antibacterial Properties
2.3.5. Antiviral Properties
2.3.6. Other Properties
2.3.7. Toxicity of Amelanchier Species
3. Materials and Methods
4. Conclusions and Future Directions
- Expand studies to lesser-known Amelanchier species and cultivars, as well as different plant organs and developmental stages.
- Systematically connect phytochemical analyses with cultivation conditions, harvest timing, storage, and extraction methods to better understand metabolite variability and stability.
- Employ phytochemically characterized extracts or fractions in in vivo pharmacological models, complemented by mechanistic and pharmacokinetic studies, to identify bioactive constituents and clarify therapeutic potential.
- Explore agronomic and ecological aspects, including invasive potential and sustainable valorization of underutilized plant parts.
- Integrate ethnobotanical knowledge with modern analytical approaches to broaden the medicinal, nutritional, and ecological applications of Amelanchier.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Flora Online (WFO). Amelanchier Medik. Available online: https://www.worldfloraonline.org (accessed on 25 March 2025).
- Lavola, A.; Karjalainen, R.; Julkunen-Tiito, R. Bioactive Polyphenols in Leaves, Stems, and Berries of Saskatoon (Amelanchier alnifolia Nutt.) Cultivars. J. Agric. Food Chem. 2012, 60, 1020–1027. [Google Scholar] [CrossRef]
- Lim, T.K. Amelanchier alnifolia. Edible Med. Non-Med. Plants 2012, 4, 358–363. [Google Scholar]
- Adhikari, D.P.; Francis, J.A.; Schutzki, R.E.; Chandra, A.; Nair, M.G. Quantification and characterisation of cyclo-oxygenase and lipid peroxidation inhibitory anthocyanins in fruits of Amelanchier. Phytochem. Anal. 2005, 16, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.P. Berry fruits: Compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J. Agric. Food Chem. 2008, 56, 627–629. [Google Scholar] [CrossRef]
- Stalažs, A. ×Sorbaronia mitschurinii: From an artificially created species to an invasion in Europe: Repeating the fate of invasive Amelanchier ×spicata, a review. J. Plant Res. 2021, 134, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Donno, D.; Cerutti, A.K.; Mellano, M.G.; Prgomet, Z.; Beccaro, G.L. Serviceberry, a berry fruit with growing interest of industry: Physicochemical and quali-quantitative health-related compound characterization. J. Funct. Foods 2016, 26, 157–166. [Google Scholar] [CrossRef]
- Męczarska, K.; Cyboran, S.; Włoch, A.; Bonarska-Kujawa, D.; Oszmiański, J.; Kleszczyńska, H. Polyphenol content and bioactivity of Saskatoon (Amelanchier Alnifolia Nutt.) leaves and berries. Acta Pol. Pharm. 2017, 74, 660–669. [Google Scholar]
- Ozga, J.A.; Saeed, A.; Reinecke, D.M. Anthocyanins and nutrient components of saskatoon fruits (Amelanchier alnifolia Nutt.). Can. J. Plant Sci. 2006, 86, 193–197. [Google Scholar] [CrossRef]
- Szpadzik, E.; Krupa, T. The Yield, Fruit Quality and Some of Nutraceutical Characteristics of Saskatoon Berries (Amelanchier alnifolia Nutt.) in the Conditions of Eastern Poland. Agriculture 2021, 11, 824. [Google Scholar] [CrossRef]
- Hu, C.; Kwok, B.H.L.; Kitts, D.D. Saskatoon berries (Amelanchier alnifolia Nutt.) scavenge free radicals and inhibit intracellular oxidation. Food Res. Int. 2005, 38, 1079–1085. [Google Scholar] [CrossRef]
- Dăescu, A.M.; Nistor, M.; Nicolescu, A.; Pop, R.; Bunea, A.; Rugina, D.; Pintea, A. Antioxidant, Enzyme Inhibitory, and Protective Effect of Amelanchier lamarckii Extract. Plants 2024, 13, 1347. [Google Scholar] [CrossRef]
- Lachowicz, S.; Seliga, Ł.; Pluta, S. Distribution of Phytochemicals and Antioxidative Potency in Fruit Peel, Flesh, and Seeds of Saskatoon Berry. Food Chem. 2020, 305, 125430. [Google Scholar] [CrossRef] [PubMed]
- Asyakina, L.; Atuchin, V.; Drozdova, M.; Kozlova, O.; Prosekov, A. Ex Vivo and In Vitro Antiaging and Antioxidant Extract Activity of the Amelanchier ovalis from Siberia. Int. J. Mol. Sci. 2022, 23, 15156. [Google Scholar] [CrossRef] [PubMed]
- Bakowska-Barczak, A.M.; Kolodziejczyk, P. Evaluation of Saskatoon berry (Amelanchier alnifolia Nutt.) cultivars for their polyphenol content, antioxidant properties, and storage stability. J. Agric. Food Chem. 2008, 56, 9933–9940. [Google Scholar] [CrossRef]
- Medicus, F.C. Amelanchier. In Philosophische Botanik: Mit kritischen Bemerkungen. Von den mannigfaltigen Umhüllungen der Saamen; Medicus, F.C., Ed.; hansebooks: Mannheim, Germany, 1789. [Google Scholar]
- Kuklina, A.G.; Kuznetsova, O.I.; Schanze, I.A. Molecular Genetic Study of Invasive Shadberry Species (Amelanchier Medik.). Russ. J. Biol. Invasions 2018, 9, 134–145. [Google Scholar] [CrossRef]
- Jones, G.N. American Species of Amelanchier. Illinois Biol Monographs 1946, 20, 1–126. [Google Scholar]
- Kartesz, J.T.; Kartesz, R. A Synonymized Checklist of the Vascular Flora of the United States, Canada, and Greenland; University of North Carolina Press: Chapel Hill, NC, USA, 1980. [Google Scholar]
- Krüssmann, G. Manual of Cultivated Broad-Leaved Trees and Shrubs; English Translation of Handbuch der Laubgehölze (1976); Timber Press: Beaverton, OR, USA, 1984. [Google Scholar]
- Indreica, A.; Pușcaș, M.; Bartók, A. Distribution of Amelanchier ovalis Medik. in the Romanian Carpathians—A Critical Overview. Studia Universitatis Babeș-Bolyai Biologia 2016, LXI, 81–94. [Google Scholar]
- Lee, J.Y.; Yoo, D.H.; Joo, D.H.; Kim, S.R.; Jo, H.S.; Joo, S.H.; Chae, J.W. Anti-inflammatory Effects of Amelanchier asiatica Fruits Ethanol Extract. J. Soc. Cosmet. Sci. Korea 2017, 43, 19–26. [Google Scholar] [CrossRef]
- Golovkin, B.N.; Kuz’min, Z.E. Introduktsiya rastenii v datakh, sobytiyakh i litsakh (Plant Introduction: Dates, Events and Persons); Nauka: Moscow, Russia, 2005. [Google Scholar]
- Fernald, M.L. Amelanchier spicata Not an American Species. Rhodora 1946, 48, 125–129. [Google Scholar]
- Campbell, C.S.; Burgess, M.B.; Cushman, K.R.; Doucette, E.T.; Dibble, A.C.; Frye, C.T. Amelanchier. In Flora of North America. Magnoliophyta: Picramniaceae to Rosaceae; Brouillet, L., Gandhi, K., Howard, C.L., Jeude, H., Kiger, R.W., Phipps, J.B., Pryor, A.C., Schmid, H.H., Strother, J.L., Zarucchi, J.L., Eds.; Oxford University Press: New York, NY, USA, 2014. [Google Scholar]
- Franco, J.A. Amelanchier Medicus. In Flora Europaea; University Press: Cambridge, UK, 1968. [Google Scholar]
- Schroeder, F.G. G. Exotic Amelanchier Species Naturalized in Europe and Their Occurrence in Great Britain. Watsonia 1970, 8, 155–162. [Google Scholar]
- Juríková, T.; Balla, S.; Sochor, J.; Pohanka, M.; Mlcek, J.; Baron, M. Flavonoid Profile of Saskatoon Berries (Amelanchier alnifolia Nutt.) and Their Health Promoting Effects. Molecules 2013, 18, 12571–12586. [Google Scholar]
- Zatylny, A.M.; Ziehl, W.D.; St-Pierre, R.G. Physicochemical properties of fruit of 16 saskatoon (Amelanchier alnifolia Nutt.) cultivars. Can. J. Plant Sci. 2005, 85, 933–938. [Google Scholar] [CrossRef]
- Dudonné, S.; Dubé, P.; Anhê, F.F.; Pilon, G.; Marette, A.; Lemire, M.; Harris, C.; Dewailly, E.; Desjardins, Y. Comprehensive analysis of phenolic compounds and abscisic acid profiles of twelve native Canadian berries. J. Food Compos. Anal. 2015, 44, 214–224. [Google Scholar] [CrossRef]
- Lachowicz, S.; Michalska, A.; Lech, K.; Majerska, J.; Oszmiański, J.; Figiel, A. Comparison of the effect of four drying methods on polyphenols in saskatoon berry. LWT 2019, 111, 727–736. [Google Scholar] [CrossRef]
- Juríková, T.; Sochor, J.; Rop, O.; Mlček, J.; Balla, Š.; Szekeres, L.; Žitný, R.; Zitka, O.; Adam, V.; Kizek, R. Evaluation of Polyphenolic Profile and Nutritional Value of Non-Traditional Fruit Species in the Czech Republic — A Comparative Study. Molecules 2012, 17, 8968–8981. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Koron, D.; Rusjan, D. The impact of food processing on the phenolic content in products made from juneberry (Amelanchier lamarckii) fruits. J. Food Sci. 2020, 85, 386–393. [Google Scholar] [CrossRef]
- Laksaeva, E.A. Fruits of plants of Amelanchier genus (Amelanchier Medic) as source of biologically active substances and minerals. IP Pavlov. Russ. Med. Biol. Her. 2018, 26, 296–304. [Google Scholar] [CrossRef]
- Mazza, G. Compositional and functional properties of Saskatoon berry and Blueberry. Int. J. Fruit Sci. 2005, 5, 101–120. [Google Scholar] [CrossRef]
- Sagandyk, A.T.; Liberal, Â.; da Silveira, T.F.; Alves, M.J.; Ferreira, I.C.F.R.; Zhakupova, G.N.; Makangali, K.; Tultabayeva, T.C.; Barros, L. Nutritional, phytochemical, and bioactive prospects of black chokeberry (Aronia melanocarpa) and saskatoon berry (Amelanchier ovalis) grown in the Republic of Kazakhstan. Appl. Food Res. 2024, 4, 100564. [Google Scholar] [CrossRef]
- Rogiers, S.Y.; Knowles, N.R. Physical and chemical changes during growth, maturation, and ripening of saskatoon (Amelanchier alnifolia) fruit. Can. J. Bot. 1997, 75, 1215–1225. [Google Scholar] [CrossRef]
- Lachowicz, S.; Oszmiański, J.; Seliga, Ł.; Pluta, S. Phytochemical Composition and Antioxidant Capacity of Seven Saskatoon Berry (Amelanchier alnifolia Nutt.) Genotypes Grown in Poland. Molecules 2017, 22, 853. [Google Scholar] [CrossRef]
- Ochmian, I.; Kubus, M.; Dobrowolska, A. Description of plants and assessment of chemical properties of three species from the Amelanchier genus. Dendrobiology 2013, 70, 59–64. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Slatnar, A.; Stampar, F.; Veberic, R. HPLC–MSn identification and quantification of flavonol glycosides in 28 wild and cultivated berry species. Food Chem. 2012, 135, 2138–2146. [Google Scholar] [CrossRef]
- Bieniek, A.; Markuszewski, B.; Kopytowski, J.; Pluta, S. Yielding and Fruit Quality of Several Cultivars and Breeding Clones of Amelanchier Alnifolia Grown in North-Eastern Poland. Zemdirbyste-Agriculture 2019, 106, 351–358. [Google Scholar] [CrossRef]
- Heinonen, M.I.; Ollilainen, V.; Linkola, E.K.; Varo, P.T.; Koivistoinen, P.E. Carotenoids in Finnish foods: Vegetables, fruits, and berries. J. Agric. Food Chem. 1989, 37, 655–659. [Google Scholar] [CrossRef]
- Mazza, G.; Cottrell, T. Carotenoids and cyanogenic glucosides in saskatoon berries (Amelanchier alnifolia Nutt.). J. Food Compos. Anal. 2008, 21, 249–254. [Google Scholar] [CrossRef]
- Mattila, P.; Hellström, J.; Törrönen, R. Phenolic acids in berries, fruits, and beverages. J. Agric. Food Chem. 2006, 54, 7193–7199. [Google Scholar] [CrossRef]
- Jitan, S.A.; Alkhoori, S.A.; Yousef, L.F. Chapter 13—Phenolic Acids from Plants: Extraction and Application to Human Health. Stud. Nat. Prod. Chem. 2018, 58, 389–417. [Google Scholar]
- Jin, A.L.; Ozga, J.A.; Kennedy, J.A.; Koerner-Smith, J.L.; Botar, G.; Reinecke, D.M. Developmental profile of anthocyanin, flavonol, and proanthocyanidin type, content, and localization in saskatoon fruits (Amelanchier alnifolia Nutt.). J. Agric. Food Chem. 2015, 63, 1601–1614. [Google Scholar] [CrossRef]
- Hosseinian, F.S.; Li, W.; Hydamaka, A.W.; Tsopmo, A.; Lowry, L.; Friel, J.; Beta, T. Proanthocyanidin profile and ORAC values of Manitoba berries, chokecherries, and seabuckthorn. J. Agric. Food Chem. 2007, 55, 6970–6976. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Huang, F.; Hui, A.L.; Shen, G.X. Bioactive Components and Health Benefits of Saskatoon Berry. J. Diabetes Res. 2020, 3901636. [Google Scholar] [CrossRef]
- Tang, S.; Wang, B.; Liu, X.; Xi, W.; Yue, Y.; Tan, X.; Bai, J.; Huang, L. Structural insights and biological activities of flavonoids: Implications for novel applications. Food Front. 2024, 6, 218–247. [Google Scholar] [CrossRef]
- Tian, Y.; Liimatainen, J.; Alanne, A.-L.; Lindstedt, A.; Liu, P.; Sinkkonen, J.; Kallio, H.; Yang, B. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. Food Chem. 2017, 220, 266–281. [Google Scholar] [CrossRef]
- Hosseinian, F.S.; Beta, T. Saskatoon and Wild Blueberries Have Higher Anthocyanin Contents than Other Manitoba Berries. J. Agric. Food Chem. 2007, 55, 10832–10838. [Google Scholar] [CrossRef] [PubMed]
- Hellström, J.; Sinkkonen, J.; Karonen, M.; Mattila, P. Isolation and structure elucidation of procyanidin oligomers from Saskatoon berries (Amelanchier alnifolia). J. Agric. Food Chem. 2007, 55, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Hellström, J.K.; Törrönen, A.R.; Mattila, P.H. Proanthocyanidins in common food products of plant origin. J. Agric. Food Chem. 2009, 57, 7899–7906. [Google Scholar] [CrossRef]
- Fang, J. Nutritional composition of saskatoon berries: A review. Botany 2021, 99, 175–184. [Google Scholar] [CrossRef]
- Burns-Kraft, T.F.; Dey, M.; Rogers, R.B.; Ribnicky, D.M.; Gipp, D.M.; Cefalu, W.T.; Raskin, I.; Lila, M.A. Phytochemical composition and metabolic performance-enhancing activity of dietary berries traditionally used by Native North Americans. J. Agric. Food Chem. 2008, 56, 654–660. [Google Scholar] [CrossRef]
- Li, R.; Hettiarachchy, N.; Rayaprolu, S.; Eswaranandam, S.; Howe, B.; Davis, M.; Jha, A. Phenolics and antioxidant activity of Saskatoon berry (Amelanchier alnifolia) pomace extract. J. Med. Food. 2014, 17, 384–392. [Google Scholar] [CrossRef]
- Saunoriūtė, S.; Zymonė, K.; Marksa, M.; Raudonė, L. Comparative Analysis of Phenolic Profiles and Antioxidant Activity in the Leaves of Invasive Amelanchier × spicata (Lam.) K. Koch in Lithuania. Plants 2025, 14, 221. [Google Scholar] [CrossRef]
- Migut, D.; Gorzelany, J.; Pluta, S.; Zaguła, G. Content of selected minerals in the fruit of Saskatoon berry (Amelanchier alnifolia Nutt.) genotypes grown in central Poland. J. Elem. 2019, 24, 1323–1333. [Google Scholar] [CrossRef]
- Eggersdorfer, M.; Wyss, A. Carotenoids in human nutrition and health. Arch. Biochem. Biophys. 2018, 652, 18–26. [Google Scholar] [CrossRef]
- Majak, W.; Udenberg, T.; Clark, L.J.; McLean, A. Toxicity of Saskatoon serviceberry to cattle. Can. Vet. J. 1980, 21, 74–76. [Google Scholar]
- Brooke, B.M.; McDiarmid, R.E.; Majak, W. The cyanide potential in two varieties of Amelanchier alnifolia. Can. J. Plant Sci. 1980, 68, 543–547. [Google Scholar] [CrossRef]
- Piršelová, B.; Jakubčinová, J. Plant cyanogenic glycosides: From structure to properties and potential applications. Front. Plant Sci. 2025, 16, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.J.; Rimando, A.M.; Fish, W.; Mentreddy, S.R.; Mathews, S.T. Serviceberry [Amelanchier alnifolia (Nutt.) Nutt. ex. M. Roem (Rosaceae)] leaf extract inhibits mammalian α-glucosidase activity and suppresses postprandial glycemic response in a mouse model of diet-induced obesity and hyperglycemia. J. Ethnopharmacol. 2012, 143, 481–487. [Google Scholar] [CrossRef]
- Stevenson, D.G.; Eller, F.J.; Wang, L.; Jane, J.L.; Wang, T.; Inglett, G.E. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. J. Agric. Food Chem. 2007, 55, 4005–4013. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Mazza, G. Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFN-gamma-activated RAW 264.7 macrophages. J. Agric. Food Chem. 2002, 50, 850–857. [Google Scholar] [CrossRef]
- Johnson, M.H.; de Mejia, E.G.; Fan, J.; Lila, M.A.; Yousef, G.G. Anthocyanins and proanthocyanidins from blueberry-blackberry fermented beverages inhibit markers of inflammation in macrophages and carbohydrate-utilizing enzymes in vitro. Mol. Nutr. Food Res. 2013, 57, 1182–1197. [Google Scholar] [CrossRef]
- de la Iglesia, R.; Milagro, F.I.; Campión, J.; Boqué, N.; Martínez, J.A. Healthy properties of proanthocyanidins. Biofactors 2010, 36, 159–168. [Google Scholar] [CrossRef]
- Wang, J.; Mazza, G. Effects of anthocyanins and other phenolic compounds on the production of tumor necrosis factor alpha in LPS/IFN-gamma-activated RAW 264.7 macrophages. J. Agric. Food Chem. 2002, 50, 4183–4189. [Google Scholar] [CrossRef]
- Gunawardana, S.; Eberhart, K.; Hartman, K.; Halaweish, F.T. Assessment of Chemopreventive Contents of Native American Juneberries (Amelanchier alnifolia (Nutt.) Nutt. ex M. Roem.). Pharm. Crops 2016, 6, 13–21. [Google Scholar] [CrossRef]
- Boivin, D.; Blanchette, M.; Barrette, S.; Moghrabi, A.; Béliveau, R. Inhibition of cancer cell proliferation and suppression of TNF-induced activation of NFkappaB by edible berry juice. Anticancer Res. 2007, 27, 937–948. [Google Scholar]
- du Preez, R.; Wanyonyi, S.; Mouatt, P.; Panchal, S.K.; Brown, L. Saskatoon Berry Amelanchier alnifolia Regulates Glucose Metabolism and Improves Cardiovascular and Liver Signs of Diet-Induced Metabolic Syndrome in Rats. Nutrients 2020, 12, 931. [Google Scholar] [CrossRef]
- Łysiak, G.P.; Szot, I. The Possibility of Using Fruit-Bearing Plants of Temperate Climate in the Treatment and Prevention of Diabetes. Life 2023, 13, 1795. [Google Scholar] [CrossRef]
- Jantová, S.; Nagy, M.; Ruzeková, L.; Grancai, D. Antibacterial activity of plant extracts from the families Fabaceae, Oleaceae, Philadelphaceae, Rosaceae and Staphyleaceae. Phytother. Res. 2000, 14, 601–603. [Google Scholar] [CrossRef]
- Khan, M.; Masoud, M.S.; Qasim, M.; Khan, M.A.; Zubair, M.; Idrees, S.; Ashraf, A.; Ashfaq, U.A. Molecular screening of phytochemicals from Amelanchier Alnifolia against HCV NS3 protease/helicase using computational docking techniques. Bioinformation 2013, 9, 978–982. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, A.R.; Roberts, T.E.; Gibbons, E.; Ellis, S.M.; Babiuk, L.A.; Hancock, R.E.; Towers, G.H. Antiviral screening of British Columbian medicinal plants. J. Ethnopharmacol. 1995, 49, 101–110. [Google Scholar] [CrossRef]
- Binh, N.T.T.; Yen, N.T.H.; Thu, D.K. The Potential of Medicinal Plants and Bioactive Compounds in the Fight Against COVID-19. VNU J. Sci. 2021, 37, 20–36. [Google Scholar]
- Aleixandre, A.; Gil, J.V.; Sineiro, J.; Rosell, C.M. Understanding phenolic acids inhibition of α-amylase and α-glucosidase and influence of reaction conditions. Food Chem. 2022, 372, 131231. [Google Scholar] [CrossRef] [PubMed]
- Donno, D.; Cerutti, A.; Prgomet, I.; Mellano, M.G.; Beccaro, G.L. Foodomics for mulberry fruit (Morus spp.): Analytical fingerprint as antioxidants’ and health properties’ determination tool. Int. Food Res. 2014, 69, 179–188. [Google Scholar] [CrossRef]
- Ferreira, M.P.; Gendron, F.; Kindscher, K. Bioactive Prairie Plants and Aging Adults: Role in Health and Disease. In Bioactive Prairie Plants and Aging Adults: Bioactive Food as Dietary Interventions for the Aging Population; Watson, R.R., Preedy, V.R., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Núñez-Colín, C.A.; Hernández-Martínez, M.A. The mexican serviceberry (Amelanchier denticulate): A new potential berry fruit crop from semi-arid areas. Acta Hortic. 2011, 918, 917–923. [Google Scholar] [CrossRef]
- Wang, S.; Yu, J.; Song, J.; Meng, Q.F.; Zhang, Z.R.; Jiang, G.Q. Isolation, purification, structural analysis and in vitro activity of polysaccharides from Amelanchier alnifolia Nutt. Process Biochem. 2023, 136, 229–236. [Google Scholar] [CrossRef]
- Didur, O.O.; Khromykh, N.O.; Lykholat, T.Y.; Alexeyeva, A.A.; Liashenko, O.V.; Lykholat, Y.V. Comparative analysis of the polyphenolic compounds accumulation and the antioxidant capacity of fruits of different species of the genus Amelanchier. Agrology 2022, 5, 3–7. [Google Scholar]
- Karapatzak, E.; Papagrigoriou, T.; Papanastasi, K.; Dichala, O.; Karydas, A.; Nikisianis, N.; Patakioutas, G.; Lazari, D.; Krigas, N.; Maloupa, E. From the Wild to the Field: Documentation, Propagation, Pilot Cultivation, Fertilization, and Phytochemical Evaluation of the Neglected and Underutilized Amelanchier ovalis Medik. (Rosaceae). Plants 2023, 12, 1142. [Google Scholar] [CrossRef]
- Burdejova, L.; Tobolkova, B.; Polovka, M. Effects of Different Factors on Concentration of Functional Components of Aronia and Saskatoon Berries. Plant Foods Hum. Nutr. 2020, 75, 83–88. [Google Scholar] [CrossRef]
- Michalczyk, M.; Macura, R. Effect of Processing and Storage on The Antioxidant Activity of Frozen and Pasteurized Shadblow Serviceberry (Amelanchier canadensis). Int. J. Food Prop. 2010, 13, 1225–1233. [Google Scholar] [CrossRef]
- Piecko, J.; Konopacka, D.; Mieszczakowska-Frąc, M.; Kruczynska, D. The Effectiveness of Vacuum-microwave Drying Methods in the Preservation of Amelanchier Berries (Amelanchier canadensis L. Medik.). Int. J. Food Eng. 2017, 13, 20160346. [Google Scholar] [CrossRef]
- Jurčaga, L.; Bobko, M.; Bučko, O.; Mendelova, A.; Belas, P.; Krocko, M.; Lidikova, J.; Bobkova, A.; Demianova, A.; Polakova, K.; et al. Effect of Amelanchier extract on lipid oxidation and sensory features of pork sausages. JMBFS 2022, 12, e9433. [Google Scholar] [CrossRef]
- Gorzelany, J.; Patyna, M.; Pluta, S.; Kapusta, I.; Balawejder, M.; Belcar, J. The Effect of the Addition of Ozonated and Non-Ozonated Fruits of the Saskatoon Berry (Amelanchier alnifolia Nutt.) on the Quality and Pro-Healthy Profile of Craft Wheat Beers. Molecules 2022, 27, 4544. [Google Scholar] [CrossRef] [PubMed]
- de Rus Jacquet, A.; Tambe, M.A.; Ma, S.Y.; McCabe, G.P.; Vest, J.H.C.; Rochet, J.C. Pikuni-Blackfeet traditional medicine: Neuroprotective activities of medicinal plants used to treat Parkinson’s disease-related symptoms. J. Ethnopharmacol. 2017, 12, 393–407. [Google Scholar] [CrossRef]
- Zengin, G.; Diuzheva, A.; Jekő, J.; Cziáky, Z.; Bulut, G.; Dogan, A.; Haznedaroglu, M.Z.; Rengasamy, K.R.R.; Lobine, D.; Bahadori, M.B.; et al. F HPLC–MS/MS-based metabolic profiling and pharmacological properties of extracts and infusion obtained from Amelanchier parviflora var. dentata. Ind. Crops Prod. 2018, 124, 699–706. [Google Scholar] [CrossRef]
- Chae, J.W.; Kim, J.S.; Jo, B.S.; Kang, S.E.; Park, H.J.; Joo, S.H.; Chun, S.S.; Cho, Y.J. Biological Activity of Ethanol Extracts from Amelanchier asiatica Fruits. J. Appl. Biol. Chem. 2011, 54, 238–243. [Google Scholar] [CrossRef]
- Wang, H.; Cao, G.; Prior, R.L. Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem. 1997, 45, 304–309. [Google Scholar] [CrossRef]
- Johnston, A. Blackfoot Indian Utilization of the Flora of the Northwestern Great Plains. Econ. Bot. 1970, 24, 301–324. [Google Scholar] [CrossRef]
- Palla, F.; Bucchini, A.E.A.; Giamperi, L.; Marino, P.; Raimondo, F.M. Plant Extracts as Antimicrobial Agents in Sustainable Conservation of Erythrina caffra (Fabaceae) Historical Trees. Antibiotics 2023, 12, 1098. [Google Scholar] [CrossRef] [PubMed]
- Kolesárová, A.; Solgajová, M.; Bojňanská, T.; Kopčeková, J.; Zeleňáková, L.; Mrázová, J. The effect of saskatoon berry (Amelanchier alnifolia nutt.) Addition on the technological properties of wheat flour and the quality of biscuits. J. Microbiol. Biotech. Food Sci. 2022, 12, e9251. [Google Scholar]
- Takaishi, K.; Kuwajima, H.; Hatano, H.; Go, H. Cyanogenic Glycosides and Glycosidase of Sorbus Species. Chem. Pharm. Bull. 1977, 25, 3075–3077. [Google Scholar] [CrossRef]
- Yulvianti, M.; Zidorn, C. Chemical Diversity of Plant Cyanogenic Glycosides: An Overview of Reported Natural Products. Molecules 2021, 26, 719. [Google Scholar] [CrossRef]
Compounds | Plant Part | Solvent Used for Extraction | Species | Detection Method | Country | References |
---|---|---|---|---|---|---|
(+)-Catechin (-)-Epicatechin 5-O-caffeoylquinic acid 3-O-caffeoylquinic acid Quercetin 3-O-xyloside Cyanidin 3-O-galactoside Cyanidin 3-O-arabinoside | Fruits, leaves | 70% ethanol | A. alnifolia | UPLC-DAD-MS | Finland | [50] |
5-O-caffeoylquinic acid 3-O-caffeoylquinic acid Cyanidin 3-O-galactoside Cyanidin 3-O-glucoside Quercetin 3-O-galactoside Quercetin 3-O-arabinoside | Fruits | acetone: methanol: water: formic acid (40:40:20:0.1 v/v/v/v) | A. alnifolia | HPLC, LC-MS | Canada | [46] |
cis-5-Caffeoylquinic acid Caffeic acid hexoside p-Coumaric acid hexoside Ferulic acid hexoside 1 Ferulic acid hexoside 2 Chlorogenic acid Gallic acid Apigenin dirhamnoside Apigenin hydroxyhexoside Epicatechin Catechin Isorhamnetin-3-rutinoside Kaempferol-3-galactoside Kaempferol-3-glucoside Kaempferol-3-rutinoside Kaempferol pentoside 1 Kaempferol pentoside 2 Kaempferol dirhamnoside Kaempferol coumaroyl acetylrhamnoside Kaempferol rhamnoside Kaempferol rhamnosyl pentoside 1 Kaempferol rhamnosyl pentoside 2 Kaempferol rhamnosyl hexoside 1 Kaempferol rhamnosyl hexoside 2 Kaempferol rhamnosyl hexoside 3 Quercetin-3-galactoside Quercetin-3-glucoside Quercetin-3-rutinoside Quercetin-3-rhamnoside Quercetin-3-arabinopyranoside Quercetin dirhamnoside Quercetin glycoside 1 Quercetin glycoside 2 Quercetin rhamnosyl pentoside Quercetin coumaroyl acetylrhamnoside Cyanidin-3-galactoside Cyanidin-3-glucoside Cyanidin-3-xyloside Peonidin-3-glucoside | Fruits | methanol: water: formic acid (70:27:3, v/v/v) | A. × lamarckii | PDA-HPLC MS | Slovenia | [33] |
Cyanidin-3,5-O-diglucoside Neochlorogenic acid Caffeoylglucose Chlorogenic acid Cryptochlorogenic acid Procyanidin B2 p-Coumaroylglucoside Cyanidin-3-O-galactoside Cyanidin-3-O-glucoside (-)-Epicatechin Cyanidin-3-O-arabinoside Cyanidin-3-O-xyloside Quercetin-3-O-vicianoside Quercetin-3-O-robinobioside Quercetin-3-O-galactoside Quercetin-3-O-glucoside Kaempferol-O-hexoside-O-pentoside Kaempferol-O-hexoside-O-rhamnoside Quercetin-3-O-arabinoside Dicaffeoylquinic acid Kaempferol-3-O-rhamnoside-7-O-glucoside Quercetin-3-O-rhamnoside Isorhamnoside-3-O-rutinoside Kaempferol-3-O-arabinoside Dicaffeoylquinic acid Kaempferol-3-O-rhamnoside | Fruits, leaves | water containing 200 ppm SO2 | A. alnifolia | UPLC-DAD UPLC-ESI-MS | Poland | [8] |
Cyanidin 3-galactoside Cyanidin 3-glucoside Cyanidin 3-arabinoside Cyanidin 3-xyloside | Fruits | 100% ethanol | A. alnifolia | HPLC-DAD | Canada | [30] |
Chlorogenic acid Caffeic acid Hydroxybenzoic acid Cyanidin 3-glucoside Petunidin 3-glucoside Cyanidin 3,5-diglucoside Cyanidin 3-xyloside Catechin Epicatechin | Fruits | 80% ethanol | A. alnifolia | ESI-MS | USA | [55] |
Chlorogenic acid Neochlorogenic acid Dicaffeoylquinic acid Cyanidin-3,5-diglucoside Cyanidin-3-galactoside Cyanidin-3-glucoside Cyanidin-3-arabinoside Cyanidin-3-xyloside Quercetin-3-vicianoside Quercetin-3-robinobioside Quercetin-3-galactoside Quercetin-3-glucoside Quercetin-3-pentoside Quercetin-3-pentoside | Fruits | 80% ethanol with 0.1% formic acid | A. alnifolia | HPLC-ESI-MS/MS | Canada | [15] |
Protocatechuic acid Neochlorogenic acid p-Hydroxybenzoic acid Chlorogenic acid Galic acid Cryptochlorogenic acid 4-Caffeoylquinic acid Caffeic acid glucoside Dicaffeic acid Kampferol-3-galactoside Quercetin-3-O-arabinoglucoside Quercetin-3-O-rutinoside Quercetin-3-O-galactoside Quercetin-3-O-glucoside Quercetin-3-O-rabinobioside Quercetin-3-O-arabinoside Quercetin-3-O-xyloside Quercetin-deoxyhexo-hexoside (+)-Catechin (−)-Epicatechin Cyanidin-3-O-galactoside Cyanidin-3-O-glucoside Cyanidin-3-O-arabinoside Cyanidin-3-O-xyloside | Fruits | methanol with 2.0% formic acid | A. alnifolia | UPLC-PDA-Q/TOF-MS | Poland | [38] |
Cyanidin-3-glucoside Cyanidin-3-rutinoside Delphinidin-3-glucoside Delphinidin-3-rutinoside Delphinidin-3-galactoside Petunidin-3-galactoside Petunidin-3-glucoside Malvidin-3-glucoside Malvidin-3-galactoside Malvidin-3-arabinoside Peonidin-3-arabinoside Peonidin-3-galactoside | Fruits | methanol (1N HCL) (85:15) (v/v) | A. alnifolia | UPLC-ESI-MS/MS | Canada | [51] |
Cyanidin-3-galactoside Cyanidin-3-glucoside Cyanidin-3-arabinoside Cyanidin-3-xyloside | Fruits | 80% methanol | A. alnifolia | HPLC-ESI-MS/MS | Canada | [15] |
Cyanidin-3-galactoside Cyanidin-3-glucoside Cyanidin-3-arabinoside Cyanidin-3-xyloside | Fruits | acetone: methanol: water (35:35:30) acidified with 1 mL of HCl at 36% | A. alnifolia | HPLC | Poland | [10] |
Delphinidin-3-O-glucoside Cyanidin-galactoside Delphinidin-3-O-arabinoside Cyanidin-glucoside Cyanidin-arabinoside 5-Caffeoylquinic acid 4-Caffeoylquinic acid 3-Caffeoylquinic acid Quercetin-arabinoglucoside Quercitin-galactoside | Fruit Pomace | 60%, 70%, 80%, 100%, (v/v) with 0.15 N HCl | A. alnifolia | HPLC | USA | [56] |
3,4-Dihydroxy-5-methoxybenzoic acid Cyanidin-galactoside Chlorogenic acid Luteolin-rutinoside Cyanidine 4-Hydroxybenzoic acid-glucoside Feruloylquinic acid Quercetin-dirhamnoside Quercetin-rhamnoside Kaempferol-glucoside Dicaffeoylquinic acid Kaempferol-rhamnoside Luteoline Quercetin Kaempferol | Fruits | acidified methanol (0.3% with HCl) | A.× lamarckii | LC-ESI+-MS | Romania | [12] |
Caffeic acid Chlorogenic acid Coumaric acid Ferulic acid Hyperoside Isoquercitrin Quercetin Quercitrin Rutin Ellagic acid Gallic acid Catechin Epicatechin Castalagin Vescalagin | Fruits | juice diluted in distilled water, by titration with 0.2 M NaOH | A. canadensis | HPLC-DAD | Italy | [7] |
Neochlorogenic acid (+)-Catechin Chlorogenic acid (-)-Epicatechin Quercetin | Fruits, leaves, stems | 1 mL of acidified acetone (1% formic acid in 70% acetone) | A. alnifolia | HPLC-DAD HPLC-ESI/MS | Finland | [2] |
Neochlorogenic acid Chlorogenic acid 4-O-Caffeoylquinic acid Coumaric acid Coumaroylquinic acid 1,5-Dicaffeoylquinic acid Protocatechuic acid Rutin Isorhamnetin-3-rutinoside Kaempferol-3-O-rutinoside Isoquercitrin Hyperoside Quercetin-3-arabinoside-7-glucoside Kaempferol-3-sambubioside Quercetin-3-O-robinobioside Reynoutrin Astragalin Quercetin-3-O-malonylglucoside Quercetin-3-O-α-L-arabinopyranoside Isorhamnetin-3-O-glucoside Quercitrin Kaempferol-3-O-arabinoside Kaempferol-3-O-acetyl-glucoside Isorhamnetin pentoside Afzelin Quercetin-3-O-acetyl-rhamnoside Kaempferol-3-O-(6-acetyl-galactoside)-7-O-rhamnoside (−)-Epicatechin | Leaves | 70% ethanol | A. × spicata | HPLC- MS HPLC- PDA | Lithuania | [57] |
Species | Material | Model | Concentration | Putative Compounds | Mechanism of Action | References |
---|---|---|---|---|---|---|
A. alnifolia | Fruits | In vitro antioxidant assays (DPPH, FRAP) | 5.0 mmol TE/100 g fruit | Quercetin, chlorogenic acid, cyanidin-3-galactoside, cyanidin-3-glucoside | Free radical scavenging, ferric ion reduction | [15,28,38] |
A. ovalis | Fruits | Lipid peroxidation inhibition assay | 0.35 ± 0.02 mg/mL (IC50) | Quercetin, rutin, chlorogenic acid | Inhibits lipid peroxidation (anti-atherosclerosis) | [36] |
A. ovalis | Fruits | Yeast oxidative stress model | Not stated | Quercetin, rutin, chlorogenic acid | Prevents H2O2-induced oxidative stress; increases yeast cell lifespan | [14] |
A. arborea | Fruits | COX enzyme inhibition | 390 mg anthocyanins/100 g | Cyanidin-3-galactoside, cyanidin-3-glucoside | Inhibits COX-1 & COX-2 (reduces prostaglandin-mediated inflammation) | [4] |
A. asiatica | Fruits | RAW 264.7 macrophages | 1 μg/mL | Cyanidin-3-glucoside, chlorogenic acid, quercetin | Inhibits NO production via suppression of iNOS & COX-2 expression | [22] |
A. alnifolia | Fruits, stems, leaves | In vitro assays | Not stated | Catechin, epicatechin, chlorogenic acid, cyanidin glycosides | Antioxidant, anti-inflammatory, antidiabetic, cardioprotective | [2,66,67] |
A. alnifolia | Fruits | RAW 264.7 macrophages | Not stated | Cyanidin glycosides, quercetin | Inhibits NO production; TNF-α-mediated cytotoxicity on cancer cells | [28,65,68] |
A. alnifolia | Fruits | HepG2 cell cytoprotection | 100 μg/μL | Quercetin, chlorogenic acid, cyanidin glycosides | Protection against tert-butylhydroperoxide-induced damage | [69] |
A. sanguinea | Fruits | MDA-MB-231 & PC-3 cancer cell lines | 60 μL/mL | Quercetin, chlorogenic acid, cyanidin glycosides | Weak inhibition of proliferation; high antioxidant activity | [70] |
A. alnifolia | Leaves | In vivo (mice) | Not stated | Quercetin, rutin | α-glucosidase inhibition, delayed carbohydrate absorption | [63] |
A. alnifolia | Fruits | In vivo (mice with metabolic syndrome) | Not stated | Quercetin, lutein, β-carotene | Improved glucose metabolism via PKB activation, reduced inflammation | [71,72] |
A. alnifolia | Fruits | In vitro aldose reductase inhibition | 82% inhibition | Quercetin, gallic acid, cyanidin glycosides | Prevention of diabetic microvascular complications | [55,72] |
A. ovalis | Fruits | Antibacterial assays | Not stated | Cyanidin glycosides, quercetin, chlorogenic acid | Cell wall disruption, protein/nucleic acid synthesis inhibition | [36] |
A. ovalis | Fruits | Antibacterial assays | Not stated | Quercetin, rutin, chlorogenic acid | Inhibition of Gram-positive bacterial growth (S. aureus, E. faecalis) | [73] |
A. alnifolia | Fruits | Antibacterial assays | Not stated | Quercetin, rutin, amino acids (arginine, lysine) | Inhibition of Enterococcus hirae growth | [31] |
A. alnifolia | Fruits, leaves, branches | Antibacterial assays | Not stated | Quercetin, rutin, chlorogenic acid | Inhibition of E. coli, S. aureus, L. monocytogenes, B. cereus | [50] |
A. alnifolia | Twigs | Antiviral assay (enteric coronavirus) | Complete inhibition | Quercetin glycosides | Inhibition of viral protease and helicase activity | [74,75,76] |
A. × lamarckii | Fruits | Enzyme inhibition assays | Not stated | Quercetin, isorhamnetin, gallic acid | Tyrosinase inhibition; acetylcholinesterase inhibition | [12] |
A. parviflora | Fruits | Enzyme inhibition assays | 145.54 mg KAE/g extract; 3.63 mg GalE/g extract | Quercetin, gallic acid, isorhamnetin | Anti-tyrosinase; anti-acetylcholinesterase | [12,77] |
A. alnifolia var. alnifolia, var. cusickii | Twigs, leaves, wood, | In vivo (cattle) | Twigs: up to 3.37% prunasin; Leaves: 101.9 mg HCN/100 g; Wood: 484.8 mg HCN/100 g | Prunasin | Acute cyanide poisoning in cattle at ≥ 1.4% prunasin | [60,61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saunoriūtė, S.; Sukackas, J.; Raudonė, L. Amelanchier Medik. Species: An Underutilized Source of Bioactive Compounds with Potential for Pharmacological and Nutraceutical Applications. Molecules 2025, 30, 3562. https://doi.org/10.3390/molecules30173562
Saunoriūtė S, Sukackas J, Raudonė L. Amelanchier Medik. Species: An Underutilized Source of Bioactive Compounds with Potential for Pharmacological and Nutraceutical Applications. Molecules. 2025; 30(17):3562. https://doi.org/10.3390/molecules30173562
Chicago/Turabian StyleSaunoriūtė, Sandra, Justinas Sukackas, and Lina Raudonė. 2025. "Amelanchier Medik. Species: An Underutilized Source of Bioactive Compounds with Potential for Pharmacological and Nutraceutical Applications" Molecules 30, no. 17: 3562. https://doi.org/10.3390/molecules30173562
APA StyleSaunoriūtė, S., Sukackas, J., & Raudonė, L. (2025). Amelanchier Medik. Species: An Underutilized Source of Bioactive Compounds with Potential for Pharmacological and Nutraceutical Applications. Molecules, 30(17), 3562. https://doi.org/10.3390/molecules30173562