From Waste to Resource: Chemical Characterization of Olive Oil Industry By-Products for Sustainable Applications
Abstract
1. Introduction
2. Results and Discussion
2.1. Phenolic Content
2.2. Antioxidant Capacity
Multivariate and Regression Analyses Reveal the Phenolic Drivers of Antioxidant Capacity in Olive Oil By-Products
2.3. Identification of Individual Phenolic Compounds by High-Performance Liquid Chromatography (HPLC–PDA–MS)
Structure–Activity Relationship and Correlation with Antioxidant Capacity
2.4. Chlorophyll and Carotenoid Content
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Cultivar By-Product Samples
3.3. Phenolic Extract Preparation
3.4. Determination of Phenolic Content
3.5. Determination of Antioxidant Capacity
3.6. Analysis of Individual Phenolic Compounds by High-Performance Liquid Chromatography
3.7. Quantitative Analysis of Chlorophylls and Carotenoids
- (1)
- A663: Absorbance at 663 nm (peak for chlorophyll a); A646: Absorbance at 646 nm (peak for chlorophyll b). This formula estimates the amount of chlorophyll a by correcting for overlap with chlorophyll b.
- (2)
- This formula estimates chlorophyll b by correcting for the contribution of chlorophyll a.
- (3)
- This equation combines both chlorophylls a and b to estimate total chlorophyll content.
- (4)
- A470: Absorbance at 470 nm (characteristic for carotenoids). This equation removes interference from chlorophylls a and b to estimate true carotenoid content.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gouvinhas, I.; Santos, R.A.; Queiroz, M.; Leal, C.; Saavedra, M.J.; Domínguez-Perles, R.; Rodrigues, M.; Barros, A.I.R.N.A. Monitoring the Antioxidant and Antimicrobial Power of Grape (Vitis vinifera L.) Stems Phenolics over Long-Term Storage. Ind. Crops Prod. 2018, 126, 83–91. [Google Scholar] [CrossRef]
- Monteiro, M.; Santos, R.A.; Iglesias, P.; Couto, A.; Serra, C.R.; Gouvinhas, I.; Barros, A.; Oliva-Teles, A.; Enes, P.; Díaz-Rosales, P. Effect of Extraction Method and Solvent System on the Phenolic Content and Antioxidant Activity of Selected Macro- and Microalgae Extracts. J. Appl. Phycol. 2020, 32, 349–362. [Google Scholar] [CrossRef]
- Brito, C.; Dinis, L.-T.; Silva, E.; Gonçalves, A.; Matos, C.; Rodrigues, M.A.; Moutinho-Pereira, J.; Barros, A.; Correia, C. Kaolin and Salicylic Acid Foliar Application Modulate Yield, Quality and Phytochemical Composition of Olive Pulp and Oil from Rainfed Trees. Sci. Hortic. 2018, 237, 176–183. [Google Scholar] [CrossRef]
- Paié-Ribeiro, J.; Baptista, F.; Gomes, M.J.; Teixeira, A.; Pinheiro, V.; Outor-Monteiro, D.; Barros, A.N. Exploring the Variability in Phenolic Compounds and Antioxidant Capacity in Olive Oil By-Products: A Path to Sustainable Valorization. Antioxidants 2024, 13, 1470. [Google Scholar] [CrossRef] [PubMed]
- Barros, J.G.L.; Fernandes, R.; Abraão, A.; Costa, R.D.; Aires, A.; Gouvinhas, I.; Granato, D.; Barros, A.N. Characterization of Azorean Plant Leaves for Sustainable Valorization and Future Advanced Applications in the Food, Cosmetic, and Pharmaceutical Industries. Antioxidants 2024, 13, 325. [Google Scholar] [CrossRef]
- Donner, M.; Radić, I.; Erraach, Y.; El Hadad-Gauthier, F. Implementation of Circular Business Models for Olive Oil Waste and By-Product Valorization. Resources 2022, 11, 68. [Google Scholar] [CrossRef]
- Mansour, M.; Thévenin, D. Optimized inducer design for transporting air-water two-phase flows in centrifugal pumps: Outperforming traditional inducers. Chem. Eng. Res. Des. 2025, 215, 342–360. [Google Scholar] [CrossRef]
- Erbay, Z.; Icier, F. The Importance and Potential Uses of Olive Leaves. Food Rev. Int. 2010, 26, 319–334. [Google Scholar] [CrossRef]
- Magyari-Pavel, I.Z.; Moacă, E.-A.; Avram, Ș.; Diaconeasa, Z.; Haidu, D.; Ștefănuț, M.N.; Rostas, A.M.; Muntean, D.; Bora, L.; Badescu, B.; et al. Antioxidant Extracts from Greek and Spanish Olive Leaves: Antimicrobial, Anticancer and Antiangiogenic Effects. Antioxidants 2024, 13, 774. [Google Scholar] [CrossRef]
- Ronca, C.L.; Marques, S.S.; Ritieni, A.; Giménez-Martínez, R.; Barreiros, L.; Segundo, M.A. Olive Oil Waste as a Source of Functional Food Ingredients: Assessing Polyphenolic Content and Antioxidant Activity in Olive Leaves. Foods 2024, 13, 189. [Google Scholar] [CrossRef]
- Pereira, A.P.; Ferreira, I.C.; Marcelino, F.; Valentão, P.; Andrade, P.B.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J.A. Phenolic Compounds and Antimicrobial Activity of Olive (Olea europaea L. Cv. Cobrançosa) Leaves. Molecules 2007, 12, 1153–1162. [Google Scholar] [CrossRef]
- Japón-Luján, R.; de Castro, M.D.L. Small Branches of Olive Tree: A Source of Biophenols Complementary to Olive Leaves. J. Agric. Food Chem. 2007, 55, 4584–4588. [Google Scholar] [CrossRef]
- Kostenidou, E.; Kaltsonoudis, C.; Tsiflikiotou, M.; Louvaris, E.; Russell, L.M.; Pandis, S.N. Burning of Olive Tree Branches: A Major Organic Aerosol Source in the Mediterranean. Atmos. Chem. Phys. 2013, 13, 8797–8811. [Google Scholar] [CrossRef]
- Hannachi, H.; Elfalleh, W.; Laajel, M.; Ennajeh, I.; Mechlouch, R.F.; Nagaz, K. Chemical Profiles and Antioxidant Activities of Leaf, Pulp, and Stone of Cultivated and Wild Olive Trees (Olea europaea L.). Int. J. Fruit. Sci. 2020, 20, 350–370. [Google Scholar] [CrossRef]
- Pérez, J.M.; Ruiz-Martínez, C.; Ruiz-Muelle, A.B.; Sánchez-Sevilla, B.; Rodríguez-Diéguez, A.; Romero-Cano, M.S.; Fernández, I. Functionalized Olive Wood Shell Stone as a New Revalorized Agri-Food Waste Active in Organocatalysis. Environ. Technol. Innov. 2024, 36, 103740. [Google Scholar] [CrossRef]
- Pardalis, N.; Xanthopoulou, E.; Zamboulis, A.; Bikiaris, D.N. Olive Stone as a Filler for Recycled High-Density Polyethylene: A Promising Valorization of Solid Wastes from Olive Oil Industry. Sustain. Chem. Environ. 2024, 6, 100090. [Google Scholar] [CrossRef]
- Cuevas, M.; Martínez-Cartas, M.L.; Pérez-Villarejo, L.; Hernández, L.; García-Martín, J.F.; Sánchez, S. Drying Kinetics and Effective Water Diffusivities in Olive Stone and Olive-Tree Pruning. Renew. Energy 2019, 132, 911–920. [Google Scholar] [CrossRef]
- Rodríguez, G.; Lama, A.; Rodríguez, R.; Jiménez, A.; Guillén, R.; Fernández-Bolaños, J. Olive Stone an Attractive Source of Bioactive and Valuable Compounds. Bioresour. Technol. 2008, 99, 5261–5269. [Google Scholar] [CrossRef] [PubMed]
- Alves, E.; Rey, F.; Melo, T.; Barros, M.P.; Domingues, P.; Domingues, R. Bioprospecting Bioactive Polar Lipids from Olive (Olea europaea Cv. Galega vulgar) Fruit Seeds: LC-HR-MS/MS Fingerprinting and Sub-Geographic Comparison. Foods 2022, 11, 951. [Google Scholar] [CrossRef]
- Maestri, D.; Barrionuevo, D.; Bodoira, R.; Zafra, A.; Jiménez-López, J.; Alché, J.D.D. Nutritional Profile and Nutraceutical Components of Olive (Olea europaea L.) Seeds. J. Food Sci. Technol. 2019, 56, 4359–4370. [Google Scholar] [CrossRef] [PubMed]
- Gouvinhas, I.; Garcia, J.; Granato, D.; Barros, A. Seed Phytochemical Profiling of Three Olive Cultivars, Antioxidant Capacity, Enzymatic Inhibition, and Effects on Human Neuroblastoma Cells (SH-SY5Y). Molecules 2022, 27, 5057. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, L.; Ghizzani, G.; Bellumori, M.; Lammi, C.; Zanoni, B.; Mulinacci, N. Virgin Olive Oil By-Product Valorization: An Insight into the Phenolic Composition of Olive Seed Extracts from Three Cultivars as Sources of Bioactive Molecules. Molecules 2023, 28, 2776. [Google Scholar] [CrossRef]
- Stavropoulos, G.G.; Zabaniotou, A.A. Production and Characterization of Activated Carbons from Olive-Seed Waste Residue. Microporous Mesoporous Mater. 2005, 82, 79–85. [Google Scholar] [CrossRef]
- Arvelakis, S.; Koukios, E.G. Physicochemical Upgrading of Agroresidues as Feedstocks for Energy Production via Thermochemical Conversion Methods. Biomass Bioenergy 2002, 22, 331–348. [Google Scholar] [CrossRef]
- Binici, H.; Aksogan, O. Eco-Friendly Insulation Material Production with Waste Olive Seeds, Ground PVC and Wood Chips. J. Build. Eng. 2016, 5, 260–266. [Google Scholar] [CrossRef]
- Branca, A. Cultivares Autóctones de Oliveira—Aspetos Da Caraterização Morfológica Do Endocarpo. Bachelor’s Thesis, Escola Superior Agrária de Elvas, Elvas, Portugal, 2020. [Google Scholar]
- Pérez-Gálvez, A.; Viera, I.; Roca, M. Carotenoids and Chlorophylls as Antioxidants. Antioxidants 2020, 9, 505. [Google Scholar] [CrossRef]
- Uğuz, A.C.; Rocha-Pimienta, J.; Martillanes, S.; Garrido, M.; Espino, J.; Delgado-Adámez, J. Chlorophyll Pigments of Olive Leaves and Green Tea Extracts Differentially Affect Their Antioxidant and Anticancer Properties. Molecules 2023, 28, 2779. [Google Scholar] [CrossRef] [PubMed]
- Florestas Quais São as Variedades de Oliveira Mais Plantadas Em Portugal Para Produzir Azeite e Azeitona. Available online: https://florestas.pt/saiba-mais/quais-sao-as-variedades-de-oliveira-mais-plantadas-em-portugal-para-produzir-azeite-e-azeitona/ (accessed on 4 March 2025).
- Morsy, M.K.; Sami, R.; Algarni, E.; Al-Mushhin, A.A.M.; Benajiba, N.; Almasoudi, A.; Almasoudi, A.G.; Mekawi, E. Phytochemical Profile and Antioxidant Activity of Sesame Seed (Sesamum indicum) By-Products for Stability and Shelf Life Improvement of Refined Olive Oil. Antioxidants 2022, 11, 338. [Google Scholar] [CrossRef]
- Djemaa-Landri, K.; Hamri-Zeghichi, S.; Belkhiri-Beder, W.; Krisa, S.; Cluzet, S.; Richard, T.; Valls, J.; Kadri, N.; Madani, K. Phenolic Content, Antioxidant and Anti-Inflammatory Activities of Some Algerian Olive Stone Extracts Obtained by Conventional Solvent and Microwave-Assisted Extractions under Optimized Conditions. J. Food Meas. Charact. 2021, 15, 4166–4180. [Google Scholar] [CrossRef]
- Ferro, M.D.; Lopes, E.; Afonso, M.; Peixe, A.; Rodrigues, F.M.; Duarte, M.F. Phenolic Profile Characterization of ‘Galega Vulgar’ and ‘Cobrançosa’ Portuguese Olive Cultivars along the Ripening Stages. Appl. Sci. 2020, 10, 3930. [Google Scholar] [CrossRef]
- Tekaya, M.; El-Gharbi, S.; Mechri, B.; Chehab, H.; Bchir, A.; Chraief, I.; Ayachi, M.; Boujnah, D.; Attia, F.; Hammami, M. Improving Performance of Olive Trees by the Enhancement of Key Physiological Parameters of Olive Leaves in Response to Foliar Fertilization. Acta Physiol. Plant. 2016, 38, 101. [Google Scholar] [CrossRef]
- Abdeljelil, Z.B.; Tekaya, M.; Elmsellem, H.; Mechri, B.; Hammami, M. Impact of Season and Foliar Fertilisers on Phenolics of Leaves of Chemlali Olive Cultivar. Moroc. J. Chem. 2017, 5, 96–104. [Google Scholar]
- de Oliveira, N.M.; Machado, J.; Chéu, M.H.; Lopes, L.; Barroso, M.F.; Silva, A.; Sousa, S.; Domingues, V.F.; Grosso, C. Potential Therapeutic Properties of Olea Europaea Leaves from Selected Cultivars Based on Their Mineral and Organic Profiles. Pharmaceuticals 2024, 17, 274. [Google Scholar] [CrossRef] [PubMed]
- Benčić, Đ.; Barbarić, M.; Mornar, A.; Klarić, D.A.; Brozovic, A.; Dabelić, S.; Fadljević, M.; Marković, A.K. Oleuropein in Olive Leaf, Branch, and Stem Extracts: Stability and Biological Activity in Human Cervical Carcinoma and Melanoma Cells. Acta Pharm. 2023, 73, 601–616. [Google Scholar] [CrossRef]
- Ghasemi, S.; Koohi, D.E.; Emmamzadehhashemi, M.S.B.; Khamas, S.S.; Moazen, M.; Hashemi, A.K.; Amin, G.; Golfakhrabadi, F.; Yousefi, Z.; Yousefbeyk, F. Investigation of Phenolic Compounds and Antioxidant Activity of Leaves Extracts from Seventeen Cultivars of Iranian Olive (Olea europaea L.). J. Food Sci. Technol. 2018, 55, 4600–4607. [Google Scholar] [CrossRef]
- Falcinelli, B.; Maranghi, S.; Paoletti, A.; Marconi, O.; Rosati, A.; Famiani, F.; Benincasa, P. Sprouting Olive (Olea europaea L.) Seeds as a Source of Antioxidants from Residual Whole Stones. Sci. Hortic. 2018, 240, 558–560. [Google Scholar] [CrossRef]
- Uribe, E.; Pasten, A.; Lemus-Mondaca, R.; Vega-Gálvez, A.; Quispe-Fuentes, I.; Ortiz, J.; Di Scala, K. Comparison of Chemical Composition, Bioactive Compounds and Antioxidant Activity of Three Olive-Waste Cakes. J. Food Biochem. 2015, 39, 189–198. [Google Scholar] [CrossRef]
- Bruno, M.R. Sustainable Use and Practical Application in the Industrial Sector of Permanent Crops Biomass: Orange Tree (C. sinensis L.), Apricot Tree (P. armeniaca L.) and Olive Tree (O. europea L.). Ph.D. Thesis, Università Degli Studi Della Basilicata, Potenza, Italy, 2021. [Google Scholar]
- Gullón, B.; Gullón, P.; Eibes, G.; Cara, C.; De Torres, A.; López-Linares, J.C.; Ruiz, E.; Castro, E. Valorisation of Olive Agro-Industrial by-Products as a Source of Bioactive Compounds. Sci. Total Environ. 2018, 645, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, N.; Pinho, T.; Casal, S.; Peres, A.M.; Baptista, P.; Pereira, J.A. Chemical Characterization of Oleaster, Olea europaea var. sylvestris (Mill.) Lehr., Oils from Different Locations of Northeast Portugal. Appl. Sci. 2020, 10, 6414. [Google Scholar] [CrossRef]
- Flamminii, F.; di Mattia, C. Maximising olive oil by-products. Food Sci. Technol. 2023, 37, 42–46. [Google Scholar] [CrossRef]
- Palmeri, R.; Siracusa, L.; Carrubba, M.; Parafati, L.; Proetto, I.; Pesce, F.; Fallico, B. Olive Leaves, a Promising Byproduct of Olive Oil Industry: Assessment of Metabolic Profiles and Antioxidant Capacity as a Function of Cultivar and Seasonal Change. Agronomy 2022, 12, 2007. [Google Scholar] [CrossRef]
- Zhao, H.; Avena-Bustillos, R.J.; Wang, S.C. Extraction, Purification and In Vitro Antioxidant Activity Evaluation of Phenolic Compounds in California Olive Pomace. Foods 2022, 11, 174. [Google Scholar] [CrossRef]
- Zhang, C.; Xin, X.; Zhang, J.; Zhu, S.; Niu, E.; Zhou, Z.; Liu, D. Comparative Evaluation of the Phytochemical Profiles and Antioxidant Potentials of Olive Leaves from 32 Cultivars Grown in China. Molecules 2022, 27, 1292. [Google Scholar] [CrossRef] [PubMed]
- Timón, M.L.; Andrés, A.I.; Petrón, M.J. Antioxidant Activity of Aqueous Extracts Obtained from By-Products of Grape, Olive, Tomato, Lemon, Red Pepper and Pomegranate. Foods 2024, 13, 1802. [Google Scholar] [CrossRef]
- Dugo, L.; Russo, M.; Cacciola, F.; Mandolfino, F.; Salafia, F.; Vilmercati, A.; Fanali, C.; Casale, M.; de Gara, L.; Dugo, P.; et al. Determination of the Phenol and Tocopherol Content in Italian High-Quality Extra-Virgin Olive Oils by Using LC-MS and Multivariate Data Analysis. Food Anal. Methods 2020, 13, 1027–1041. [Google Scholar] [CrossRef]
- López-Salas, L.; Díaz-Moreno, J.; Ciulu, M.; Borrás-Linares, I.; Quirantes-Piné, R.; Lozano-Sánchez, J. Monitoring the Phenolic and Terpenic Profile of Olives, Olive Oils and By-Products throughout the Production Process. Foods 2024, 13, 1555. [Google Scholar] [CrossRef]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; De la Rosa, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. From olive fruits to olive oil: Phenolic compound transfer in six different olive cultivars grown under the same agronomical conditions. Int. J. Mol. Sci. 2016, 17, 337. [Google Scholar] [CrossRef]
- Cho, J.; Bejaoui, M.; Tominaga, K.; Isoda, H. Comparative analysis of olive-derived phenolic compounds’ pro-melanogenesis effects on B16F10 cells and epidermal human melanocytes. Int. J. Mol. Sci. 2024, 25, 4479. [Google Scholar] [CrossRef]
- Kusuma, I.Y.; Habibie, H.; Bahar, M.A.; Budán, F.; Csupor, D. Anticancer Effects of Secoiridoids—A Scoping Review of the Molecular Mechanisms behind the Chemopreventive Effects of the Olive Tree Components Oleocanthal, Oleacein, and Oleuropein. Nutrients 2024, 16, 2755. [Google Scholar] [CrossRef]
- De Nino, A.; Perri, E.; Lombardo, N.; Procopio, A.; Raffaelli, A.; Sindona, G. Direct identification of phenolic glucosides from leaves extracts by ionspray ionization tandem mass spectrometry. J. Mass. Spectrom. 1997, 32, 533–541. [Google Scholar] [CrossRef]
- Benincasa, C.; La Torre, C.; Plastina, P.; Fazio, A.; Perri, E.; Caroleo, M.C.; Gallelli, L.; Cannataro, R.; Cione, E. Hydroxytyrosyl Oleate: Improved Extraction Procedure from Olive Oil and By-Products, and In Vitro Antioxidant and Skin Regenerative Properties. Antioxidants 2019, 8, 233. [Google Scholar] [CrossRef]
- Leutcha, P.B.; Mamoudou, H.; Ditchou, Y.O.N.; Ansari, S.A.; à Ngnoung, G.A.A.; Mujwar, S.; Taiga, J.; Agrawal, M.; Nembot, G.; Hamadou, S.; et al. Flavonoids and other constituents from Jacaranda mimosifolia: In vitro analysis, molecular docking, and molecular dynamic simulations of antioxidant and anti-inflammatory activities. Biomed. Pharmacother. 2025, 182, 117768. [Google Scholar] [CrossRef]
- Chagas, M.D.S.S.; Behrens, M.D.; Moragas-Tellis, C.J.; Penedo, G.X.; Silva, A.R.; Gonçalves-de-Albuquerque, C.F. Flavonols and flavones as potential anti-inflammatory, antioxidant, and antibacterial compounds. Oxidative Med. Cell. Longev. 2022, 2022, 9966750. [Google Scholar] [CrossRef]
- Krstić, Đ.D.; Ristivojević, P.M.; Gašić, U.M.; Lazović, M.; Akšić, M.M.F.; Milivojević, J.; Morlock, G.; Milojkovic-Opsenica, D.; Trifković, J.Đ. Authenticity assessment of cultivated berries via phenolic profiles of seeds. Food Chem. 2023, 402, 134184. [Google Scholar] [CrossRef]
- Manco, A.; Gerardi, C.; Romano, G.; D’AMico, L.; Blanco, A.; Milano, F.; Di Sansebastiano, G.P.; Balech, R.; Laddomada, B. Phenolic profile of whole seeds and seed fractions of lentils and its impact on antioxidant activity. Food Biosci. 2023, 54, 102887. [Google Scholar] [CrossRef]
- Burin, T.; Grohar, M.C.; Jakopic, J.; Veberic, R.; Stajner, N.; Cesar, T.; Kunej, U.; Hudina, M. Interplay of phenolic compounds and gene expression in phenylpropanoid and flavonoid pathways during olive (Olea europaea L.) ripening of ‘Leccino’cultivar. Sci. Hortic. 2024, 338, 113640. [Google Scholar] [CrossRef]
- Paulo, F.; Santos, L. Deriving valorization of phenolic compounds from olive oil by-products for food applications through microencapsulation approaches: A comprehensive review. Crit. Rev. Food Sci. Nutr. 2021, 61, 920–945. [Google Scholar] [CrossRef]
- Mueed, A.; Deng, Z.; Korma, S.A.; Shibli, S.; Jahangir, M. Anticancer potential of flaxseed lignans, their metabolites and synthetic counterparts in relation with molecular targets: Current challenges and future perspectives. Food Funct. 2023, 14, 2286–2303. [Google Scholar] [CrossRef]
- Guo, S.; Zhao, H.; Ma, Z.; Zhang, S.; Li, M.; Zheng, Z.; Ren, X.; Ho, C.; Bai, N. Anti-obesity and gut microbiota modulation effect of secoiridoid-enriched extract from Fraxinus mandshurica seeds on high-fat diet-fed mice. Molecules 2020, 25, 4001. [Google Scholar] [CrossRef] [PubMed]
- Suraweera, T.L.; Rupasinghe, H.P.V.; Dellaire, G.; Xu, Z. Regulation of Nrf2/ARE pathway by dietary flavonoids: A friend or foe for cancer management? Antioxidants 2020, 9, 973. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Deng, Z.Y.; He, Y.; Fan, Y.; Dong, H.; Chen, R.; Liu, R.; Tsao, R.; Liu, X. Differential specificities of polyphenol oxidase from lotus seeds (Nelumbo nucifera Gaertn.) toward stereoisomers, (−)-epicatechin and (+)-catechin: Insights from comparative molecular docking studies. LWT 2021, 148, 111728. [Google Scholar] [CrossRef]
- Madureira, J.; Margaça, F.M.; Santos-Buelga, C.; Ferreira, I.C.; Verde, S.C.; Barros, L. Applications of bioactive compounds extracted from olive industry wastes: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 453–476. [Google Scholar] [CrossRef] [PubMed]
- Mallamaci, R.; Budriesi, R.; Clodoveo, M.L.; Biotti, G.; Micucci, M.; Ragusa, A.; Curci, F.; Muraglia, M.; Corbo, F.; Franchini, C. Olive tree in circular economy as a source of secondary metabolites active for human and animal health beyond oxidative stress and inflammation. Molecules 2021, 26, 1072. [Google Scholar] [CrossRef] [PubMed]
- Bahloul, N.; Kechaou, N.; Mihoubi, N.B. Comparative Investigation of Minerals, Chlorophylls Contents, Fatty Acid Composition and Thermal Profiles of Olive Leaves (Olea europeae L.) as by-Product. Grasas Y Aceites 2014, 65, e035. [Google Scholar] [CrossRef]
- Lorini, A.; Aranha, B.C.; Antunes, B.d.F.; Otero, D.M.; Jacques, A.C.; Zambiazi, R.C. Metabolic Profile of Olive Leaves of Different Cultivars and Collection Times. Food Chem. 2021, 345, 128758. [Google Scholar] [CrossRef] [PubMed]
- Malheiro, R.; Casal, S.; Teixeira, H.; Bento, A.; Pereira, J.A. Effect of Olive Leaves Addition during the Extraction Process of Overmature Fruits on Olive Oil Quality. Food Bioproc. Tech. 2013, 6, 509–521. [Google Scholar] [CrossRef]
- Ribas, J.C.R.; Lazzari, A.; Gonzalez, L.B.F.; da Silva, C.M.; Adamuchio, L.G.; Cuquel, F.L.; Sakurada, R.; Pintro, P.T.M. Bioactive Compounds and Antioxidant Activity of Leaves from Olive Trees Grown in Paraná, Brazil. Pesqui. Agropecu. Bras. 2023, 58, e03025. [Google Scholar] [CrossRef]
Phenolic Content | ||||
---|---|---|---|---|
Total Phenols | Ortho-Diphenols | Flavonoids | ||
Leaf | NI | 66.147 ± 4.872 a | 89.301 ± 4.463 a | 54.297 ± 5.073 a |
‘Cobrançosa’ | 55.117 ± 1.043 b | 78.177 ± 0.681 b | 39.119 ± 1.321 b | |
‘Galega’ | 32.878 ± 0.961 c | 45.627 ± 0.819 c | 28.659 ± 1.834 c | |
Seed | NI | 78.032 ± 2.087 b | 42.857 ± 0.158 a | 10.368 ± 2.533 a |
‘Cobrançosa’ | 86.116 ± 0.336 a | 36.028 ± 0.553 b | 10.849 ± 0.641 a | |
‘Galega’ | 75.674 ± 0.872 b | 35.613 ± 0.490 b | 10.782 ± 1.376 a | |
Stone | NI | 9.310 ± 0.489 b | 9.389 ± 0.446 b | 17.352 ± 0.243 a |
‘Cobrançosa’ | 11.867 ± 1.498 a | 11.696 ± 1.351 a | 21.180 ± 2.706 a | |
‘Galega’ | 6.534 ± 0.614 c | 6.882 ± 0.545 c | 12.477 ± 0.849 b | |
Branch | NI | 19.406 ± 0.706 c | 19.245 ± 2.165 b | 22.571 ± 2.385 c |
‘Cobrançosa’ | 35.118 ± 0.633 a | 35.209 ± 2.396 a | 51.715 ± 5.389 a | |
‘Galega’ | 24.753 ± 1.289 b | 32.406 ± 2.408 a | 35.521 ± 1.556 b |
Antioxidant Capacity | ||||
---|---|---|---|---|
ABTS | DPPH | FRAP | ||
Leaf | NI | 0.323 ± 0.056 a | 0.206 ± 0.009 a | 0.676 ± 0.036 a |
‘Cobrançosa’ | 0.286 ± 0.007 a | 0.154 ± 0.007 b | 0.452 ± 0.004 b | |
‘Galega’ | 0.201 ± 0.009 b | 0.076 ± 0.002 c | 0.281 ± 0.007 c | |
Seed | NI | 0.247 ± 0.005 a | 0.110 ± 0.003 a | 0.186 ± 0.003 a |
‘Cobrançosa’ | 0.251 ± 0.003 a | 0.051 ± 0.043 a | 0.164 ± 0.002 b | |
‘Galega’ | 0.233 ± 0.003 b | 0.105 ± 0.025 a | 0.160 ± 0.003 b | |
Stone | NI | 0.020 ± 0.001 a | 0.015 ± 0.003 ab | 0.088 ± 0.016 b |
‘Cobrançosa’ | 0.017 ± 0.001 b | 0.025 ± 0.001 a | 0.127 ± 0.012 a | |
‘Galega’ | 0.017 ± 0.007 ab | 0.012 ± 0.007 b | 0.067 ± 0.007 b | |
Branch | NI | 0.174 ± 0.048 a | 0.151 ± 0.041 b | 0.126 ± 0.021 c |
‘Cobrançosa’ | 0.228 ± 0.009 a | 0.240 ± 0.025 a | 0.242 ± 0.006 a | |
‘Galega’ | 0.178 ± 0.003 a | 0.181 ± 0.011 ab | 0.176 ± 0.006 b |
Compound Id | RT | λ (UV) | m/z | m/z | Leaf | ||
---|---|---|---|---|---|---|---|
(min) | (nm) | [M − H]− | Fragments | NI | ‘Cobrançosa’ | ‘Galega’ | |
dihydro oleuropein | 1.13 | 360 | 541 | 419, 305, 289 | X | X | N.D. |
N.D. | |||||||
oleuropein diglucoside isomer 1 | 12.06 | 360 | 701 | 607, 577, 417, 269 | N.D. | X | X |
oleuropein diglucoside isomer 2 | 12.22 | 360 | 701 | 607, 577, 269 | N.D. | N.D. | X |
oleuropein diglucoside isomer 3 | 12.34 | 360 | 701 | 607, 577 | N.D. | x | N.D. |
oleuropein diglucoside isomer 4 | 12.38 | 360 | 701 | 607, 431, 285 | X | N.D. | N.D. |
Oleuropein diglucoside isomer 5 | 12.58 | 360 | 701 | 607, 431 | X | N.D. | x |
Ligstroside derivative | 12.65 | 360 | 1377.71 | 1125, 447, 285 | X | N.D. | N.D. |
2″-methoxyoleuropein isomer 1 | 13.15 | 360 | 553 | 447, 285 | N.D. | X | N.D. |
2″-methoxyoleuropein isomer 2 | 13.47 | 360 | 553 | 447, 285 | X | N.D. | N.D. |
hydroxyoleuropein | 20.07 | 360 | 555 | 299 | N.D. | N.D. | x |
rutin | 10.79 | 360 | 609 | - | X | X | N.D. |
luteolin glucoside isomer 1 | 11.39 | 360 | 447 | 285 | N.D. | N.D. | x |
N.D. | |||||||
hydroxytyrosol hexose isomer 2 | 1.49 | 360 | 665.50 | 315 | N.D. | N.D. | X |
verbascoside isomer 1 | 11.04 | 36 | 623 | 463, 447 | X | N.D. | N.D. |
verbascoside isomer 2 | 11.18 | 360 | 623 | N.D. | N.D. | X | |
tyrosol glucoside | 20.06 | 360 | 299 | N.D. | N.D. | X |
Compound Id | RT | λ (UV) | m/z | m/z | Seeds | Stones | ||||
---|---|---|---|---|---|---|---|---|---|---|
(min) | (nm) | [M − H]− | Fragments | NI | ‘Cobrançosa’ | ‘Galega’ | NI | ‘Cobrançosa’ | ‘Galega’ | |
dihydro oleuropein isomer 1 | 1.15 | 320 | 541 | 289, 159 | N.D. | N.D. | N.D. | x | x | x |
N.D. | ||||||||||
dihydro oleuropein isomer 2 | 1.87 | 320 | 541 | 191, 129 | N.D. | N.D. | N.D. | x | N.D. | N.D. |
dihydro oleuropein isomer 3 | 2.17 | 320 | 541 | 191, 153 | N.D. | N.D. | N.D. | N.D. | N.D. | x |
N.D. | ||||||||||
oleuropein diglucoside isomer 1 | 10.89 | 280 | 864 | 794, 701, 453 | N.D. | x | x | N.D. | N.D. | N.D. |
oloseoside-11-methyloleoside | 11.87 | 280 | 775 | 685, 623, 523 | x | N.D. | x | N.D. | N.D. | N.D. |
oleuropein hexoside isomer 1 | 11.88 | 320 | 701 | 623, 543 | N.D. | N.D. | N.D. | N.D. | N.D. | x |
oleuropein hexoside isomer 2 | 12.31 | 320 | 701 | 685, 577, 453 | N.D. | N.D. | N.D. | N.D. | x | N.D. |
6′-O-[(2E)-2.6-dimethyl-8-hydroxy-2-octenoyloxy]-secologanoside | 13.45 | 280 | 1723.76 | 557, 373 | N.D. | N.D. | N.D. | N.D. | N.D. | X |
x | ||||||||||
N.D. | ||||||||||
hydroxyoleuropein | 22.67 | 320 | 555 | 433, 311 | N.D. | N.D. | N.D. | x | N.D. | N.D. |
nuzhenide | 11.69 | 280 | 685 | 653, 523 | x | x | x | N.D. | N.D. | N.D. |
nuzhenide 11-methyloleoside | 14.20 | 320 | 701 | 623, 461 | N.D. | N.D. | N.D. | x | N.D. | x |
N.D. | ||||||||||
N.D. | ||||||||||
decaffeoylverbascoside isomer 1 | 1.95 | 280 | 623 | 461 | x | X | N.D. | N.D. | N.D. | N.D. |
decaffeoylverbascoside isomer 2 | 2.36 | 280 | 623 | 461, 431 | x | x | N.D. | N.D. | N.D. | N.D. |
epicatechin | 1.13 | 280 | 289 | 159, 131 | N.D. | x | x | N.D. | N.D. | N.D. |
N.D. | ||||||||||
apigenin 7-O-glucoside | 2.62 | 320 | 431 | 311, 151 | N.D. | N.D. | N.D. | x | N.D. | N.D. |
N.D. | ||||||||||
verbascoside | 11.12 | 320 | 623 | 505 | N.D. | N.D. | N.D. | x | x | x |
isoverbascoside | 11.88 | 320 | 623 | 543 | N.D. | N.D. | N.D. | N.D. | N.D. | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roque, M.d.L.; Botelho, C.; Barros, A.N. From Waste to Resource: Chemical Characterization of Olive Oil Industry By-Products for Sustainable Applications. Molecules 2025, 30, 3212. https://doi.org/10.3390/molecules30153212
Roque MdL, Botelho C, Barros AN. From Waste to Resource: Chemical Characterization of Olive Oil Industry By-Products for Sustainable Applications. Molecules. 2025; 30(15):3212. https://doi.org/10.3390/molecules30153212
Chicago/Turabian StyleRoque, Maria de Lurdes, Claudia Botelho, and Ana Novo Barros. 2025. "From Waste to Resource: Chemical Characterization of Olive Oil Industry By-Products for Sustainable Applications" Molecules 30, no. 15: 3212. https://doi.org/10.3390/molecules30153212
APA StyleRoque, M. d. L., Botelho, C., & Barros, A. N. (2025). From Waste to Resource: Chemical Characterization of Olive Oil Industry By-Products for Sustainable Applications. Molecules, 30(15), 3212. https://doi.org/10.3390/molecules30153212