Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Keywords = olive stones

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1766 KiB  
Article
From Waste to Resource: Chemical Characterization of Olive Oil Industry By-Products for Sustainable Applications
by Maria de Lurdes Roque, Claudia Botelho and Ana Novo Barros
Molecules 2025, 30(15), 3212; https://doi.org/10.3390/molecules30153212 - 31 Jul 2025
Viewed by 276
Abstract
The olive oil industry, a key component of Southern Europe’s agricultural sector, generates large amounts of by-products during processing, including olive leaves, branches, stones, and seeds. In the context of growing environmental concerns and limited natural resources—particularly in the Mediterranean regions—there is increasing [...] Read more.
The olive oil industry, a key component of Southern Europe’s agricultural sector, generates large amounts of by-products during processing, including olive leaves, branches, stones, and seeds. In the context of growing environmental concerns and limited natural resources—particularly in the Mediterranean regions—there is increasing interest in circular economy approaches that promote the valorization of agricultural residues. These by-products are rich in bioactive compounds, particularly phenolics such as oleuropein and hydroxytyrosol, which are well known for their antioxidant and anti-inflammatory activities. This study aimed to evaluate the phenolic content and antioxidant capacity of by-products from three olive cultivars using high-performance liquid chromatography with photodiode array detection (HPLC–PDA) and mass spectrometry (MS). The leaves and seeds, particularly from the “Cobrança” and a non-identified variety, presented the highest antioxidant activity, as well as the highest concentration of phenolic compounds, demonstrating once again the direct relationship between these two parameters. The identification of the compounds present demonstrated that the leaves and branches have a high diversity of phenolic compounds, particularly secoiridoids, flavonoids, phenylpropanoids, phenylethanoids, and lignans. An inverse relationship was observed between the chlorophyll and carotenoid content and the antioxidant activity, suggesting that phenolic compounds, rather than pigments, are the major contributors to antioxidant properties. Therefore, the by-products of the olive oil industry are a valuable source of sustainable bioactive compounds for distinct industrial sectors, such as the food, nutraceutical, and pharmaceutical industries, aligning with the European strategies for resource efficiency and waste reduction in the agri-food industries. Full article
Show Figures

Figure 1

22 pages, 3083 KiB  
Article
Evaluating the Effect of Thermal Treatment on Phenolic Compounds in Functional Flours Using Vis–NIR–SWIR Spectroscopy: A Machine Learning Approach
by Achilleas Panagiotis Zalidis, Nikolaos Tsakiridis, George Zalidis, Ioannis Mourtzinos and Konstantinos Gkatzionis
Foods 2025, 14(15), 2663; https://doi.org/10.3390/foods14152663 - 29 Jul 2025
Viewed by 378
Abstract
Functional flours, high in bioactive compounds, have garnered increasing attention, driven by consumer demand for alternative ingredients and the nutritional limitations of wheat flour. This study explores the thermal stability of phenolic compounds in various functional flours using visible, near and shortwave-infrared (Vis–NIR–SWIR) [...] Read more.
Functional flours, high in bioactive compounds, have garnered increasing attention, driven by consumer demand for alternative ingredients and the nutritional limitations of wheat flour. This study explores the thermal stability of phenolic compounds in various functional flours using visible, near and shortwave-infrared (Vis–NIR–SWIR) spectroscopy (350–2500 nm), integrated with machine learning (ML) algorithms. Random Forest models were employed to classify samples based on flour type, baking temperature, and phenolic concentration. The full spectral range yielded high classification accuracy (0.98, 0.98, and 0.99, respectively), and an explainability framework revealed the wavelengths most relevant for each class. To address concerns regarding color as a confounding factor, a targeted spectral refinement was implemented by sequentially excluding the visible region. Models trained on the 1000–2500 nm and 1400–2500 nm ranges showed minor reductions in accuracy, suggesting that classification is not solely driven by visible characteristics. Results indicated that legume and wheat flours retain higher total phenolic content (TPC) under mild thermal conditions, whereas grape seed flour (GSF) and olive stone flour (OSF) exhibited notable thermal stability of TPC even at elevated temperatures. These first findings suggest that the proposed non-destructive spectroscopic approach enables rapid classification and quality assessment of functional flours, supporting future applications in precision food formulation and quality control. Full article
Show Figures

Figure 1

17 pages, 325 KiB  
Article
The Effects of Olive Cake and Linseed Dietary Supplementation on the Performance, Carcass Traits, and Oxidative Stability of Beef from Young Podolian Bulls
by Paolo De Caria, Luigi Chies, Giulia Francesca Cifuni, Manuel Scerra, Francesco Foti, Caterina Cilione, Paolo Fortugno, Miriam Arianna Boninsegna, Corinne Giacondino, Salvatore Claps and Pasquale Caparra
Animals 2025, 15(15), 2188; https://doi.org/10.3390/ani15152188 - 25 Jul 2025
Viewed by 286
Abstract
To evaluate animal performance and meat quality, stoned olive cake and linseed were used in an experimental test conducted on thirty-six young Podolian bulls, divided into four groups: the control group (CON), OC group (with olive cake containing a 30% as-fed basis of [...] Read more.
To evaluate animal performance and meat quality, stoned olive cake and linseed were used in an experimental test conducted on thirty-six young Podolian bulls, divided into four groups: the control group (CON), OC group (with olive cake containing a 30% as-fed basis of stoned olive cake), EL group (with linseed containing a 15% as-fed basis of extruded linseed), and OCEL group (with olive cake + linseed containing 20% stoned olive cake and 10% extruded linseed). The results show that olive cake supplementation did not influence performance in vita or the post-slaughter animal measurements (final body weight, DMI, FCR, ADG, carcass weight, dressing percentage, and pH) (p > 0.05); this was not true of the TBARS and color measurements, for which the meat samples showed excellent values (p < 0.001), especially in diets supplemented with olive cake. In conclusion, incorporating olive cake and linseed into the diet of fattening cattle may be a way to utilize a by-product of the olive industry and naturally increase the nutritional value of meat and meat-based products in Mediterranean regions. This would reduce environmental impacts and promote the valorization of this local feed source in alignment with the principles of the circular economy. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

15 pages, 2799 KiB  
Article
Revalorization of Olive Stones from Olive Pomace: Phenolic Compounds Obtained by Microwave-Assisted Extraction
by Alicia Castillo-Rivas, Paloma Álvarez-Mateos and Juan Francisco García-Martín
Agronomy 2025, 15(8), 1761; https://doi.org/10.3390/agronomy15081761 - 23 Jul 2025
Viewed by 237
Abstract
Olive stones (OS) are a by-product of great interest from olive oil mills and the table olive industry due to their high content of phenolic compounds. In this work, the extraction of phenolic compounds from OS via microwave-assisted extraction (MAE) with aqueous acetone [...] Read more.
Olive stones (OS) are a by-product of great interest from olive oil mills and the table olive industry due to their high content of phenolic compounds. In this work, the extraction of phenolic compounds from OS via microwave-assisted extraction (MAE) with aqueous acetone was assayed. A central composite design of experiments was used to determine the optimal extraction conditions, with the independent variables being temperature, process time, and aqueous acetone (v/v). The dependent variables were the total content of phenolic compounds (TPC) measured by the Folin–Ciocalteu method and the main phenolic compounds identified and quantified by UPLC. Under optimal conditions (75 °C, 20 min, and 60% acetone), 3.32 mg TPC was extracted from 100 g of dry matter (DM) OS. The most suitable extraction conditions were different for each polyphenol. Therefore, 292.11 μg vanillin/g DM; 10.94 μg oleuropein/g DM; and 10.11 protocatechuic acid μg/g DM were obtained under conditions of 60 °C, 15 min, and 100% acetone; 43.8 °C, 10.45 min, and 61.3% acetone; and 64.8 °C, 16.58 min, and 97.8% acetone, respectively. Finally, MAE was compared with the traditional Soxhlet method under the same conditions. As a result, MAE was proven to be an enhanced and more feasible method for polyphenol extraction from OS. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

40 pages, 13344 KiB  
Article
Geopolymers from Olive Stone Bottom Ashes for Sustainable Construction: Influence of the Molding Method
by Elena Picazo Camilo, Juan José Valenzuela Expósito, Raúl Carrillo Beltrán, Griselda Elisabeth Perea Toledo and Francisco Antonio Corpas Iglesias
Sustainability 2025, 17(13), 6219; https://doi.org/10.3390/su17136219 - 7 Jul 2025
Viewed by 351
Abstract
The forming methodology influences the physicochemical, mechanical, and microstructural properties. In this study, which aims to develop a geopolymeric material for potential insulation applications in buildings such as vertical walls, geopolymers were developed using industrial wastes from different industries: slate stone cutting sludge [...] Read more.
The forming methodology influences the physicochemical, mechanical, and microstructural properties. In this study, which aims to develop a geopolymeric material for potential insulation applications in buildings such as vertical walls, geopolymers were developed using industrial wastes from different industries: slate stone cutting sludge (SSCS) and chamotte (CH) were used as precursors, and olive stone bottom ash (OSBA) and sodium silicate (Na2SiO3) were used as alkaline activators. Two forming methods were evaluated: uniaxial pressing and casting of the material, varying the forming method and the liquid/solid ratio. The results showed that the pressed geopolymers achieved higher bulk densities (up to 2.13 g/cm3) and significantly higher compressive strength (28.04 MPa at 28 days), attributable to a higher compactness and degree of geopolymer reaction. In contrast, the casting geopolymers exhibited surface efflorescence, related to slower curing and higher porosity, which reduced their compressive strength (17.88 MPa). In addition, the pressed geopolymers showed better thermal stability and fire performance. These results demonstrate that the variation of the forming method has a direct influence on the material properties of geopolymers, and that the pressing process allows for a reduction of the alkaline activator content, thus reducing its environmental footprint. Full article
Show Figures

Figure 1

26 pages, 4446 KiB  
Article
Exploring the Dual Nature of Olive Husk: Fiber/Aggregate in Lightweight Bio-Concrete for Enhanced Hygrothermal, Mechanical, and Microstructural Properties
by Halima Belhadad, Nadir Bellel and Ana Bras
Buildings 2025, 15(11), 1950; https://doi.org/10.3390/buildings15111950 - 4 Jun 2025
Viewed by 544
Abstract
This study investigates the potential of thermally treated olive husk (OH)—a heterogeneous agro-industrial by-product comprising olive stones, pulp, and fibrous residues—as a multifunctional component in lightweight bio-concrete. Uniquely, this work harnesses the intrinsic dual nature of OH as both a fibrous reinforcement and [...] Read more.
This study investigates the potential of thermally treated olive husk (OH)—a heterogeneous agro-industrial by-product comprising olive stones, pulp, and fibrous residues—as a multifunctional component in lightweight bio-concrete. Uniquely, this work harnesses the intrinsic dual nature of OH as both a fibrous reinforcement and a porous aggregate, without further fractionation, to evaluate its influence on the hygrothermal and mechanical behavior of cementitious composites. While prior studies have often focused selectively on thermal conductivity, this work provides a comprehensive assessment of all major thermal parameters; including diffusivity, effusivity, and specific heat capacity; offering deeper insights into the full thermal behavior of bio-based concretes. OH was incorporated at 0%, 10%, and 20% by weight, and the resulting concretes were subjected to a comprehensive characterization of their thermal, hygric, mechanical, and microstructural properties. Thermal performance metrics included conductivity, specific heat capacity, diffusivity, effusivity, time lag, and predicted energy savings. Hygric behavior was assessed through the moisture buffering value (MBV), while density, porosity, and mechanical strengths were also evaluated. At 20% OH content, thermal conductivity decreased to 0.405 W/m·K (a 72% reduction), thermal diffusivity dropped by 87%, and thermal effusivity reached 554 W·s0.5/m2·K, collectively enhancing thermal inertia and increasing the time lag by 77% (to 2.32 h). MBVs improved to 2.18 g/m2·%RH, rated as “Excellent” for indoor moisture regulation. Despite the higher porosity, the bio-concrete maintained adequate mechanical integrity, with compressive and flexural strengths of 11.68 MPa and 3.58 MPa, respectively, attributed to the crack-bridging action of the fibrous inclusions. Microstructural analysis (SEM/XRD) revealed improved paste continuity and denser C–S–H formation, attributed to enhanced matrix compatibility following oil removal via thermal pre-treatment. These findings demonstrate the viability of OH as a new bio-based, multifunctional additive for fabricating thermally efficient, hygroscopically active, and structurally sound concretes suitable for sustainable construction. Full article
(This article belongs to the Collection Advanced Concrete Materials in Construction)
Show Figures

Figure 1

37 pages, 3512 KiB  
Article
Performance of Combined Olive Mills Wastewater Treatment System: Electrocoagulation-Assisted Adsorption as a Post Polishing Sustainable Process
by Ahmad Jamrah, Tharaa M. Al-Zghoul, Zakaria Al-Qodah and Emad Al-Karablieh
Water 2025, 17(11), 1697; https://doi.org/10.3390/w17111697 - 3 Jun 2025
Viewed by 501
Abstract
This study investigates the effectiveness of electrocoagulation (EC) with locally sourced iron electrodes for treating olive mill wastewater (OMW) prior to adsorption with olive stone (OS). Using Response Surface Methodology (RSM), 60 experiments were conducted to evaluate various operational parameters, including current density [...] Read more.
This study investigates the effectiveness of electrocoagulation (EC) with locally sourced iron electrodes for treating olive mill wastewater (OMW) prior to adsorption with olive stone (OS). Using Response Surface Methodology (RSM), 60 experiments were conducted to evaluate various operational parameters, including current density (CD), reaction time (T), distance between electrodes (D), and the number of electrodes (N). The optimal conditions identified were a reaction time of 53.49 min, a current density of 15.1104 mA/cm2, 1 cm electrode spacing, and six electrodes. Under these conditions, the removal efficiencies achieved were 54.46% for total phenols (TPh), 73.25% for total Kjeldahl nitrogen (TKN), 92% for turbidity, 58.91% for soluble chemical oxygen demand (CODsoluble), and 58.55% for total COD (CODtotal), with an energy consumption of 14.3146 kWh/m3 and a projected cost of USD 3.92/m3. Following the EC process, the treated OMW underwent further adsorption using OS, enhancing pollutant removal. The combined EC and adsorption (ECA) method demonstrated superior performance, achieving TPh removal at 62.63%, TKN removal at 77.52%, and turbidity reduction at 83.73%. Additionally, CODtotal removal increased to 72.88% with CODsoluble removal at 70.04%. This integrated approach significantly improves pollutant removal, presenting a promising solution for effective OMW treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

17 pages, 2099 KiB  
Article
Purification of Waste Water Containing Chlorhexidine Digluconate Using Nanoporous Carbons Obtained from Different Raw Materials
by Bilyana Petrova, Ivanka Stoycheva, Boyko Tsyntsarski, Angelina Kosateva, Nartzislav Petrov and Pavlina Dolashka
Chemistry 2025, 7(3), 91; https://doi.org/10.3390/chemistry7030091 - 30 May 2025
Viewed by 455
Abstract
Activated carbons were obtained from three types of raw materials from the canning industry: peach, plum, and olive stones. The chemical composition and texture of the precursors and the physicochemical properties of the obtained carbons were analyzed. It was found that under the [...] Read more.
Activated carbons were obtained from three types of raw materials from the canning industry: peach, plum, and olive stones. The chemical composition and texture of the precursors and the physicochemical properties of the obtained carbons were analyzed. It was found that under the same conditions of preparation, the properties of the raw materials significantly affect the parameters of the activated carbons. The obtained carbons were oxidized with 12% nitric acid to form a larger amount of acidic oxygen-containing groups on their surface. The porous texture, the size, and the chemical nature of the surface of the activated carbons were analyzed. The adsorption capacity of the obtained activated carbons towards chlorhexidine gluconate contained in mouthwash was determined. It was found that the three carbons have a significant adsorption capacity towards chlorhexidine gluconate: 189.1 mg/g for carbon from peach stones, 189.1 mg/g for carbon from plum stones, and 156.7 mg/g for carbon from olive stones, respectively. It has been determined that the adsorption of chlorhexidine gluconate on the surface of the obtained activated carbons obeys the Langmuir model. It has been established that the adsorption capacity of the obtained activated carbons is influenced by their porous texture, size, and chemical nature of the surface. Full article
(This article belongs to the Section Green and Environmental Chemistry)
Show Figures

Graphical abstract

26 pages, 10141 KiB  
Article
Study of Novel Geopolymer Concrete Prepared with Slate Stone Cutting Sludge, Chamotte, Steel Slag and Activated with Olive Stone Bottom Ash
by Raul Carrillo Beltran, Elena Picazo Camilo, Griselda Perea Toledo and Francisco Antonio Corpas Iglesias
Materials 2025, 18(9), 1974; https://doi.org/10.3390/ma18091974 - 26 Apr 2025
Cited by 2 | Viewed by 660
Abstract
The expansion of the construction sector has contributed to the depletion of raw materials and an increased demand for resources; therefore, sustainable approaches are required to satisfy the construction demand. The present study explores the development of geopolymers by utilizing industrial by-products from [...] Read more.
The expansion of the construction sector has contributed to the depletion of raw materials and an increased demand for resources; therefore, sustainable approaches are required to satisfy the construction demand. The present study explores the development of geopolymers by utilizing industrial by-products from mining, ceramics, olive oil production, and steel manufacturing. Specifically, slate stone cutting sludge (SSCS) and chamotte (CH) are used as aluminosilicate precursors, with olive biomass bottom ash (OSBA) acting as an alkaline activator, along with sodium silicate, and steel granulated slag (SGS) incorporated as an aggregate. Novel geopolymers were prepared with consistent proportions of SSCS and OSBA while varying the CH content from 10 to 2 wt.%. The SGS proportion was adjusted from 35 to 50 wt.%, and different Na2SiO3/OSBA ratios (0.35, 0.31, 0.19, and 0.08) were examined. To identify the optimal mix, a series of physical and mechanical tests was conducted, complemented by FTIR and SEM analysis to evaluate the chemical and microstructural changes. The best-performing formulation achieved a compressive strength of 42.8 MPa after 28 days of curing. FTIR analysis identified quartz and carbonate phases, suggesting that quartz did not fully dissolve and that carbonates formed during the heating process. SEM examination of the optimal mixture indicated that the incorporation of SGS (up to 45 wt.%) facilitated the creation of a compact, low-porosity structure. EDX results revealed the presence of Ca-, Na-, Si-, Al-, and K-enriched phases, supporting the formation of (N, C)-A-S-H gel networks. These results demonstrate the potential of utilizing SSCS, CH, OSBA, and SGS to create geopolymer concretes, showcasing the viability of using industrial by-products as eco-friendly substitutes for traditional construction materials. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials)
Show Figures

Figure 1

35 pages, 22378 KiB  
Article
Study of Properties of Novel Geopolymers Prepared with Slate Stone Cutting Sludge and Activated with Olive Stone Bottom Ash
by Elena Picazo Camilo, Juan José Valenzuela Expósito, Raúl Carrillo Beltrán, Griselda Elisabeth Perea Toledo and Francisco Antonio Corpas Iglesias
Materials 2025, 18(8), 1774; https://doi.org/10.3390/ma18081774 - 13 Apr 2025
Cited by 2 | Viewed by 601
Abstract
The sustainable development of building materials is based on reusing by-products to reduce environmental impact and promote alternatives to traditional materials. In this study, geopolymers were developed from by-products of the mining, ceramic, and thermal industries: slate stone cutting sludge (SSCS) and chamotte [...] Read more.
The sustainable development of building materials is based on reusing by-products to reduce environmental impact and promote alternatives to traditional materials. In this study, geopolymers were developed from by-products of the mining, ceramic, and thermal industries: slate stone cutting sludge (SSCS) and chamotte (CH) as aluminosilicate sources, and olive stone bottom ash (OSBA) as an alkaline activator, combined with sodium silicate (Na2SiO3). Eight geopolymer families were prepared with constant amounts of SSCS and CH and varying proportions of OSBA/Na2SiO3 (0.88–1.31). The evaluation phase included physical, chemical, mechanical, and microstructural tests. The results showed that the optimum geopolymer formulation (GP E) contained 25% SSCS, 15% CH, and 19% OSBA with a Na2SiO3/OSBA ratio of 1.0, achieving a compressive strength of 24.12 MPa after 28 days of curing. GP E also showed the lowest porosity (19.54%), minimal water absorption (6.86%), and favorable thermal conductivity (0.688 W/mK). Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed the formation of dense and homogeneous matrices. These results demonstrate the feasibility of manufacturing geopolymers using SSCS, CH, and OSBA as substitutes for traditional binders, promoting sustainable practices, reusing industrial by-products, and reducing carbon emissions in construction. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials)
Show Figures

Graphical abstract

22 pages, 2413 KiB  
Article
A Novel Liquid Chromatographic Time-of-Flight Tandem Mass Spectrometric Method for the Determination of Secondary Metabolites in Functional Flours Produced from Grape Seed and Olive Stone Waste
by Achilleas Panagiotis Zalidis, Natasa P. Kalogiouri, Ioannis Mourtzinos, Dimitris Sarris and Konstantinos Gkatzionis
Molecules 2025, 30(7), 1527; https://doi.org/10.3390/molecules30071527 - 29 Mar 2025
Cited by 2 | Viewed by 567
Abstract
Agricultural by-products like grape pomace and olive stones are rich in bioactive compounds and can be processed into grape seed and olive stone flours.The phenolic composition of such flours still remains underexplored. This study introduces a liquid chromatographic time-of-flight tandem mass spectrometric method [...] Read more.
Agricultural by-products like grape pomace and olive stones are rich in bioactive compounds and can be processed into grape seed and olive stone flours.The phenolic composition of such flours still remains underexplored. This study introduces a liquid chromatographic time-of-flight tandem mass spectrometric method (LC-QTOF-MS/MS) to assess the phenolic profiles of functional flours from different origins and evaluate their potential use within the frame of a circular economy. Grape seed and olive stone flours from Lemnos and commercial sources were analyzed employing target, suspect, and non-target screening. Target screening resulted in the determination of 23 phenolic compounds. Suspect screening revealed phenolic diversity in flours produced in Lemnos island. Non-target screening resulted in the detection of 1042 and 1620 mass features in grape seed and olive stone flours, respectively. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) successfully differentiated samples between commercially available and those produced in Lemnos. These results underscore the phenolic richness of grape seed and olive stone flours, supporting their use as functional ingredients and reinforcing sustainability and circular economy principles in the agri-food sector. Full article
(This article belongs to the Special Issue Chromatography—The Ultimate Analytical Tool, 3rd Edition)
Show Figures

Figure 1

25 pages, 9563 KiB  
Article
Porous Mortars Incorporating Active Biochar from Olive Stone Waste and Recycled Masonry Aggregate: Effects of Accelerated Carbonation Curing
by Antonio Manuel Merino-Lechuga, Ágata González-Caro, Álvaro Caballero, José Ramón Jiménez, José María Fernández-Rodrígez and David Suescum-Morales
Materials 2025, 18(4), 904; https://doi.org/10.3390/ma18040904 - 19 Feb 2025
Cited by 2 | Viewed by 860
Abstract
This study investigated the use of activated biochar derived from olive stone waste and recycled masonry aggregates in porous mortar mixtures and assessed their behaviour under accelerated carbonation curing conditions. Three mortar mixtures were produced, incorporating 0%, 5%, and 10% activated biochar by [...] Read more.
This study investigated the use of activated biochar derived from olive stone waste and recycled masonry aggregates in porous mortar mixtures and assessed their behaviour under accelerated carbonation curing conditions. Three mortar mixtures were produced, incorporating 0%, 5%, and 10% activated biochar by volume. The physical, chemical, and mechanical properties of the mortars were analysed, including the compressive strength, flexural strength, water absorption, porosity, and CO2 capture capacity. Additionally, calorimetry tests were performed on cement pastes with 0%, 0.5%, 1%, 3%, 15%, and 20% activated biochar to evaluate their impact on setting times and ensure compatibility between activated biochar and cement. The results showed that the addition of biochar improved mechanical properties, particularly under accelerated carbonation curing, whereas active biochar (AcB) significantly enhanced the compressive and flexural strengths. Furthermore, biochar incorporation boosted CO2 capture efficiency, with the 10% biochar mix showing up to 147% higher CO2 uptake, compared with a control. These findings suggest that activated biochar and recycled masonry aggregates can be effectively utilised to develop sustainable construction materials and thereby contribute to carbon sequestration and the reduction in environmental impacts. This research fills the gaps in the current knowledge on the use of activated biochar from olive stones waste in cement-base materials under accelerated carbonation conditions. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

15 pages, 3759 KiB  
Article
Diluted Acid Hydrolysate of Olive Stones: Overliming and Biomass Fermentation
by Jeanne Andary, Naïm Ouaini and Rony Abou-Khalil
Fermentation 2025, 11(2), 100; https://doi.org/10.3390/fermentation11020100 - 17 Feb 2025
Cited by 1 | Viewed by 868
Abstract
To valorize olive stones, this study focuses on the composition of their dilute-acid hydrolysate DAH and aims to highlight the effect of the overliming process to achieve an effective treatment that maximizes sugar concentrations while minimizing the number of toxic materials. The study [...] Read more.
To valorize olive stones, this study focuses on the composition of their dilute-acid hydrolysate DAH and aims to highlight the effect of the overliming process to achieve an effective treatment that maximizes sugar concentrations while minimizing the number of toxic materials. The study examined the impact of pH (10 and 12), temperature (25 and 60 °C), and detoxification time (15, 30, and 60 min) on the viability and vitality of M. pulcherrima and S. cerevisiae, using an experimental design of 2231. Detoxification was significantly influenced by pH and temperature, with xylose and furans probably following the same kinetic degradation. Viability improved to 52% for M. pulcherrima and 67% for S. cerevisiae in detoxified hydrolysate due to reduced toxic compounds. Optimal conditions were found to be a pH of 10 at 25 °C for 30 min, achieving 71% and 62% degradation of hydroxymethylfurfural and furfural, respectively, with a minimum polyphenol concentration of 580 mg·L−1. M. pulcherima exhibited greater vitality than S. cerevisiae because of the medium’s high xylose content and low glucose concentration. Conversely, pH 12 not only promoted sugar (xylose) loss but also generated new toxic compounds that negatively affected yeast development. To improve fermentation, further attention needs to be paid to these conditions. Full article
(This article belongs to the Special Issue Current Trends in Bioprocesses for Waste Valorization)
Show Figures

Figure 1

30 pages, 9447 KiB  
Article
Geopolymers Manufactured by the Alkali Activation of Mining and Ceramic Wastes Using a Potential Sustainable Activator from Olive Stone Bottom Ashes
by Raul Carrillo Beltran, Elena Picazo Camilo, Griselda Perea Toledo and Francisco Antonio Corpas Iglesias
Materials 2025, 18(3), 688; https://doi.org/10.3390/ma18030688 - 4 Feb 2025
Cited by 2 | Viewed by 999
Abstract
The reuse of by-products as alternative raw materials to traditional construction materials is required in order to ensure sustainable development in the construction sector and is a significant and important focus in the fields of materials science. This study developed geopolymers using by-products [...] Read more.
The reuse of by-products as alternative raw materials to traditional construction materials is required in order to ensure sustainable development in the construction sector and is a significant and important focus in the fields of materials science. This study developed geopolymers using by-products from mining, ceramics, and olive industries, including slate stone cutting sludge (SSCS) and chamotte (CH) as aluminosilicate sources, and olive biomass bottom ash (OSBA) as an alkaline activator with sodium silicate. A key novelty of the research lies in the use of SSCS, an underexplored by-product in geopolymerization studies, as a viable aluminosilicate source. The geopolymers were prepared with varying weight ratios of SSCS, CH, and OSBA/Na₂SiO₃ (1.7, 1.9, 2.2, and 2.4). Physical and mechanical tests determined the optimal formulation, while FTIR and SEM analyses revealed the material’s chemical and structural evolution. The FTIR analysis detected the quartz and carbonate phases, indicating incomplete quartz dissolution and carbonate formation during calcination. The SEM analysis revealed a dense microstructure with reduced porosity and enhanced geopolymerization in samples with higher OSBA content. The optimal geopolymer (60% OSBA, 30% CH, OSBA/Na₂SiO₃ ratio of 2.2) achieved a compressive strength of 33.1 MPa after 28 days. These findings demonstrate the feasibility of producing geopolymers using SSCS, CH, and OSBA, promoting the reuse of industrial by-products as sustainable alternatives to conventional binders. Full article
(This article belongs to the Special Issue Advances in Function Geopolymer Materials)
Show Figures

Figure 1

25 pages, 8926 KiB  
Article
Development and Characterization of Biomass-Derived Carbons for the Removal of Cu2+ and Pb2+ from Aqueous Solutions
by Vahid Rahimi, Catarina Helena Pimentel, Diego Gómez-Díaz, María Sonia Freire, Massimo Lazzari and Julia González-Álvarez
C 2025, 11(1), 2; https://doi.org/10.3390/c11010002 - 29 Dec 2024
Cited by 2 | Viewed by 1551
Abstract
This research explores the synthesis and application of carbon-based adsorbents derived from olive stones and almond shells as low-cost biomass precursors through carbonization at 600 °C combined with chemical activation using KOH, H3PO4, and ZnCl2 with carbon/activating agent [...] Read more.
This research explores the synthesis and application of carbon-based adsorbents derived from olive stones and almond shells as low-cost biomass precursors through carbonization at 600 °C combined with chemical activation using KOH, H3PO4, and ZnCl2 with carbon/activating agent (C/A) ratios of 1:2 and 1:4 (w/w) at 850 °C for the removal of Cu2+ and Pb2+ ions from aqueous solutions. The carbons produced were characterized using different techniques including SEM-EDX, FTIR, XRD, BET analysis, CHNS elemental analysis, and point of zero charge determination. Batch-mode adsorption experiments were carried out at adsorbent doses of 2 and 5 g L−1, initial metal concentrations of 100 and 500 mg L−1, and natural pH (around 5) with agitation at 350 rpm and 25 °C for 24 h. KOH-activated carbons, especially at a 1:4 (w/w) ratio, exhibited superior adsorption performance mainly due to their favorable surface characteristics and functionalities. Pb2+ was entirely removed (100%) at the highest initial concentration of 500 mg L−1 and an adsorbent dosage of 5 g L−1, while for Cu2+, the maximum adsorption efficiency was 86.29% at an initial concentration of 100 mg L−1 and a dosage of 2 g L−1. The results of this study will help advance knowledge in the design and optimization of adsorption processes for heavy metal removal, benefiting industries seeking green technologies to mitigate environmental pollution. Full article
(This article belongs to the Special Issue Carbon-Based Materials Applied in Water and Wastewater Treatment)
Show Figures

Figure 1

Back to TopTop