Hamamelis virginiana L. in Skin Care: A Review of Its Pharmacological Properties and Cosmetological Applications
Abstract
1. Introduction
2. Botanical and Phytochemical Characterization of Hamamelis virginiana
2.1. Botanical Characteristic
2.2. Phytochemical Composition
3. Biological Activity of H. virginiana
3.1. Traditional Uses and Regulatory Status of H. virginiana in Europe
3.2. Literature-Based Insights into the Skin-Related Bioactivity of H. virginiana
3.2.1. Antibacterial Effects
3.2.2. Anti-Inflammatory Activity
3.2.3. Wound Healing Properties and the Other Effects on Skin
3.2.4. Antioxidant Activity
3.2.5. In Vivo Studies
3.3. Biological Activity of Hamamelitannin
4. A Global Regulation and Market Status of H. virginiana
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meyer, F.G. Flora of North America North of Mexico (FNA); Oxford University Press: New York, NY, USA; Oxford, UK, 1997. [Google Scholar]
- Andriote, J.-M. The Mysterious Past and Present of Witch Hazel. The Atlantic, 6 November 2012. [Google Scholar]
- Smith, R.A.; Koch, V. Blink and You’ll Miss These Plants Shooting Their Seeds; Duke University: Durham, NC, USA, 2023. [Google Scholar]
- Bingham, M.C. Which Witch Is Witch Hazel (and Which Dickinson Makes It)? Connecticut Business Journal: Hartford, CT, USA, 1997. [Google Scholar]
- Gangemi, S.; Minciullo, P.L.; Miroddi, M.; Chinou, I.; Calapai, G.; Schmidt, R.J. Contact Dermatitis as an Adverse Reaction to Some Topically Used European Herbal Medicinal Products—Part 2: Echinacea Purpurea-Lavandula Angustifolia. Contact Dermat. 2015, 72, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, N.; Vlasova, I.; Skowrońska, W.; Bazylko, A.; Piwowarski, J.P.; Granica, S. Current Knowledge on Interactions of Plant Materials Traditionally Used in Skin Diseases in Poland and Ukraine with Human Skin Microbiota. Int. J. Mol. Sci. 2022, 23, 9644. [Google Scholar] [CrossRef] [PubMed]
- Tsioutsiou, E.E.; Amountzias, V.; Vontzalidou, A.; Dina, E.; Stevanović, Z.D.; Cheilari, A.; Aligiannis, N. Medicinal Plants Used Traditionally for Skin Related Problems in the South Balkan and East Mediterranean Region—A Review. Front. Pharmacol. 2022, 13, 936047. [Google Scholar] [CrossRef] [PubMed]
- Hanlidou, E.; Karousou, R.; Kleftoyanni, V.; Kokkini, S. The Herbal Market of Thessaloniki (N Greece) and Its Relation to the Ethnobotanical Tradition. J. Ethnopharmacol. 2004, 9, 281–299. [Google Scholar] [CrossRef]
- Goglia, M.; Grossi, U.; D’Andrea, V.; Gallo, G. A Pilot Study on the Efficacy and Safety of Preoperative Micronized Purified Flavonoid Fraction Treatment and Sucralfate-Based Rectal Ointment on Patients with Grade II to IV Hemorrhoidal Disease. Acta Phlebol. 2024, 25, 70–75. [Google Scholar] [CrossRef]
- Giua, C.; Minerba, L.; Piras, A.; Floris, N.; Romano, F.; SIFAC Group. The Effect of Sucralfate-Containing Ointment on Quality of Life in People with Symptoms Associated with Haemorrhoidal Disease and Its Complications: The Results of the EMOCARE Survey. Acta Bio Medica Atenei Parm. 2021, 92, e2021029. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Maity, N.; Nema, N.K.; Sarkar, B.K. Bioactive Compounds from Natural Resources against Skin Aging. Phytomedicine Int. J. Phytother. Phytopharm. 2011, 19, 64–73. [Google Scholar] [CrossRef]
- Gloor, M.; Reichling, J.; Wasik, B.; Holzgang, H.E. Antiseptic Effect of a Topical Dermatological Formulation That Contains Hamamelis Distillate and Urea. Complement. Med. Res. 2002, 9, 153–159. [Google Scholar] [CrossRef]
- Draelos, Z.D.; Levy, S.B.; Lutrario, C.; Gunt, H. Evaluation of the Performance of a Nature-Based Sensitive Skin Regimen in Subjects With Clinically Diagnosed Sensitive Skin. J. Drugs Dermatol. JDD 2018, 17, 908–913. [Google Scholar]
- Rodrigues Ueoka, A.; Pedriali Moraes, C. Development and Stability Evaluation of Liquid Crystal-Based Formulations Containing Glycolic Plant Extracts and Nano-Actives. Cosmetics 2018, 5, 25. [Google Scholar] [CrossRef]
- Barragan-Galvez, J.C.; Gonzalez-Rivera, M.L.; Jiménez-Cruz, J.C.; Hernandez-Flores, A.; De La Rosa, G.; Lopez-Moreno, M.L.; Yañez-Barrientos, E.; Romero-Hernández, M.; Deveze-Alvarez, M.A.; Navarro-Santos, P.; et al. A Patent-Pending Ointment Containing Extracts of Five Different Plants Showed Antinociceptive and Anti-Inflammatory Mechanisms in Preclinical Studies. Pharmaceutics 2024, 16, 1215. [Google Scholar] [CrossRef] [PubMed]
- Trüeb, R.M. Efficacy, Tolerability, and Superiority of Propylene Glycol-Free, North American Witch-Hazel (Hamamelis Virginiana)-Based Solution of 5% Minoxidil Sulfate for the Treatment of Female Androgenetic Alopecia. Int. J. Trichol. 2023, 15, 108–112. [Google Scholar] [CrossRef]
- Trüeb, R. North American Virginian Witch Hazel (Hamamelis Virginiana): Based Scalp Care and Protection for Sensitive Scalp, Red Scalp, and Scalp Burn-Out. Int. J. Trichol. 2014, 6, 100. [Google Scholar] [CrossRef]
- Ueoka, A.R.; Sufi, B.S.; Magalhães, W.V.; Fernandes, L.; Andreo-Filho, N.; Leite-Silva, V.R.; Lopes, P.S. Flow Cytometry as an Alternative Method to Evaluate Genotoxicity of Natural Cosmetic Actives. J. Cosmet. Dermatol. 2023, 22, 958–968. [Google Scholar] [CrossRef]
- Turan, Ç.; Öner, Ü. Lip Mesotherapy with Dexpanthenol As A Novel Approach To Prevent Isotretinoin-Associated Cheilitis. Dermatol. Pract. Concept. 2023, 13, e2023012. [Google Scholar] [CrossRef]
- Tonetto, M.R.; Bandéca, M.C.; Filho, E.M.M.; Junior, J.C.E.M.; Nunes, L.H.D.A.C.; Arruda, C.S.; De Castro Rizzi, C.; Mouchrek, A.Q.E.S.; Tavarez, R.R.D.J. Effectiveness of Oral Antiseptics on Tooth Biofilm: A Study in Vivo. J. Contemp. Dent. Pract. 2015, 16, 674–678. [Google Scholar] [CrossRef]
- Palombo, E.A. Traditional Medicinal Plant Extracts and Natural Products with Activity against Oral Bacteria: Potential Application in the Prevention and Treatment of Oral Diseases. Evid. Based Complement. Altern. Med. 2011, 2011, 680354. [Google Scholar] [CrossRef]
- Poondru, S.; Scott, K.; Riley, J.M. Patient Perspectives of Wound Care Management in Hidradenitis Suppurativa. Arch. Dermatol. Res. 2023, 315, 1847–1850. [Google Scholar] [CrossRef]
- Anderson, G.J.; Hill, J.D. Many to Flower, Few to Fruit: The Reproductive Biology of Hamamelis Virginiana (Hamamelidaceae). Am. J. Bot. 2002, 89, 67–78. [Google Scholar] [CrossRef]
- Duckstein, S.M.; Stintzing, F.C. Investigation on the Phenolic Constituents in Hamamelis Virginiana Leaves by HPLC-DAD and LC-MS/MS. Anal. Bioanal. Chem. 2011, 401, 677–688. [Google Scholar] [CrossRef]
- Amêndola, I.; Viegas, D.D.J.; Freitas, E.T.; Oliveira, J.R.D.; Santos, J.G.D.; Oliveira, F.E.D.; Lagareiro Netto, A.A.; Marcucci, M.C.; Oliveira, L.D.D.; Back-Brito, G.N. Hamamelis Virginiana L. Extract Presents Antimicrobial and Antibiofilm Effects, Absence of Cytotoxicity, Anti-Inflammatory Action, and Potential to Fight Infections through the Nitric Oxide Production by Macrophages. An. Acad. Bras. Ciênc. 2024, 96, e20200031. [Google Scholar] [CrossRef] [PubMed]
- Piazza, S.; Martinelli, G.; Vrhovsek, U.; Masuero, D.; Fumagalli, M.; Magnavacca, A.; Pozzoli, C.; Canilli, L.; Terno, M.; Angarano, M.; et al. Anti-Inflammatory and Anti-Acne Effects of Hamamelis Virginiana Bark in Human Keratinocytes. Antioxidants 2022, 11, 1119. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Provan, G.J.; Helliwell, K. Determination of Hamamelitannin, Catechins and Gallic Acid in Witch Hazel Bark, Twig and Leaf by HPLC. J. Pharm. Biomed. Anal. 2003, 33, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Burico, M.; Fodaroni, G.; Flamini, E.; Ascani, N.; Proietti, G.; Tamimi, S.; Quintiero, C.M.; Massa, L.; Gianni, M.; Mattoli, L. Metabolomic Fingerprint of Hamamelis Virginiana L. Gallotannins by Suspect Screening Analysis with UHPLC-qToF and Their Semiquantitative Evaluation. J. Mass Spectrom. 2022, 57, e4878. [Google Scholar] [CrossRef]
- Djapić, N. Bilin and Bilinone Chlorophyll Catabolite Content in the Hamamelidaceae Autumnal Leaves. Nat. Prod. Sci. 2022, 28, 18–26. [Google Scholar] [CrossRef]
- Engel, R.; Gutmann, M.; Hartisch, C.; Kolodziej, H.; Nahrstedt, A. Study on the Composition of the Volatile Fraction of Hamamelis Virginiana. Planta Med. 1998, 64, 251–258. [Google Scholar] [CrossRef]
- Cheesman, M.J.; Alcorn, S.R.; White, A.; Cock, I.E. Hamamelis Virginiana L. Leaf Extracts Inhibit the Growth of Antibiotic-Resistant Gram-Positive and Gram-Negative Bacteria. Antibiotics 2023, 12, 1195. [Google Scholar] [CrossRef]
- Theisen, L.L.; Erdelmeier, C.A.J.; Spoden, G.A.; Boukhallouk, F.; Sausy, A.; Florin, L.; Muller, C.P. Tannins from Hamamelis Virginiana Bark Extract: Characterization and Improvement of the Antiviral Efficacy against Influenza A Virus and Human Papillomavirus. PLoS ONE 2014, 9, e88062. [Google Scholar] [CrossRef]
- Touriño, S.; Lizárraga, D.; Carreras, A.; Lorenzo, S.; Ugartondo, V.; Mitjans, M.; Vinardell, M.P.; Juliá, L.; Cascante, M.; Torres, J.L. Highly Galloylated Tannin Fractions from Witch Hazel (Hamamelis Virginiana) Bark: Electron Transfer Capacity, In Vitro Antioxidant Activity, and Effects on Skin-Related Cells. Chem. Res. Toxicol. 2008, 21, 696–704. [Google Scholar] [CrossRef]
- Deters, A.; Dauer, A.; Schnetz, E.; Fartasch, M.; Hensel, A. High Molecular Compounds (Polysaccharides and Proanthocyanidins) from Hamamelis Virginiana Bark: Influence on Human Skin Keratinocyte Proliferation and Differentiation and Influence on Irritated Skin. Phytochemistry 2001, 58, 949–958. [Google Scholar] [CrossRef]
- Dauer, A.; Hensel, A.; Lhoste, E.; Knasmüller, S.; Mersch-Sundermann, V. Genotoxic and Antigenotoxic Effects of Catechin and Tannins from the Bark of Hamamelis Virginiana L. in Metabolically Competent, Human Hepatoma Cells (Hep G2) Using Single Cell Gel Electrophoresis. Phytochemistry 2003, 63, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Dauer, A.; Rimpler, H.; Hensel, A. Polymeric Proanthocyanidins from the Bark of Hamamelis Virginiana. Planta Med. 2003, 69, 89–91. [Google Scholar] [CrossRef]
- Sagareishvili, T.G.; Yarosh, E.A.; Kemertelidze, E.P. Phenolic Compounds from Leaves of Hamamelis Virginiana. Chem. Nat. Compd. 1999, 35, 585. [Google Scholar] [CrossRef]
- Schulz, H.; Albroscheit, G. High-Performance Liquid Chromatographic Characterization of Some Medical Plant Extracts Used in Cosmetic Formulas. J. Chromatogr. A 1988, 442, 353–361. [Google Scholar] [CrossRef]
- Safta, D.A.; Ielciu, I.; Șuștic, R.; Hanganu, D.; Niculae, M.; Cenariu, M.; Pall, E.; Moldovan, M.L.; Achim, M.; Bogdan, C.; et al. Chemical Profile and Biological Effects of an Herbal Mixture for the Development of an Oil-in-Water Cream. Plants 2023, 12, 248. [Google Scholar] [CrossRef]
- Lloyd, J.U.; Lloyd, J.T. History of Hamamelis (Witch Hazel), Extract and Distillate. J. Am. Pharm. Assoc. 1935, 24, 220–224. [Google Scholar] [CrossRef]
- European Medicines Agency, Committee on Herbal Medicinal Products. EMA/HMPC/114583/2008 Corr. Community Herbal Monograph on Hamamelis Virginiana L., Cortex; European Medicines Agency, Committee on Herbal Medicinal Products: Amsterdam, The Netherlands, 2019. [Google Scholar]
- European Medicines Agency, Committee on Herbal Medicinal Products. EMA/HMPC/114584/2008. Community Herbal Monograph on Hamamelis Virginiana L., Folium et Cortex Aut Ramunculus Destillatum; European Medicines Agency, Committee on Herbal Medicinal Products: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Hamamelidis Cortex (Hamamelis Bark)—ESCOP. Available online: https://www.escop.com/downloads/hamamelis-bark/ (accessed on 20 June 2025).
- Hamamelidis Folium (Hamamelis Leaf)—ESCOP. Available online: https://www.escop.com/downloads/hamamelis-leaf/ (accessed on 20 June 2025).
- Cheesman, M.J.; Alcorn, S.; Verma, V.; Cock, I.E. An Assessment of the Growth Inhibition Profiles of Hamamelis virginiana L. Extracts Against Streptococcus and Staphylococcus spp. J. Tradit. Complement. Med. 2021, 11, 457–465. [Google Scholar] [CrossRef]
- Cheesman, M.J.; Alcorn, S.R.; Cock, I.E. Effects of Hamamelis Virginiana L. Extracts on Pseudomonas Aeruginosa Growth and Antagonism of Ciprofloxacin. Pharmacogn. Commun. 2023, 13, 92–98. [Google Scholar] [CrossRef]
- Iauk, L.; Lo Bue, A.M.; Milazzo, I.; Rapisarda, A.; Blandino, G. Antibacterial Activity of Medicinal Plant Extracts against Periodontopathic Bacteria. Phytother. Res. 2003, 17, 599–604. [Google Scholar] [CrossRef]
- Kirsch, J.; Jung, A.; Hille, K.; König, B.; Hannig, C.; Kölling-Speer, I.; Speer, K.; Hannig, M. Effect of Fragaria Vesca, Hamamelis and Tormentil on the Initial Bacterial Colonization in Situ. Arch. Oral Biol. 2020, 118, 104853. [Google Scholar] [CrossRef]
- Santos, J.G.D.; Amêndola, I.; Bessa, E.R.L.; Back-Brito, G.N.; Oliveira, L.D.D. Effect of Hamamelis Virginiana, Persea Americana, Cynara Scolymus L and Stryphnodendron Barbatiman M Plant Extracts on the Phenotypic Expression of Virulence Factors in Biofilms of the Candida Albicans. Braz. Dent. Sci. 2024, 27, e4039. [Google Scholar] [CrossRef]
- Pereira, C.; Niranjan, P.; Manikantan, R. Clinical Isolates of Staphylococcus Aureus (R.): Biofilm Characterisation and Inhibitory Assay Using Hamamelis Virginiana (L.). Int. J. Pharm. Bio Sci. 2014, 5, 809–819. [Google Scholar]
- Rasooly, R.; Molnar, A.; Choi, H.-Y.; Do, P.; Racicot, K.; Apostolidis, E. In-Vitro Inhibition of Staphylococcal Pathogenesis by Witch-Hazel and Green Tea Extracts. Antibiotics 2019, 8, 244. [Google Scholar] [CrossRef] [PubMed]
- Rasooly, R.; Choi, H.-Y.; Do, P.; Morroni, G.; Brescini, L.; Cirioni, O.; Giacometti, A.; Apostolidis, E. whISOBAXTM Inhibits Bacterial Pathogenesis and Enhances the Effect of Antibiotics. Antibiotics 2020, 9, 264. [Google Scholar] [CrossRef] [PubMed]
- Rasooly, R.; Howard, A.C.; Balaban, N.; Hernlem, B.; Apostolidis, E. The Effect of Tannin-Rich Witch Hazel on Growth of Probiotic Lactobacillus Plantarum. Antibiotics 2022, 11, 395. [Google Scholar] [CrossRef]
- Failla, M.; Lee, J.; Rasooly, R.; Apostolidis, E. Evaluation of a Witch Hazel Extract for the Potential Prebiotic and Protective Effect on Select Lactiplantibacillus Plantarum (Prev. Lactobacillus Plantarum) Strains. Front. Nutr. 2022, 9, 874666. [Google Scholar] [CrossRef]
- Treviño-Garza, M.Z.; Yañez-Echeverría, S.A.; García, S.; Mora-Zúñiga, A.E.; Arévalo Niño, K.; Universidad Autónoma de Nuevo León. Physico-Mechanical, Barrier and Antimicrobial Properties of Linseed Mucilague Films Incorporated with H. Virginiana Extract. Rev. Mex. Ing. Quím. 2019, 19, 983–996. [Google Scholar] [CrossRef]
- Brantner, A.; Grein, E. Antibacterial Activity of Plant Extracts Used Externally in Traditional Medicine. J. Ethnopharmacol. 1994, 44, 35–40. [Google Scholar] [CrossRef]
- Dzabijeva, D.; Boroduske, A.; Ramata-Stunda, A.; Mazarova, N.; Nikolajeva, V.; Boroduskis, M.; Nakurte, I. Anti-Bacterial Activity and Online HPLC-DPPH Based Antiradical Kinetics of Medicinal Plant Extracts of High Relevance for Cosmetics Production. Key Eng. Mater. 2018, 762, 8–13. [Google Scholar] [CrossRef]
- Rasooly, R.; Molnar, A.; Do, P.; Morroni, G.; Brescini, L.; Cirioni, O.; Giacometti, A.; Apostolidis, E. Witch Hazel Significantly Improves the Efficacy of Commercially Available Teat Dips. Pathogens 2020, 9, 92. [Google Scholar] [CrossRef]
- Nardini, E.F.; Almeida, T.S.; Yoshimura, T.M.; Ribeiro, M.S.; Cardoso, R.J.; Garcez, A.S. The Potential of Commercially Available Phytotherapeutic Compounds as New Photosensitizers for Dental Antimicrobial PDT: A Photochemical and Photobiological in Vitro Study. Photodiagnosis Photodyn. Ther. 2019, 27, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Solis-Arevalo, K.K.; Garza-Gonzalez, M.T.; Lopez-Calderon, H.D.; Solis-Rojas, C.; Arevalo-Nino, K. Electrospun Membranes Based on Schizophyllan-PVOH and Hamamelis Virginiana Extract: Antimicrobial Activity Against Microorganisms of Medical Importance. IEEE Trans. NanoBioscience 2019, 18, 522–527. [Google Scholar] [CrossRef] [PubMed]
- Molin, M.L.; Segat, B.; Garcia, M.C.F.; Pezzin, A.P.T.; Silveira, M.L.L.; Schneider, A.L.D.S. Development and Characterization of Bacterial Cellulose Membrane Incorporated with Witch Hazel Extract. Matér. Rio Jan. 2023, 28, e20230008. [Google Scholar] [CrossRef]
- Erdelmeier, C.; Cinatl, J.; Rabenau, H.; Doerr, H.; Biber, A.; Koch, E. Antiviral and Antiphlogistic Activities of Hamamelis Virginiana Bark. Planta Med. 1996, 62, 241–245. [Google Scholar] [CrossRef]
- Bedoya, L.M.; Palomino, S.S.; Abad, M.J.; Bermejo, P.; Alcami, J. Screening of Selected Plant Extracts for in Vitro Inhibitory Activity on Human Immunodeficiency Virus. Phytother. Res. 2002, 16, 550–554. [Google Scholar] [CrossRef]
- Piazza, S.; Martinelli, G.; Magnavacca, A.; Fumagalli, M.; Pozzoli, C.; Terno, M.; Canilli, L.; Angarano, M.; Maranta, N.; Dell’Agli, M.; et al. Unveiling the Ability of Witch Hazel (Hamamelis virginiana L.) Bark Extract to Impair Keratinocyte Inflammatory Cascade Typical of Atopic Eczema. Int. J. Mol. Sci. 2022, 23, 9279. [Google Scholar] [CrossRef]
- Hartisch, C.; Kolodziej, H.; Von Bruchhausen, F. Dual Inhibitory Activities of Tannins from Hamamelis Virginiana and Related Polyphenols on 5-Lipoxygenase and Lyso-PAF: Acetyl-CoA Acetyltransferase1. Planta Med. 1997, 63, 106–110. [Google Scholar] [CrossRef]
- Manville, R.W.; Yoshimura, R.F.; Yeromin, A.V.; Hogenkamp, D.; Van Der Horst, J.; Zavala, A.; Chinedu, S.; Arena, G.; Lasky, E.; Fisher, M.; et al. Polymodal K+ Channel Modulation Contributes to Dual Analgesic and Anti-Inflammatory Actions of Traditional Botanical Medicines. Commun. Biol. 2024, 7, 1059. [Google Scholar] [CrossRef]
- Liu, X.; Hage, T.; Chen, L.; Wang, E.H.C.; Liao, I.; Goldberg, J.; Gosto, S.; Cziryak, P.; Senna, M.; Chen, Y.; et al. Revealing the Therapeutic Potential: Investigating the Impact of a Novel Witch Hazel Formula on Anti-Inflammation and Antioxidation. J. Cosmet. Dermatol. 2025, 24, e16662. [Google Scholar] [CrossRef]
- Thring, T.S.; Hili, P.; Naughton, D.P. Antioxidant and Potential Anti-Inflammatory Activity of Extracts and Formulations of White Tea, Rose, and Witch Hazel on Primary Human Dermal Fibroblast Cells. J. Inflamm. 2011, 8, 27. [Google Scholar] [CrossRef]
- Fernandez-Guarino, M.; Naharro-Rodriguez, J.; Bacci, S. Aberrances of the Wound Healing Process: A Review. Cosmetics 2024, 11, 209. [Google Scholar] [CrossRef]
- Almadani, Y.H.; Vorstenbosch, J.; Davison, P.G.; Murphy, A.M. Wound Healing: A Comprehensive Review. Semin. Plast. Surg. 2021, 35, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Patenall, B.L.; Carter, K.A.; Ramsey, M.R. Kick-Starting Wound Healing: A Review of Pro-Healing Drugs. Int. J. Mol. Sci. 2024, 25, 1304. [Google Scholar] [CrossRef]
- Dezena, R.M.B.; Ireno, A.B.; Silva, G.H.D. Employing Optical Microscopy Technique to Determine the Tissue Action of Hamamelis virginiana L. (Hamamelidaceae), Maytenus ilicifoliaMart. Ex Reissek (Celastraceae) and Casearia Sylvestris Sw. (Salicaceae) Tinctures on Skin-Fixed Histological Sections of Wistar Rats. Rev. Ciênc. Farm. Básica E Apl. RCFBA 2021, 42, e733. [Google Scholar] [CrossRef]
- Thring, T.S.; Hili, P.; Naughton, D.P. Anti-Collagenase, Anti-Elastase and Anti-Oxidant Activities of Extracts from 21 Plants. BMC Complement. Altern. Med. 2009, 9, 27. [Google Scholar] [CrossRef]
- Antonio, F.; Guillem, R.; Sonia, T.; Clara, M.; Piergiorgio, G.; Valeria, C.; Gianluca, C.; Tzanov, T. Cross-linked Collagen Sponges Loaded with Plant Polyphenols with Inhibitory Activity towards Chronic Wound Enzymes. Biotechnol. J. 2011, 6, 1208–1218. [Google Scholar] [CrossRef]
- Rocasalbas, G.; Francesko, A.; Touriño, S.; Fernández-Francos, X.; Guebitz, G.M.; Tzanov, T. Laccase-Assisted Formation of Bioactive Chitosan/Gelatin Hydrogel Stabilized with Plant Polyphenols. Carbohydr. Polym. 2013, 92, 989–996. [Google Scholar] [CrossRef]
- Ramos, M.F.S.; Santos, E.P.; Bizarri, C.H.B.; Mattos, H.A.; Padilha, M.R.S.; Duarte, H.M. Preliminary Studies towards Utilization of Various Plant Extracts as Antisolar Agents. Int. J. Cosmet. Sci. 1996, 18, 87–101. [Google Scholar] [CrossRef]
- Choi, J.; Yang, D.; Moon, M.Y.; Han, G.Y.; Chang, M.S.; Cha, J. The Protective Effect of Hamamelis Virginiana Stem and Leaf Extract on Fine Dust-Induced Damage on Human Keratinocytes. Cosmetics 2021, 8, 119. [Google Scholar] [CrossRef]
- Silva, A.P.D.; Rocha, R.; Silva, C.M.L.; Mira, L.; Duarte, M.F.; Florȇncio, M.H. Antioxidants in Medicinal Plant Extracts. A Research Study of the Antioxidant Capacity of Crataegus, Hamamelis and Hydrastis. Phytother. Res. 2000, 14, 612–616. [Google Scholar] [CrossRef]
- Masaki, H.; Sakaki, S.; Atsumi, T.; Sakurai, H. Active-Oxygen Scavenging Activity of Plant Extracts. Biol. Pharm. Bull. 1995, 18, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.R.; Choi, J.S.; Han, Y.N.; Bae, S.J.; Chung, H.Y. Peroxynitrite Scavenging Activity of Herb Extracts. Phytother. Res. 2002, 16, 364–367. [Google Scholar] [CrossRef] [PubMed]
- Pazos, M.; Torres, J.L.; Andersen, M.L.; Skibsted, L.H.; Medina, I. Galloylated Polyphenols Efficiently Reduce α-Tocopherol Radicals in a Phospholipid Model System Composed of Sodium Dodecyl Sulfate (SDS) Micelles. J. Agric. Food Chem. 2009, 57, 5042–5048. [Google Scholar] [CrossRef]
- Furger, C.; Gironde, C.; Rigal, M.; Dufour, C.; Guillemet, D. Cell-Based Antioxidant Properties and Synergistic Effects of Natural Plant and Algal Extracts Pre and Post Intestinal Barrier Transport. Antioxidants 2022, 11, 565. [Google Scholar] [CrossRef]
- Hughes-Formella, B.J.; Bohnsack, K.; Rippke, F.; Benner, G.; Rudolph, M.; Tausch, I.; Gassmueller, J. Anti-Inflammatory Effect of Hamamelis Lotion in a UVB Erythema Test. Dermatology 1998, 196, 316–322. [Google Scholar] [CrossRef]
- Hughes-Formella, B.J.; Filbry, A.; Gassmueller, J.; Rippke, F. Anti-Inflammatory Efficacy of Topical Preparations with 10% Hamamelis Distillate in a UV Erythema Test. Skin Pharmacol. Physiol. 2002, 15, 125–132. [Google Scholar] [CrossRef]
- Serper, A.; Ozbek, M.; Calt, S. Accidental Sodium Hypochlorite-Induced Skin Injury During Endodontic Treatment. J. Endod. 2004, 30, 180–181. [Google Scholar] [CrossRef]
- Wolff, H.H.; Kieser, M. Hamamelis in Children with Skin Disorders and Skin Injuries: Results of an Observational Study. Eur. J. Pediatr. 2007, 166, 943–948. [Google Scholar] [CrossRef]
- Veronese, F.; Esposto, E.; Airoldi, C.; Di Cristo, N.; Paganini, P.; Savoia, P.; Zavattaro, E. A Randomized Controlled Prospective Cohort Study on the Efficacy of a Witch Hazel Extract Cream for the Eyelids and Eye Contour Area and a Cleansing Face Cream in Dermatitis of the Eyelids. Cosmetics 2024, 11, 83. [Google Scholar] [CrossRef]
- Korting, H.C.; Schäfer-Korting, M.; Hart, H.; Laux, P.; Schmid, M. Anti-Inflammatory Activity of Hamamelis Distillate Applied Topically to the Skin: Influence of Vehicle and Dose. Eur. J. Clin. Pharmacol. 1993, 44, 315–318. [Google Scholar] [CrossRef]
- Korting, H.C.; Schäfer-Korting, M.; Klövekon, W.; Klövekorn, G.; Martin, C.; Laux, P. Comparative Efficacy of Hamamelis Distillate and Hydrocortisone Cream in Atopic Eczema. Eur. J. Clin. Pharmacol. 1995, 48, 461–465. [Google Scholar] [CrossRef] [PubMed]
- Natella, F.; Guantario, B.; Ambra, R.; Ranaldi, G.; Intorre, F.; Burki, C.; Canali, R. Human Metabolites of HamafortonTM (Hamamelis virginiana L. Extract) Modulates Fibroblast Extracellular Matrix Components in Response to UV-A Irradiation. Front. Pharmacol. 2021, 12, 747638. [Google Scholar] [CrossRef] [PubMed]
- Duwiejua, M.; Zeitlin, I.J.; Waterman, P.G.; Gray, A.I. Anti-Inflammatory Activity of Polygonum Bistorta, Guaiacum Officinale and Hamamelis Virginiana in Rats. J. Pharm. Pharmacol. 1994, 46, 286–290. [Google Scholar] [CrossRef]
- Jamshidi-Aidji, M.; Macho, J.; Mueller, M.B.; Morlock, G.E. Effect-Directed Profiling of Aqueous, Fermented Plant Preparations via High-Performance Thin-Layer Chromatography Combined with in Situ Assays and High-Resolution Mass Spectrometry. J. Liq. Chromatogr. Relat. Technol. 2019, 42, 266–273. [Google Scholar] [CrossRef]
- Masaki, H.; Atsumi, T.; Sakurai, H. Hamamelitannin as a New Potent Active Oxygen Scavenger. Phytochemistry 1994, 37, 337–343. [Google Scholar] [CrossRef]
- Masaki, H.; Atsumi, T.; Sakurai, H. Protective Activity of Hamamelitannin on Cell Damage Induced by Superoxide Anion Radicals in Murine Dermal Fibroblasts. Biol. Pharm. Bull. 1995, 18, 59–63. [Google Scholar] [CrossRef]
- Masaki, H.; Atsumi, T.; Sakurai, H. Protective Activity of Hamamelitannin on Cell Damage of Murine Skin Fibroblasts Induced by UVB Irradiation. J. Dermatol. Sci. 1995, 10, 25–34. [Google Scholar] [CrossRef]
- Masaki, H.; Atsumi, T.; Sakurai, H. Evaluation of Superoxide Scavenging Activities of Hamamelis Extract and Hamamelitannin. Free Radic. Res. Commun. 1993, 19, 333–340. [Google Scholar] [CrossRef]
- Bassyouni, R.; Dwedar, R.; Farahat, M.; Kamel, Z.; Elwekel, M. Protective Effect of Hamamelitannin against Biofilm Production by Methicillin-Resistant Staphylococci Isolated from Blood of Patients at Intensive Care Units. Br. Microbiol. Res. J. 2015, 10, 1–8. [Google Scholar] [CrossRef]
- Cobrado, L.; Silva-Dias, A.; Azevedo, M.M.; Pina-Vaz, C.; Rodrigues, A.G. In Vivo Antibiofilm Effect of Cerium, Chitosan and Hamamelitannin against Usual Agents of Catheter-Related Bloodstream Infections. J. Antimicrob. Chemother. 2013, 68, 126–130. [Google Scholar] [CrossRef]
- Witch Hazel (USP) Specification—American Distilling. Available online: https://www.americandistilling.com/witch-hazel-usp-specification/ (accessed on 20 June 2025).
- Rulemaking History for OTC Skin Protectant Drug Products|FDA. Available online: https://www.fda.gov/drugs/historical-status-otc-rulemakings/rulemaking-history-otc-skin-protectant-drug-products (accessed on 20 June 2025).
- CosIng—Cosmetics—GROWTH—European Commission. Available online: https://ec.europa.eu/growth/tools-databases/cosing/details/ (accessed on 20 June 2025).
- Japan Cosmetic Regulations—Global Regulatory Partners, Inc. Available online: https://globalregulatorypartners.com/resource-center/regulatory-intelligence-platform/japan-regulatory-intelligence/japan-cosmetic-regulations/ (accessed on 20 June 2025).
- The National Medical Products Administration. Available online: https://english.nmpa.gov.cn/aboutNMPA.html (accessed on 20 June 2025).
Extraction Solvent, Method | Plant Part | Compounds Identified | Identification | Ref |
---|---|---|---|---|
Water, maceration at 5 °C | Leaves | 3-, 4- and 5 -caffeoylquinic acid, 3- and 5- p-coumaroylquinic acid, catechin, procyanidin trimer and dimer, gallic acid–quinic acid ester, caffeoylshikimic acid, quercetin (Q) and Q-galloyl hexoside, ellagic acid, Q- rutinoside, kaempferol (K) and K- hexoside, K- hexoside–deoxyhexoside, K-galloyl hexoside, mono-, hexa-, hepta- octa-, nona- and deca-galloyl hexose, | HPLC-ESI-MS/MS | [24] |
Acetone–water (8:2), maceration at 5 °C | Leaves | 3-, 4- and 5 -caffeoylquinic acid, quercetin–galloyl hexoside, quercetin rutinoside, kaempferol (K) and K- hexoside, K- hexoside–deoxyhexoside, K-galloyl hexoside, quercetin, hexa-, hepta-, octa-, nona- and decagalloyl hexose | HPLC-ESI-MS/MS | [24] |
Glycol, no data on extraction method | Twigs and bark | 4-hydroxybenzoic acid, vanillin, vanillic acid, protocatechuic acid, methyl gallate, ferulic acid, ellagic acid, isorhamnetin-3-o-glucoside, quercetin-3-o-glucoside, naringenin, catechin, epicatechin, gallocatechin, epigallocatechin, hamamelitannin | UPLC/QqQ-MS/MS | [26] |
Water, acetonitrile ethanol, acetone (15%), sonication | Bark, twigs, leaves | hamamelitannin, catechin, gallocatechin, gallic acid | HPLC-UV | [27] |
60% ethanol in water, maceration and ultrafiltration | Bark, leaves | hamamelitannin, pentagalloylglucose, gallic acid, tannic acid | LC (isolation) | [32] |
Purified hot water, heating at 90 °C | Leaves | 1-o-galloyl-β-d-glucose, gallic acid, galloyl-hexose a, c, d, hamamelitannin, tetra-, penta-, hexa- hepta-, octa-, nona-, and deca-o-galloyl-hexose | UHPLC-MS qToF | [28] |
Maceration with acetone–water (7:3), fractionation from water | Stems | flavanol (catechin) monomers, proanthocyanidins, hydrolyzable tannins: hamamelitannin, methyl gallate, pentagalloyl glucose | LC-MS-MS | [33] |
propylene glycol, maceration | Leaves | derivatives of gallic acid | HPLC-DAD | [25] |
Isolation from polyvinylpyrrolidone/water | Bark | polysaccharides and procyanidins | GPC, GC -MS | [34] |
Extraction with acetone–water (7:3); isolation from water | Bark | catechin, tannins (hamamelitannin), proanthocyanidins | 1H-NMR, HPLC | [35] |
Extraction with acetone–water (7:3); isolation from water | Bark | polymeric proanthocyanidins, epicatechin, epigallocatechin | GPC, HPLC, TLC | [36] |
45 and 70% ethanol, isolation using ethyl acetate followed by LC | Leaves and bark | kaempferol, quercetin, trifolin, kaempferol-3-o-d-glucuronide, hyperin, quercituron/mikwelianin, caffeic, chlorogenic, gallic acids, hamamelitannin, cyanidine, delfinidine | Identification by melting point and UV-Vis spectra | [37] |
Water distillation (volatile fraction) | Leaves and bark | about 175 (leaves) and 168 (bark) volatile compounds: homologous series of alkanes, alkenes, aliphatic alcohols, aldehydes, ketones, fatty acid esters | GC-MS | [30] |
Water, maceration | Whole plant | gallic acid, hamamelitannin | HPLC-DAD, FL | [38] |
50% ethanol in water, maceration under periodical stirring | Leaves | caffeic acid, carnosic acid, chlorogenic acid, ferulic acid, gallic acid, ellagic acid, salicylic acid, trans-p-coumaric acid, apigenin, catechin, chrysin, hyperoside, kaempferol, luteolin, luteolin-7-o-glucoside, myricetin, naringenin, pyrocatechol, quercetin, quercitrin, rutoside, vitexin | LC-MS | [39] |
Water, methanol, ethyl acetate, hexane, chloroform, maceration under periodical stirring | Leaves | isobutyl ether, 3,5,5-trimethylhexanol, 2-ethyl-1-hexanol, 1-nonanol, menthol, 3-methoxy-3-methylbutanol, phthalane, nonanal, 2-ethyl-1-hexyl acetate, 2-heptyl-1,3-dioxolane, 5,6,7,8,9-octahydro-2h-benzo[a]cyclohepten-2-one, decanal, epoxy-cumene, 1,3-di-tert-butylbenzene, trans-2-decenal, camphene, 1,3-dioxolane-2-methanol, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate, (e)-2-dodecen-1-al, 1,3-pentanediol, 2,2,4-trimethyl-, 1-isobutyrate | GC-MS | [31] |
Material/Extract/Method | Antibacterial/Antifungal Effect | Ref |
---|---|---|
Leaf/water (w), methanol (m) 24 h of maceration with continuous mixing | MIC (µg/mL) Escherichia coli 3448 (w); 1173 (m) ESBL E. coli 1724 (w); 670 (m) Staphylococcus aureus 493 (w); 251 (m) MRSA 431 (w); 168 (m) Klebsiella pneumoniae 1724 (w); 1341 (m) ESBL K. pneumoniae 2463 (w); 1257 (m) | [31] |
MIC (µg/mL) Staphylococcus oralis 1478 (w); 838 (m) Staphylococcus pyogenes 1724 (w); 503 (m) Staphylococcus mutants 4925 (w) >10,000 (m) Streptococcus epidermidis 308 (w); 210 (m) Streptococcus aureus 493 (w); 251 (m) | [45] | |
Pseudomonas aeruginosa 1724 (w); 587 (m) µg/mL | [46] | |
Leaf/propylene glycol (no detail on method) | MIC/MFC (mg/mL) Candida albicans 1.56/6.25, Candida dubliniensis 0.78/3.12, Candida glabrata 1.56/6.25, Candida guilliermondii 0.39/3.12, Candida krusei 0.19/3.12 Candida tropicalis 0.39/3.12. | [25] |
MIC/MBC (mg/mL) Acinetobacter baumannii 3.13/12.5, Escherichia coli 12.5/25, Klebsiella pneumoniae 12.5/12.5, Enterococcus faecalis >50 Streptococcus aureus, S. mutans >50 | [25] | |
Leaves/water 10% decoctions | MIC (mg/L) Porphyromonas asaccharolityca 256 P. gingivalis (5) * 256, 1024, 1024, 8192, 16,384 Prevotella melaninogenica (2) * 256, 256 Prevotella intermedia 2048 Fusobacterium nucleatum ≥16,384 Capnocytophaga gingivalis 16,384 Veilonella parvula 4096 Eikenella corrodens 128 Peptostreptococcus micros (2) * 4096, 8192 Actinomyces odontolitycus (3) * 128, 256, 128 | [47] |
Leaves/methanol (Soxhlet) | MIC (mg/L) Porphyromonas asaccharolityca 128 P. gingivalis (5) * 64, 256, 256, 512, 2048 Prevotella melaninogenica (2) * 64, 64 Prevotella intermedia 512 Fusobacterium nucleatum 16,384 Capnocytophaga gingivalis 4096 Veilonella parvula 2048 Eikenella corrodens 32 Peptostreptococcus micros (2) * 2048, 2048 Actinomyces odontolitycus (3) * 32, 128, 32 | [47] |
Leaves/50% ethanol (1:6) maceration for 10 days, decantation and filtration | ZOI/MIC/MBC (mm/mg GAE/µL) MSSA 19.17/0.2494/0.4988 MRSA 16.83/0.2494/0.4988 Bacillus cereus 18.17/0.2494/0.4988 Enterococcus faecalis 17.67/0.4988/0.4988 Salmonella enterica 10.83/0.4988/0.4988 Escherichia coli 8.5/0.4988/0.4988 Pseudomonas aeruginosa 0/- | [39] |
Commercial ethanolic fluid extract (leaves; 152 mg mL−1) | MIC (mg/mL) Listeria monocytogenes 1.18 Staphylococcus aureus and S. typhi 2.37 Escherichia coli 2.37 | [55] |
whISOBAX (commercial ethanolic bark extract) | MIC (µg/mL) Staphylococcus epidermidis 26 Staphylococcus aureus 26–104 Enterococcus faecalis 39–52 Enterococcus faecium 19–52 Staphylococcus agalactiae 1250–6667 Staphylococcus pneumoniae 2500–6667 Acinetobacter baumannii 156–208 Klebsiella pneumoniae 312–833 Pseudomonas aeruginosa 1667–5000 Escherichia coli 1250–10,000 | [52] |
Leaves (l) and bark (b)/boiling water for 5 min evaporation to dryness | ZOI/MIC (mg/mL) Staphylococcus aureus 15–16.5/0.4–0.8 (l); 13.7–16/10 (b) Enterococcus faecalis 12.2/0.3 (l); 13.8/10 (b) Bacillus subtilis 12.5/1.1 (l); 12.7/10 (b) Escherichia coli 16.5/0.4 (l); 11.0/10 (b) | [56] |
No data/maceration with 50% ethanol and 6% glycerin | Staphylococcus epidermis ZOI 18 mm Propionibacterium acnes subsp. acnes ZOI 18 mm Propionibacterium granulosum ZOI 17 mm | [57] |
Extract | Model | Observed Effect | Ref |
---|---|---|---|
Propylene glycol leaf 25, 50 and 100 mg/mL | Murine macrophages stimulated with LPS | ↓IL-1β ↓ TNF-α | [25] |
Propylene glycol leaf 25, 50 and 100 mg/mL | Murine macrophages | NO ↑ | [25] |
Bark glycolic extract 0.5–50 µg/mL | HaCaTs induced with TNF-α | ↓IL- 17C (IC50 1.53 µg/mL) ↓ MMP-9 (IC50 1.11 µg/mL) ↓ IL-8 (IC50 38.93 µg/mL) | [26,64] |
Bark glycolic extract 0.5–50 µg/mL | HaCaTs induced with TNF-α/INF -γ | ↓ TSLP (4.33 µg/mL) ↓ IL-6 (IC50 2.70 µg/mL) | [64] |
Bark glycolic extract 0.5-50 µg/mL | HaCaTs induced with TNF-α/IL-4 | ↓ IL-6 (IC50 2.70 µg/mL) ↓ IL-6 (IC50 = 21.30 µg/mL) | [64] |
Bark glycolic extract 0.5-50 µg/mL | HaCaTs induced with IL-4 | ↓CCL26 (IC50 = 21.36 µg/mL) | [64] |
Bark glycolic extract 5-250 µg/mL | HaCaTs infected with C. acnes | ↓ IL-6 (IC50: 136.90 µg/mL ↓ IL-8 No impact on NO | [26] |
Dried herb/water distillate Evaporated (25, 50, 100, µg) | Fibroblast induced with H2O2 | ↓ IL-8 | [68] |
Proanthocyanidins from bark/60% ethanol | Mouse ear treated with croton oil | ↓ Inflammation | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wójciak, M.; Pacuła, W.; Sowa, I.; Feldo, M.; Graczyk, F.; Załuski, D. Hamamelis virginiana L. in Skin Care: A Review of Its Pharmacological Properties and Cosmetological Applications. Molecules 2025, 30, 2744. https://doi.org/10.3390/molecules30132744
Wójciak M, Pacuła W, Sowa I, Feldo M, Graczyk F, Załuski D. Hamamelis virginiana L. in Skin Care: A Review of Its Pharmacological Properties and Cosmetological Applications. Molecules. 2025; 30(13):2744. https://doi.org/10.3390/molecules30132744
Chicago/Turabian StyleWójciak, Magdalena, Wiktoria Pacuła, Ireneusz Sowa, Marcin Feldo, Filip Graczyk, and Daniel Załuski. 2025. "Hamamelis virginiana L. in Skin Care: A Review of Its Pharmacological Properties and Cosmetological Applications" Molecules 30, no. 13: 2744. https://doi.org/10.3390/molecules30132744
APA StyleWójciak, M., Pacuła, W., Sowa, I., Feldo, M., Graczyk, F., & Załuski, D. (2025). Hamamelis virginiana L. in Skin Care: A Review of Its Pharmacological Properties and Cosmetological Applications. Molecules, 30(13), 2744. https://doi.org/10.3390/molecules30132744