Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = hamamelitannin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1607 KiB  
Review
Hamamelis virginiana L. in Skin Care: A Review of Its Pharmacological Properties and Cosmetological Applications
by Magdalena Wójciak, Wiktoria Pacuła, Ireneusz Sowa, Marcin Feldo, Filip Graczyk and Daniel Załuski
Molecules 2025, 30(13), 2744; https://doi.org/10.3390/molecules30132744 - 26 Jun 2025
Viewed by 1150
Abstract
Hamamelis virginiana L. (witch hazel) is a traditionally used medicinal plant, well-known for its dermatological applications. The plant’s bark and leaves contain a rich array of bioactive compounds, including phenolic acids, flavonoids, catechins, proanthocyanidins, and tannins, many of which exhibit antimicrobial, anti-inflammatory, antioxidant, [...] Read more.
Hamamelis virginiana L. (witch hazel) is a traditionally used medicinal plant, well-known for its dermatological applications. The plant’s bark and leaves contain a rich array of bioactive compounds, including phenolic acids, flavonoids, catechins, proanthocyanidins, and tannins, many of which exhibit antimicrobial, anti-inflammatory, antioxidant, and wound-healing properties. These activities have been verified by numerous in vitro and in vivo studies, as well as limited clinical trials. The H. virginiana extracts have demonstrated effectiveness against bacteria, fungi, and some viruses. Moreover, the extracts exert anti-inflammatory effects by modulating cytokine expression and NF-κB signaling, improve skin regeneration, and protect against UV-induced damage and pollution. This review highlights H. virginiana as a complex botanical resource to be used in dermatology and cosmetology and shows that current research offers encouraging results for its future therapeutic use, especially in skin treatment. Full article
Show Figures

Figure 1

20 pages, 3026 KiB  
Article
Hamamelitannin’s Antioxidant Effect and Its Inhibition Capability on α-Glycosidase, Carbonic Anhydrase, Acetylcholinesterase, and Butyrylcholinesterase Enzymes
by Lokman Durmaz, Hasan Karageçili, Adem Erturk, Eda Mehtap Ozden, Parham Taslimi, Saleh Alwasel and İlhami Gülçin
Processes 2024, 12(11), 2341; https://doi.org/10.3390/pr12112341 - 25 Oct 2024
Cited by 10 | Viewed by 1836
Abstract
Hamamelitannin (2′,5-di-O-galloyl-hamamelose) bears two-gallate moieties in its structure, and is a natural phenolic product in the leaves and the bark of Hamamelis virginiana. The antioxidant capacity of hamamelitannin was evaluated by a range of methods, with the following findings: the [...] Read more.
Hamamelitannin (2′,5-di-O-galloyl-hamamelose) bears two-gallate moieties in its structure, and is a natural phenolic product in the leaves and the bark of Hamamelis virginiana. The antioxidant capacity of hamamelitannin was evaluated by a range of methods, with the following findings: the ability to reduce potassium ferric cyanide; the scavenging of N,N-dimethyl-p-phenylenediamine dihydrochloride radical (DMPD•+); the scavenging of 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulphonate) radical (ABTS•+); the scavenging of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH); and the ability to reduce cupric ions (Cu2+). Additionally, reference antioxidants of α-Tocopherol, butylated hydroxyanisole (BHA), Trolox, and butylated hydroxytoluene (BHT) were used for comparison. For DPPH radical scavenging, hamamelitannin had an IC50 value of 19.31 μg/mL, while the IC50 values for BHA, BHT, Trolox, and α-Tocopherol were 10.10, 25.95, 7.05, and 11.31 μg/mL, respectively. The study found that hamamelitannin functioned similarly to BHA, α-tocopherol, and Trolox in terms of DPPH scavenging, but better than BHT. Additionally, as a polyphenolic secondary metabolite, the hamamelitannin inhibition capability of several metabolic enzymes was demonstrated, including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carbonic anhydrase I (CA I), carbonic anhydrase II (CA II) and α-glycosidase. The Ki values of hamamelitannin exhibited 7.40, 1.99, 10.18, 18.26, and 25.79 nM toward AChE, BChE, hCA I, hCA II, and α-glycosidase, respectively. Full article
(This article belongs to the Section Pharmaceutical Processes)
Show Figures

Figure 1

25 pages, 1091 KiB  
Article
Combinations of Terminalia bellirica (Gaertn.) Roxb. and Terminalia chebula Retz. Extracts with Selected Antibiotics Against Antibiotic-Resistant Bacteria: Bioactivity and Phytochemistry
by Gagan Tiwana, Ian Edwin Cock and Matthew James Cheesman
Antibiotics 2024, 13(10), 994; https://doi.org/10.3390/antibiotics13100994 - 19 Oct 2024
Cited by 4 | Viewed by 2445
Abstract
Antimicrobial resistance (AMR) has arisen due to antibiotic overuse and misuse. Antibiotic resistance renders standard treatments less effective, making it difficult to control some infections, thereby increasing morbidity and mortality. Medicinal plants are attracting increased interest as antibiotics lose efficacy. This study evaluates [...] Read more.
Antimicrobial resistance (AMR) has arisen due to antibiotic overuse and misuse. Antibiotic resistance renders standard treatments less effective, making it difficult to control some infections, thereby increasing morbidity and mortality. Medicinal plants are attracting increased interest as antibiotics lose efficacy. This study evaluates the antibacterial activity of solvent extracts prepared using Terminalia bellirica and Terminalia chebula fruit against six bacterial pathogens using disc diffusion and broth microdilution assays. The aqueous and methanol extracts of T. bellirica and T. chebula showed substantial zones of inhibition (ZOIs) against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). The activity against those bacteria was strong, with minimum inhibitory concentrations (MIC) ranging from 94 µg/mL to 392 µg/mL. Additionally, the T. bellirica methanolic extract showed noteworthy antibacterial activity against Escherichia coli and an extended spectrum β-lactamase (ESBL) E. coli strain (MIC values of 755 µg/mL for both). The aqueous T. bellirica and T. chebula extracts also inhibited Klebsiella pneumoniae growth (MIC values of 784 µg/mL and 556 µg/mL, respectively). The corresponding methanolic extracts also inhibited ESBL K. pneumoniae growth (MIC values of 755 µg/mL and 1509 µg/mL, respectively). Eighteen additive interactions were observed when extracts were combined with reference antibiotics. Strong antagonism occurred when any of the extracts were mixed with polymyxin B. Liquid chromatography-mass spectroscopy (LC-MS) analysis of the extracts revealed several interesting flavonoids and tannins, including 6-galloylglucose, 1,2,6-trigalloyl-β-D-glucopyranose, 6-O-[(2E)-3-phenyl-2-propenoyl]-1-O-(3,4,5-trihydroxybenzoyl)-β-D-glucopyranose, propyl gallate, methyl gallate, sanguiin H4, hamamelitannin, pyrogallol, gallic acid, ellagic acid, chebulic acid, and chebuloside II. All extracts were nontoxic in brine shrimp assays. This lack of toxicity, combined with their antibacterial activities, suggests that these plant species may be promising sources of antibacterial compound(s) that warrant further study. Full article
(This article belongs to the Special Issue Antimicrobial Activity of Natural Products and Plants Extracts)
Show Figures

Graphical abstract

20 pages, 2947 KiB  
Article
From Hamamelitannin Synthesis to the Study of Enzymatic Acylations of D-Hamamelose
by Mária Mastihubová and Vladimír Mastihuba
Biomolecules 2023, 13(3), 519; https://doi.org/10.3390/biom13030519 - 12 Mar 2023
Cited by 2 | Viewed by 2605
Abstract
The bioactive natural substance, hamamelitannin, was effectively synthesized in two ways. The chemical acylation of 2,3-O-isopropylidene-α,β-D-hamamelofuranose promoted by Bu2SnO using 3,4,5-tri-O-acetylgalloyl chloride, followed by the deprotection provided hamamelitannin in 79%. Pilot enzymatic benzoylation of D-hamamelose using vinyl [...] Read more.
The bioactive natural substance, hamamelitannin, was effectively synthesized in two ways. The chemical acylation of 2,3-O-isopropylidene-α,β-D-hamamelofuranose promoted by Bu2SnO using 3,4,5-tri-O-acetylgalloyl chloride, followed by the deprotection provided hamamelitannin in 79%. Pilot enzymatic benzoylation of D-hamamelose using vinyl benzoate (4 equiv.) and Lipozyme TL IM as a biocatalyst in t-butyl methyl ether (t-BuMeO) gave mainly benzoylated furanoses (89%), of which tribenzoates reached (52%). Enzymatic galloylation of 2,3-O-isopropylidene-α,β-D-hamamelofuranose with vinyl gallate under the catalysis of Lipozyme TL IM in t-butyl alcohol (t-BuOH) or t-BuMeO provided only the 5-O-galloylated product. The reaction in t-BuMeO proceeded in a shorter reaction time (61 h) and higher yield (82%). The more hydrophobic vinyl 3,4,5-tri-O-acetylgallate in the same reactions gave large amounts of acetylated products. Vinyl gallate and triacetylgallate in the enzymatic acylation of D-hamamelose with Lipozyme TL IM in t-BuMeO yielded 2′,5-diacylated hamamelofuranoses in a yield below 20%. The use of other vinyl gallates hydrophobized by methylation or benzylation provided 2′,5-diacylated hamamelofuranoses in good yields (65–84%). The reaction with silylated vinyl gallate did not proceed. The best results were obtained with vinyl 2,3,5-tri-O-benzyl gallate, and the only product, 2′,5-diacylated hamamelofuranoside precipitated from the reaction mixture (84% in 96 h). After debenzylation, hamamelitannin was obtained an 82% yield from hamamelose in two steps. This synthesis is preparatively undemanding and opens the way to multigram preparations of bioactive hamamelitannin and its analogues. Full article
Show Figures

Graphical abstract

15 pages, 3811 KiB  
Article
Unveiling the Ability of Witch Hazel (Hamamelis virginiana L.) Bark Extract to Impair Keratinocyte Inflammatory Cascade Typical of Atopic Eczema
by Stefano Piazza, Giulia Martinelli, Andrea Magnavacca, Marco Fumagalli, Carola Pozzoli, Massimo Terno, Luisa Canilli, Marco Angarano, Nicole Maranta, Mario Dell’Agli and Enrico Sangiovanni
Int. J. Mol. Sci. 2022, 23(16), 9279; https://doi.org/10.3390/ijms23169279 - 17 Aug 2022
Cited by 17 | Viewed by 7455
Abstract
Hamamelis virginiana L. bark extract is a traditional remedy for skin affections, including atopic dermatitis/eczema (AD). Hamamelis preparations contain tannins, including hamamelitannin (HT), although their pharmacological role in AD is still unknown. This study aimed to study the rational for its topical use [...] Read more.
Hamamelis virginiana L. bark extract is a traditional remedy for skin affections, including atopic dermatitis/eczema (AD). Hamamelis preparations contain tannins, including hamamelitannin (HT), although their pharmacological role in AD is still unknown. This study aimed to study the rational for its topical use by considering the impact of crucial biomarkers on AD pathogenesis. A standardized extract (HVE) (0.5–125 μg/mL) was compared to hamamelitannin (HT), its main compound (0.5–5 μg/mL), in a model of human keratinocytes (HaCaTs), challenged with an AD-like cytokine milieu (TNF-α, IFN-γ, and IL-4). HVE inhibited the release of mediators involved in skin autoimmunity (IL-6 and IL-17C) and allergy (TSLP, IL-6, CCL26, and MMP-9) with a concentration-dependent fashion (IC50s < 25 μg/mL). The biological mechanism was ascribed, at least in part, to the impairment of the NF-κB-driven transcription. Moreover, HVE counteracted the proliferative effects of IL-4 and recovered K10, a marker of skin differentiation. Notably, HT showed activity on well-known targets of IL-4 pathway (CCL26, K10, cell proliferation). To the best of our knowledge, this work represents the first demonstration of the potential role of Hamamelis virginiana in the control of AD symptoms, such as itch and skin barrier impairment, supporting the relevance of the whole phytocomplex. Full article
Show Figures

Figure 1

15 pages, 2830 KiB  
Article
Anti-Inflammatory and Anti-Acne Effects of Hamamelis virginiana Bark in Human Keratinocytes
by Stefano Piazza, Giulia Martinelli, Urska Vrhovsek, Domenico Masuero, Marco Fumagalli, Andrea Magnavacca, Carola Pozzoli, Luisa Canilli, Massimo Terno, Marco Angarano, Mario Dell’Agli and Enrico Sangiovanni
Antioxidants 2022, 11(6), 1119; https://doi.org/10.3390/antiox11061119 - 5 Jun 2022
Cited by 30 | Viewed by 8844
Abstract
Cutibacterium acnes (C. acnes) is recognized as one of the main triggers of the cutaneous inflammatory response in acne vulgaris, a chronic skin disorder with a multifactorial origin. Witch hazel (Hamamelis virginiana L.) is a plant widely used for skin [...] Read more.
Cutibacterium acnes (C. acnes) is recognized as one of the main triggers of the cutaneous inflammatory response in acne vulgaris, a chronic skin disorder with a multifactorial origin. Witch hazel (Hamamelis virginiana L.) is a plant widely used for skin inflammatory conditions, with some preliminary anti-inflammatory evidence on the skin, but lacking data on acne conditions. This study aimed to evaluate the effect of a glycolic extract from Hamamelis virginiana bark (HVE) versus C. acnes-induced inflammation in human keratinocytes (HaCaT). Phytochemical investigations of HVE identified hamamelitannin (HT) and proanthocyanidins as the most abundant compounds (respectively, 0.29% and 0.30% w/wextract). HVE inhibited C. acnes-induced IL-6 release (IC50: 136.90 μg/mL), by partially impairing NF-κB activation; however, no antibacterial or antibiofilm activities were found. In addition, HVE showed greater anti-inflammatory activity when TNF-α was used as a proinflammatory stimulus (IC50 of 38.93 μg/mL for IL-8 release), partially acting by antioxidant mechanisms, as shown for VEGF inhibition. The effects of HVE are primarily based on the proanthocyanidin content, as HT was found inactive on all the parameters tested. These results suggest further investigations of HVE in other inflammatory-based skin diseases. Full article
(This article belongs to the Special Issue Role of Oxidative Stress in the Dermatological Diseases)
Show Figures

Figure 1

11 pages, 1704 KiB  
Article
The Effect of Tannin-Rich Witch Hazel on Growth of Probiotic Lactobacillus plantarum
by Reuven Rasooly, Alex C. Howard, Naomi Balaban, Bradley Hernlem and Emmanouil Apostolidis
Antibiotics 2022, 11(3), 395; https://doi.org/10.3390/antibiotics11030395 - 16 Mar 2022
Cited by 3 | Viewed by 3967
Abstract
Probiotic bacteria help maintain microbiome homeostasis and promote gut health. Maintaining the competitive advantage of the probiotics over pathogenic bacteria is a challenge, as they are part of the gut microbiome that is continuously exposed to digestive and nutritional changes and various stressors. [...] Read more.
Probiotic bacteria help maintain microbiome homeostasis and promote gut health. Maintaining the competitive advantage of the probiotics over pathogenic bacteria is a challenge, as they are part of the gut microbiome that is continuously exposed to digestive and nutritional changes and various stressors. Witch hazel that is rich in hamamelitannin (WH, whISOBAXTM) is an inhibitor of growth and virulence of pathogenic bacteria. To test for its effect on probiotic bacteria, WH was tested on the growth and biofilm formation of a commercially available probiotic Lactobacillus plantarum PS128. As these bacteria are aerotolerant, the experiments were carried out aerobically and in nutritionally inadequate/poor (nutrient broth) or adequate/rich (MRS broth) conditions. Interestingly, despite its negative effect on the growth and biofilm formation of pathogenic bacteria such as Staphylococcus epidermidis, WH promotes the growth of the probiotic bacteria in a nutritionally inadequate environment while maintaining their growth under a nutritionally rich environment. In the absence of WH, no significant biofilm is formed on the surfaces tested (polystyrene and alginate), but in the presence of WH, biofilm formation was significantly enhanced. These results indicate that WH may thus be used to enhance the growth and survival of probiotics. Full article
Show Figures

Figure 1

21 pages, 5728 KiB  
Article
Synergism of the Combination of Traditional Antibiotics and Novel Phenolic Compounds against Escherichia coli
by Md. Akil Hossain, Hae-Chul Park, Sung-Won Park, Seung-Chun Park, Min-Goo Seo, Moon Her and JeongWoo Kang
Pathogens 2020, 9(10), 811; https://doi.org/10.3390/pathogens9100811 - 3 Oct 2020
Cited by 30 | Viewed by 4581
Abstract
Pathogenic Escherichia coli (E. coli)-associated infections are becoming difficult to treat because of the rapid emergence of antibiotic-resistant strains. Novel approaches are required to prevent the progression of resistance and to extend the lifespan of existing antibiotics. This study was designed [...] Read more.
Pathogenic Escherichia coli (E. coli)-associated infections are becoming difficult to treat because of the rapid emergence of antibiotic-resistant strains. Novel approaches are required to prevent the progression of resistance and to extend the lifespan of existing antibiotics. This study was designed to improve the effectiveness of traditional antibiotics against E. coli using a combination of the gallic acid (GA), hamamelitannin, epicatechin gallate, epigallocatechin, and epicatechin. The fractional inhibitory concentration index (FICI) of each of the phenolic compound-antibiotic combinations against E. coli was ascertained. Considering the clinical significance and FICI, two combinations (hamamelitannin-erythromycin and GA-ampicillin) were evaluated for their impact on certain virulence factors of E. coli. Finally, the effects of hamamelitannin and GA on Rattus norvegicus (IEC-6) cell viability were investigated. The FICIs of the antibacterial combinations against E. coli were 0.281–1.008. The GA-ampicillin and hamamelitannin-erythromycin combinations more effectively prohibited the growth, biofilm viability, and swim and swarm motilities of E. coli than individual antibiotics. The concentration of hamamelitannin and GA required to reduce viability by 50% (IC50) in IEC-6 cells was 988.54 μM and 564.55 μM, correspondingly. GA-ampicillin and hamamelitannin-erythromycin may be potent combinations and promising candidates for eradicating pathogenic E. coli in humans and animals. Full article
Show Figures

Figure 1

15 pages, 1408 KiB  
Article
Promising Antibiofilm Agents: Recent Breakthrough against Biofilm Producing Methicillin-Resistant Staphylococcus aureus
by Marwa I. Abd El-Hamid, El-sayed Y. El-Naenaeey, Toka M kandeel, Wael A. H. Hegazy, Rasha A. Mosbah, Majed S. Nassar, Muhammed A. Bakhrebah, Wesam H. Abdulaal, Nabil A. Alhakamy and Mahmoud M. Bendary
Antibiotics 2020, 9(10), 667; https://doi.org/10.3390/antibiotics9100667 - 3 Oct 2020
Cited by 54 | Viewed by 5398
Abstract
Multidrug resistant (MDR) methicillin-resistant Staphylococcus aureus (MRSA) is a superbug pathogen that causes serious diseases. One of the main reasons for the lack of the effectiveness of antibiotic therapy against infections caused by this resistant pathogen is the recalcitrant nature of MRSA biofilms, [...] Read more.
Multidrug resistant (MDR) methicillin-resistant Staphylococcus aureus (MRSA) is a superbug pathogen that causes serious diseases. One of the main reasons for the lack of the effectiveness of antibiotic therapy against infections caused by this resistant pathogen is the recalcitrant nature of MRSA biofilms, which results in an increasingly serious situation worldwide. Consequently, the development of innovative biofilm inhibitors is urgently needed to control the biofilm formation by this pathogen. In this work, we thus sought to evaluate the biofilm inhibiting ability of some promising antibiofilm agents such as zinc oxide nanoparticles (Zno NPs), proteinase K, and hamamelitannin (HAM) in managing the MRSA biofilms. Different phenotypic and genotypic methods were used to identify the biofilm producing MDR MRSA isolates and the antibiofilm/antimicrobial activities of the used promising agents. Our study demonstrated strong antibiofilm activities of ZnO NPs, proteinase K, and HAM against MRSA biofilms along with their transcriptional modulation of biofilm (intercellular adhesion A, icaA) and quorum sensing (QS) (agr) genes. Interestingly, only ZnO NPs showed a powerful antimicrobial activity against this pathogen. Collectively, we observed overall positive correlations between the biofilm production and the antimicrobial resistance/agr genotypes II and IV. Meanwhile, there was no significant correlation between the toxin genes and the biofilm production. The ZnO NPs were recommended to be used alone as potent antimicrobial and antibiofilm agents against MDR MRSA and their biofilm-associated diseases. On the other hand, proteinase-K and HAM can be co-administrated with other antimicrobial agents to manage such types of infections. Full article
(This article belongs to the Special Issue Nanoparticles-Based Antimicrobials)
Show Figures

Figure 1

14 pages, 1726 KiB  
Article
whISOBAXTM Inhibits Bacterial Pathogenesis and Enhances the Effect of Antibiotics
by Reuven Rasooly, Hwang-Yong Choi, Paula Do, Gianluca Morroni, Lucia Brescini, Oscar Cirioni, Andrea Giacometti and Emmanouil Apostolidis
Antibiotics 2020, 9(5), 264; https://doi.org/10.3390/antibiotics9050264 - 19 May 2020
Cited by 14 | Viewed by 4942
Abstract
As bacteria are becoming more resistant to commonly used antibiotics, alternative therapies are being sought. whISOBAX (WH) is a witch hazel extract that is highly stable (tested up to 2 months in 37 °C) and contains a high phenolic content, where 75% of [...] Read more.
As bacteria are becoming more resistant to commonly used antibiotics, alternative therapies are being sought. whISOBAX (WH) is a witch hazel extract that is highly stable (tested up to 2 months in 37 °C) and contains a high phenolic content, where 75% of it is hamamelitannin and traces of gallic acid. Phenolic compounds like gallic acid are known to inhibit bacterial growth, while hamamelitannin is known to inhibit staphylococcal pathogenesis (biofilm formation and toxin production). WH was tested in vitro for its antibacterial activity against clinically relevant Gram-positive and Gram-negative bacteria, and its synergy with antibiotics determined using checkerboard assays followed by isobologram analysis. WH was also tested for its ability to suppress staphylococcal pathogenesis, which is the cause of a myriad of resistant infections. Here we show that WH inhibits the growth of all bacteria tested, with variable efficacy levels. The most WH-sensitive bacteria tested were Staphylococcus epidermidis, Staphylococcus aureus, Enterococcus faecium and Enterococcus faecalis, followed by Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Streptococcus agalactiae and Streptococcus pneumoniae. Furthermore, WH was shown on S. aureus to be synergistic to linezolid and chloramphenicol and cumulative to vancomycin and amikacin. The effect of WH was tested on staphylococcal pathogenesis and shown here to inhibit biofilm formation (tested on S. epidermidis) and toxin production (tested on S. aureus Enterotoxin A (SEA)). Toxin inhibition was also evident in the presence of subinhibitory concentrations of ciprofloxacin that induces pathogenesis. Put together, our study indicates that WH is very effective in inhibiting the growth of multiple types of bacteria, is synergistic to antibiotics, and is also effective against staphylococcal pathogenesis, often the cause of persistent infections. Our study thus suggests the benefits of using WH to combat various types of bacterial infections, especially those that involve resistant persistent bacterial pathogens. Full article
Show Figures

Figure 1

15 pages, 2937 KiB  
Article
Witch Hazel Significantly Improves the Efficacy of Commercially Available Teat Dips
by Reuven Rasooly, Adel Molnar, Paula Do, Gianluca Morroni, Lucia Brescini, Oscar Cirioni, Andrea Giacometti and Emmanouil Apostolidis
Pathogens 2020, 9(2), 92; https://doi.org/10.3390/pathogens9020092 - 1 Feb 2020
Cited by 6 | Viewed by 6011
Abstract
Bovine intramammary infections (IMIs) are the main cause of economic loss in milk production. Antibiotics are often ineffective in treating infections due to antimicrobial resistance and the formation of bacterial biofilms that enhance bacterial survival and persistence. Teat dips containing germicides are recommended [...] Read more.
Bovine intramammary infections (IMIs) are the main cause of economic loss in milk production. Antibiotics are often ineffective in treating infections due to antimicrobial resistance and the formation of bacterial biofilms that enhance bacterial survival and persistence. Teat dips containing germicides are recommended to prevent new IMIs and improve udder health and milk quality. IMIs are often caused by staphylococci, which are Gram-positive bacteria that become pathogenic by forming biofilms and producing toxins. As a model for a teat dip (DIP), the BacStop iodine-based teat dip (DIP) was used. Witch hazel extract (whISOBAX (WH)) was tested because it contains a high concentration of the anti-biofilm/anti-toxin phenolic compound hamamelitannin. We found that the minimal inhibitory or bactericidal concentrations of DIP against planktonic S. epidermidis cells increased up to 160-fold in the presence of WH, and that DIP was 10-fold less effective against biofilm cells. While both DIP and WH are effective in inhibiting the growth of S. aureus, only WH inhibits toxin production (tested for enterotoxin-A). Importantly, WH also significantly enhances the antibacterial effect of DIP against Gram-negative bacteria that can cause IMIs, like Escherichia coli and Pseudomonas aeruginosa. Put together, these results suggest that the antibacterial activity of DIP combined with WH is significantly higher, and thus have potential in eradicating bacterial infections, both in acute (planktonic-associated) and in chronic (biofilm-associated) conditions. Full article
(This article belongs to the Collection Mastitis in Dairy Ruminants)
Show Figures

Figure 1

12 pages, 1218 KiB  
Article
In-Vitro Inhibition of Staphylococcal Pathogenesis by Witch-Hazel and Green Tea Extracts
by Reuven Rasooly, Adel Molnar, Hwang-Yong Choi, Paula Do, Kenneth Racicot and Emmanouil Apostolidis
Antibiotics 2019, 8(4), 244; https://doi.org/10.3390/antibiotics8040244 - 29 Nov 2019
Cited by 20 | Viewed by 5545
Abstract
whISOBAX (WH), an extract of the witch-hazel plant that is native to the Northeast coast of the United States, contains significant amounts of a phenolic compound, Hamamelitannin (HAMA). Green tea (GT) is a widely consumed plant that contains various catechins. Both plants have [...] Read more.
whISOBAX (WH), an extract of the witch-hazel plant that is native to the Northeast coast of the United States, contains significant amounts of a phenolic compound, Hamamelitannin (HAMA). Green tea (GT) is a widely consumed plant that contains various catechins. Both plants have been associated with antimicrobial effects. In this study we test the effects of these two plant extracts on the pathogenesis of staphylococci, and evaluate their effects on bacterial growth, biofilm formation, and toxin production. Our observations show that both extracts have antimicrobial effects against both strains of S. aureus and S. epidermidis tested, and that this inhibitory effect is synergistic. Also, we confirmed that this inhibitory effect does not depend on HAMA, but rather on other phenolic compounds present in WH and GT. In terms of biofilm inhibition, only WH exhibited an effect and the observed anti-biofilm effect was HAMA-depended. Finally, among the tested extracts, only WH exhibited an effect against Staphylococcal Enterotoxin A (SEA) production and this effect correlated to the HAMA present in WH. Our results suggest that GT and WH in combination can enhance the antimicrobial effects against staphylococci. However, only WH can control biofilm development and SEA production, due to the presence of HAMA. This study provides the initial rationale for the development of natural antimicrobials, to protect from staphylococcal colonization, infection, or contamination. Full article
(This article belongs to the Special Issue Natural Compounds as Antimicrobial Agents)
Show Figures

Figure 1

Back to TopTop