Cosmeceutical and Wound-Healing Activities of Green Hydroxypropyl-β-Cyclodextrin-Glycerol-Based Satureja montana Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. LC-MS Analysis of the Extracts
2.2. Antioxidant Activities of S. montana Extracts
2.3. Photoprotective and Anti-Melanogenic Potentials of the S. montana Extracts
2.4. Anti-Inflammatory Activity of the S. montana Extracts
2.5. Influence of the S. montana Extracts on Cell Viability
2.6. Wound-Healing Effects of S. montana
3. Materials and Methods
3.1. Materials and Apparatus
3.2. Plant Material
3.3. Extract Preparation
3.4. LC-PDA-ESI-MS Analysis of Satureja Extracts
3.5. Radical Scavenging Activity
3.6. Reducing Power
3.7. Antioxidant Activity in the β-Carotene-Linoleic Acid Assay
3.8. Tyrosinase Inhibitory Activity
3.9. Measurement of UV-A- and UV-B-Absorbing Capabilities of S. montana Extracts
3.10. Lipoxygenase Inhibitory Activity
3.11. Inhibition of Heat-Induced Ovalbumin Coagulation
3.12. Cell Culture Conditions
3.13. Cell Viability Study
3.14. In Vitro Scratch Wound-Healing Assay
3.15. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACL | antioxidant activity in the β-carotene-linoleic acid assay |
ASC | ascorbic acid |
AUC | areas under the curve |
BHA | butylated hydroxyanisole |
CD | cyclodextrin |
COX | cyclooxygenase |
DMEM | dulbecco’s modified Eagle’s medium |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
FA | formic acid |
GSH-Px | glutathione peroxidase |
HaCaT | human aneuploid immortal keratinocyte cell line |
HBSS | hank’s balanced salt solution |
HCDGUAE | hydroxypropyl-β-cyclodextrin-glycerol ultrasound-assisted extraction |
HP-β-CD | hydroxypropyl-β-cyclodextrin |
IL | interleukin |
L-DOPA | 3,4-dihydroxyphenylalanine |
LOX | lipoxygenase |
LOXInh | lipoxygenase inhibitory activity |
MMP | metalloproteinase |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
NDGA | nordihydroguaiaretic acid |
NF-κB | nuclear factor k-light-chain-enhancer of activated B cells |
NRF2 | nuclear factor erythroid 2-related factor |
OPT-LG | S. montana extract rich in luteolin derivatives |
OPT-TF | S. montana extract rich in total flavonoids |
OPT-TP | S. montana extract rich in total phenols |
OPT-TPA-RA | S. montana extract rich in total phenolic acids, including rosmarinic acid |
OvInh | heat-induced ovalbumin coagulation inhibition |
PABA | p-aminobenzoic acid |
RP | reducing power |
RSA | radical scavenging activity |
SOD | superoxide dismutase and induced by |
TLR | toll-like receptor |
TNF-α | tumor necrosis factor alpha |
TyInh | tyrosinase inhibitory activity |
UV | ultraviolet |
WHR | wound-healing rate |
References
- Vaishampayan, P.; Rane, M.M. Herbal nanocosmecuticals: A review on cosmeceutical innovation. J. Cosmet. Dermatol. 2022, 21, 5464–5483. [Google Scholar] [CrossRef] [PubMed]
- Yahya, N.A.; Attan, N.; Wahab, R.A. An overview of cosmeceutically relevant plant extracts and strategies for extraction of plant-based bioactive compounds. Food Bioprod. Process. 2018, 112, 69–85. [Google Scholar] [CrossRef]
- Ganceviciene, R.; Liakou, A.I.; Theodoridis, A.; Makrantonaki, E.; Zouboulis, C.C. Skin anti-aging strategies. Derm.-Endocrinol. 2012, 4, 308–319. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef]
- Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano Tixier, A.-S. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef]
- Wolfson, A.; Dlugy, C.; Shotland, Y. Glycerol as a green solvent for high product yields and selectivities. Environ. Chem. Lett. 2007, 5, 67–71. [Google Scholar] [CrossRef]
- Zhou, J.; Jia, J.; He, J.; Li, J.; Cai, J. Cyclodextrin inclusion complexes and their application in food safety analysis: Recent developments and future prospects. Foods 2022, 11, 3871. [Google Scholar] [CrossRef]
- Pinho, E.; Grootveld, M.; Soares, G.; Henriques, M. Cyclodextrins as encapsulation agents for plant bioactive compounds. Carbohydr. Polym. 2014, 101, 121–135. [Google Scholar] [CrossRef]
- Ferreira, L.; Mascarenhas-Melo, F.; Rabaça, S.; Mathur, A.; Sharma, A.; Giram, P.S.; Pawar, K.D.; Rahdar, A.; Raza, F.; Veiga, F.; et al. Cyclodextrin-based dermatological formulations: Dermopharmaceutical and cosmetic applications. Colloids Surf. B Biointerfaces 2023, 221, 113012. [Google Scholar] [CrossRef]
- Zheng, Y.; Dong, L.-N.; Liu, M.; Chen, A.; Feng, S.; Wang, B.; Sun, D. Effect of pH on the complexation of kaempferol-4′-glucoside with three β-cyclodextrin derivatives: Isothermal titration calorimetry and spectroscopy study. J. Agric. Food Chem. 2014, 62, 244–250. [Google Scholar] [CrossRef]
- Kyriakidou, K.; Mourtzinos, I.; Biliaderis, C.G.; Makris, D.P. Optimization of a green extraction/inclusion complex formation process to recover antioxidant polyphenols from oak acorn husks (Quercus robur) using aqueous 2-hydroxypropyl-β-cyclodextrin/glycerol mixtures. Environments 2016, 3, 3. [Google Scholar] [CrossRef]
- Mourtzinos, I.; Anastasopoulou, E.; Petrou, A.; Grigorakis, S.; Makris, D.; Biliaderis, C.G. Optimization of a green extraction method for the recovery of polyphenols from olive leaf using cyclodextrins and glycerin as co-solvents. J. Food Sci. Technol. 2016, 53, 3939–3947. [Google Scholar] [CrossRef] [PubMed]
- Jakupović, L.; Bačić, I.; Jablan, J.; Marguí, E.; Marijan, M.; Inić, S.; Nižić Nodilo, L.; Hafner, A.; Zovko Končić, M. Hydroxypropyl-β-cyclodextrin-based Helichrysum italicum extracts: Antioxidant and cosmeceutical activity and biocompatibility. Antioxidants 2023, 12, 855. [Google Scholar] [CrossRef]
- Marijan, M.; Tomić, D.; Strawa, J.W.; Jakupović, L.; Inić, S.; Jug, M.; Tomczyk, M.; Zovko Končić, M. Optimization of cyclodextrin-assisted extraction of phenolics from Helichrysum italicum for preparation of the extracts with anti-elastase and anti-collagenase properties. Metabolites 2023, 13, 257. [Google Scholar] [CrossRef]
- Oalđe Pavlović, M.; Kolarević, S.; Đorđević, J.; Jovanović Marić, J.; Lunić, T.; Mandić, M.; Kračun Kolarević, M.; Živković, J.; Alimpić Aradski, A.; Marin, P.D.; et al. A study of phytochemistry, genoprotective activity, and antitumor effects of extracts of the selected Lamiaceae species. Plants 2021, 10, 2306. [Google Scholar] [CrossRef]
- Tepe, B.; Cilkiz, M. A Pharmacological and phytochemical overview on Satureja. Pharm. Biol. 2016, 54, 375–412. [Google Scholar] [CrossRef]
- Miladi, H.; Ben Slama, R.; Mili, D.; Zouari, S.; Bakhrouf, A.; Ammar, E. Chemical composition and cytotoxic and antioxidant activities of Satureja montana l. essential oil and its antibacterial potential against Salmonella spp. strains. J. Chem. 2013, 2013, 275698. [Google Scholar] [CrossRef]
- Jafari, F.; Ghavidel, F.; Zarshenas, M.M. A critical overview on the pharmacological and clinical aspects of popular Satureja species. J. Acupunct. Meridian Stud. 2016, 9, 118–127. [Google Scholar] [CrossRef]
- Abdelshafeek, K.A.; Osman, A.F.; Mouneir, S.M.; Elhenawy, A.A.; Abdallah, W.E. Phytochemical profile, comparative evaluation of Satureja montana alcoholic extract for antioxidants, anti-inflammatory and molecular docking studies. BMC Complement. Med. Ther. 2023, 23, 108. [Google Scholar] [CrossRef]
- Süntar, I.; Küpeli Akkol, E.; Keles, H.; Yesilada, E.; Sarker, S.D.; Arroo, R.; Baykal, T. Efficacy of Daphne oleoides subsp. kurdica used for wound healing: Identification of active compounds through bioassay guided isolation technique. J. Ethnopharmacol. 2012, 141, 1058–1070. [Google Scholar] [CrossRef]
- Alagawany, M.; Abd El-Hack, M.E.; Farag, M.R.; Gopi, M.; Karthik, K.; Malik, Y.S.; Dhama, K. Rosmarinic acid: Modes of action, medicinal values and health benefits. Anim. Health Res. Rev. 2017, 18, 167–176. [Google Scholar] [CrossRef]
- Marijan, M.; Jakupović, L.; Končić, M.Z. Hydroxypropyl-β-cyclodextrin-glycerol-assisted extraction of phenolics from Satureja montana L.: Optimization, anti-elastase and anti-hyaluronidase properties of the extracts. Processes 2023, 11, 1117. [Google Scholar] [CrossRef]
- Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as active ingredients for cosmetic products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Kurek-Górecka, A.; Górecki, M.; Rzepecka-Stojko, A.; Balwierz, R.; Stojko, J. Bee products in dermatology and skin care. Molecules 2020, 25, E556. [Google Scholar] [CrossRef] [PubMed]
- Nagula, R.L.; Wairkar, S. Recent advances in topical delivery of flavonoids: A review. J. Control Release 2019, 296, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Taofiq, O.; González-Paramás, A.M.; Barreiro, M.F.; Ferreira, I.C.F.R. Hydroxycinnamic acids and their derivatives: Cosmeceutical significance, challenges and future perspectives, a review. Molecules 2017, 22, 281. [Google Scholar] [CrossRef]
- Gomes, F.; Dias, M.I.; Lima, Â.; Barros, L.; Rodrigues, M.E.; Ferreira, I.C.F.R.; Henriques, M. Satureja montana L. and Origanum majorana L. decoctions: Antimicrobial activity, mode of action and phenolic characterization. Antibiotics 2020, 9, 294. [Google Scholar] [CrossRef]
- López-Cobo, A.; Gómez-Caravaca, A.M.; Švarc-Gajić, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Determination of phenolic compounds and antioxidant activity of a Mediterranean plant: The case of Satureja montana subsp. kitaibelii. J. Funct. Foods 2015, 18, 1167–1178. [Google Scholar] [CrossRef]
- Chen, L.-C.; Cheng, Y.-P.; Liu, C.-Y.; Guo, J.-W. Lithospermic acid restored the skin barrier functions in the imiquimod-induced psoriasis-like animal model. Int. J. Mol. Sci. 2022, 23, 6172. [Google Scholar] [CrossRef]
- Guo, J.-W.; Cheng, Y.-P.; Liu, C.-Y.; Thong, H.-Y.; Huang, C.-J.; Lo, Y.; Wu, C.-Y.; Jee, S.-H. Salvianolic acid B in microemulsion formulation provided sufficient hydration for dry skin and ameliorated the severity of imiquimod-induced psoriasis-like dermatitis in mice. Pharmaceutics 2020, 12, 457. [Google Scholar] [CrossRef]
- Chaiyana, W.; Charoensup, W.; Sriyab, S.; Punyoyai, C.; Neimkhum, W. Herbal extracts as potential antioxidant, anti-aging, anti-inflammatory, and whitening cosmeceutical ingredients. Chem. Biodivers. 2021, 18, e2100245. [Google Scholar] [CrossRef] [PubMed]
- Ratz-Łyko, A.; Arct, J. Resveratrol as an active ingredient for cosmetic and dermatological applications: A review. J. Cosmet. Laser Ther. 2019, 21, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Thiele, J.; Elsner, P. Oxidants and Antioxidants in Cutaneous Biology; Current Problems in Dermatology; Karger: Basel, Switzerland, 2001; Volume 29. [Google Scholar]
- Radonic, A.; Milos, M. Chemical composition and in vitro evaluation of antioxidant effect of free volatile compounds from Satureja montana L. Free Radic. Res. 2003, 37, 673–679. [Google Scholar] [CrossRef]
- Rezende, D.a.D.C.S.; Oliveira, C.D.; Batista, L.R.; Ferreira, V.R.F.; Brandão, R.M.; Caetano, A.R.S.; Alves, M.V.P.; Cardoso, M.G. Bactericidal and antioxidant effects of essential oils from Satureja montana L., Myristica fragrans H. and Cymbopogon flexuosus. Lett. Appl. Microbiol. 2022, 74, 741–751. [Google Scholar] [CrossRef]
- Aćimović, M.; Šovljanski, O.; Pezo, L.; Travičić, V.; Tomić, A.; Zheljazkov, V.D.; Ćetković, G.; Švarc-Gajić, J.; Brezo-Borjan, T.; Sofrenić, I. Variability in biological activities of Satureja montana subsp. montana and subsp. variegata based on different extraction methods. Antibiotics 2022, 11, 1235. [Google Scholar] [CrossRef]
- Gendrisch, F.; Esser, P.R.; Schempp, C.M.; Wölfle, U. Luteolin as a modulator of skin aging and inflammation. BioFactors 2021, 47, 170–180. [Google Scholar] [CrossRef]
- Kramberger, K.; Barlič-Maganja, D.; Bandelj, D.; Baruca Arbeiter, A.; Peeters, K.; Miklavčič Višnjevec, A.; Jenko Pražnikar, Z. HPLC-DAD-ESI-QTOF-MS Determination of bioactive compounds and antioxidant activity comparison of the hydroalcoholic and water extracts from two Helichrysum italicum species. Metabolites 2020, 10, 403. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.A.; Park, N.H.; Na, Y.J.; Lee, H.K.; Lee, J.H.; Kim, Y.J.; Lee, C.S. Coumestrol down-regulates melanin production in melan-a murine melanocytes through degradation of tyrosinase. Biol. Pharm. Bull. 2017, 40, 535–539. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Biswas, R.; Sharma, A.; Banerjee, S.; Biswas, S.; Katiyar, C.K. Validation of medicinal herbs for anti-tyrosinase potential. J. Herb. Med. 2018, 14, 1–16. [Google Scholar] [CrossRef]
- Crespo, M.I.; Chabán, M.F.; Lanza, P.A.; Joray, M.B.; Palacios, S.M.; Vera, D.M.A.; Carpinella, M.C. Inhibitory effects of compounds isolated from Lepechinia meyenii on tyrosinase. Food Chem. Toxicol. 2019, 125, 383–391. [Google Scholar] [CrossRef]
- Fan, M.; Zhang, G.; Hu, X.; Xu, X.; Gong, D. Quercetin as a tyrosinase inhibitor: Inhibitory activity, conformational change and mechanism. Food Res. Int. 2017, 100, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Yener, I.; Kocakaya, S.O.; Ertas, A.; Erhan, B.; Kaplaner, E.; Oral, E.V.; Yilmaz-Ozden, T.; Yilmaz, M.A.; Ozturk, M.; Kolak, U. Selective in vitro and in silico enzymes inhibitory activities of phenolic acids and flavonoids of food plants: Relations with oxidative stress. Food Chem. 2020, 327, 127045. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, D.; Farris, P.; Valacchi, G. Atmospheric skin aging-contributors and inhibitors. J. Cosmet. Dermatol. 2018, 17, 124–137. [Google Scholar] [CrossRef] [PubMed]
- Forestier, S. Rationale for sunscreen development. J. Am. Acad. Dermatol. 2008, 58, S133-138. [Google Scholar] [CrossRef]
- Yasin, Z.A.M.; Ibrahim, F.; Rashid, N.N.; Razif, M.F.M.; Yusof, R. the importance of some plant extracts as skin anti-aging resources: A review. Curr. Pharm. Biotechnol. 2017, 18, 864–876. [Google Scholar] [CrossRef]
- Nichols, J.A.; Katiyar, S.K. Skin Photoprotection by natural polyphenols: Anti-inflammatory, antioxidant and DNA repair mechanisms. Arch. Dermatol. Res. 2010, 302, 71–83. [Google Scholar] [CrossRef]
- Fernando, P.M.D.J.; Piao, M.J.; Kang, K.A.; Ryu, Y.S.; Hewage, S.R.K.M.; Chae, S.W.; Hyun, J.W. Rosmarinic acid attenuates cell damage against uvb radiation-induced oxidative stress via enhancing antioxidant effects in human HaCaT cells. Biomol. Ther. 2016, 24, 75–84. [Google Scholar] [CrossRef]
- Sun, J.-M.; Liu, Y.-X.; Liu, Y.-D.; Ho, C.-K.; Tsai, Y.-T.; Wen, D.-S.; Huang, L.; Zheng, D.-N.; Gao, Y.; Zhang, Y.-F.; et al. Salvianolic acid B protects against uvb-induced skin aging via activation of NRF2. Phytomed. 2024, 130, 155676. [Google Scholar] [CrossRef]
- Krieg, P.; Fürstenberger, G. The role of lipoxygenases in epidermis. Biochim. Biophys. Acta 2014, 1841, 390–400. [Google Scholar] [CrossRef]
- Bessada, S.M.F.; Alves, R.C.; Oliveira, M.B.P.P. Coffee silverskin: A review on potential cosmetic applications. Cosmetics 2018, 5, 5. [Google Scholar] [CrossRef]
- Ishitsuka, Y.; Maniwa, F.; Koide, C.; Kato, Y.; Nakamura, Y.; Osawa, T.; Tanioka, M.; Miyachi, Y. Increased halogenated tyrosine levels are useful markers of human skin ageing, reflecting proteins denatured by past skin inflammation. Clin. Exp. Dermatol. 2012, 37, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Chatterjee, P.; Dey, P.; Bhattacharya, S. Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pac. J. Trop. Biomed. 2012, 2, S178–S180. [Google Scholar] [CrossRef]
- Koukoulitsa, C.; Hadjipavlou-Litina, D.; Geromichalos, G.D.; Skaltsa, H. inhibitory effect on soybean lipoxygenase and docking studies of some secondary metabolites, isolated from Origanum vulgare L. ssp. hirtum. J. Enzym. Inhib. Med. Chem. 2007, 22, 99–104. [Google Scholar] [CrossRef]
- Ha, T.J.; Lee, M.-H.; Kim, H.-T.; Kwon, H.S.; Baek, I.-Y.; Kubo, I.; Jang, D.S. Slow-binding inhibition of soybean lipoxygenase-1 by luteolin. Arch. Pharm. Res. 2012, 35, 1811–1816. [Google Scholar] [CrossRef]
- Chai, T.-T.; Huang, Y.-N.; Ren, S.-T.; Jin, D.-L.; Fu, J.-J.; Guo, J.-Y.; Chen, Y.-W. Inhibitory effects of ultrasonic and rosmarinic acid on lipid oxidation and lipoxygenase in large yellow croaker during cold storage. Ultrason. Sonochem 2023, 92, 106229. [Google Scholar] [CrossRef]
- Cho, B.O.; Yin, H.H.; Fang, C.Z.; Ha, H.O.; Kim, S.J.; Jeong, S.I.; Jang, S.I. Synergistic anti-inflammatory effect of rosmarinic acid and luteolin in lipopolysaccharide-stimulated raw264.7 macrophage cells. Korean J. Food Sci. Technol. 2015, 47, 119–125. [Google Scholar] [CrossRef]
- Colombo, I.; Sangiovanni, E.; Maggio, R.; Mattozzi, C.; Zava, S.; Corbett, Y.; Fumagalli, M.; Carlino, C.; Corsetto, P.A.; Scaccabarozzi, D.; et al. HaCaT cells as a reliable in vitro differentiation model to dissect the inflammatory/repair response of human keratinocytes. Mediat. Inflamm. 2017, 2017, 7435621. [Google Scholar] [CrossRef]
- Kawano, Y.; Patrulea, V.; Sublet, E.; Borchard, G.; Iyoda, T.; Kageyama, R.; Morita, A.; Seino, S.; Yoshida, H.; Jordan, O.; et al. Wound healing promotion by hyaluronic acid: Effect of molecular weight on gene expression and in vivo wound closure. Pharmaceuticals 2021, 14, 301. [Google Scholar] [CrossRef]
- Juszczak, A.M.; Jakimiuk, K.; Czarnomysy, R.; Strawa, J.W.; Zovko Končić, M.; Bielawski, K.; Tomczyk, M. Wound healing properties of Jasione montana extracts and their main secondary metabolites. Front. Pharmacol. 2022, 13, 894233. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Cheng, H.-L.; Kuan, Y.-H.; Liang, T.-J.; Chao, Y.-Y.; Lin, H.-C. Therapeutic potential of luteolin on impaired wound healing in streptozotocin-induced rats. Biomedicines 2021, 9, 761. [Google Scholar] [CrossRef]
- Erdal, A.; Özdemir, D.; Özdemir, Ş.; Bakırtaş, M.; Ağrı, İ. The Effect of rosmarinic acid on wound healing of nasal mucosa in the rats. Am. J. Rhinol. Allergy 2024, 38, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Küba, M.C.; Türkoğlu, A.; Oğuz, A.; Tuncer, M.C.; Kaya, Ş.; Başol, Ö.; Bilge, H.; Tatlı, F. Comparison of local rosmarinic acid and topical dexpanthenol applications on wound healing in a rat experimental wound model. Folia Morphol. 2021, 80, 618–624. [Google Scholar] [CrossRef]
- Yin, Y.; Xu, Q.; Wei, X.; Ma, Q.; Li, D.; Zhao, J. Rosmarinic acid-grafted dextran/gelatin hydrogel as a wound dressing with improved properties: Strong tissue adhesion, antibacterial, antioxidant and anti-Inflammatory. Molecules 2023, 28, 4034. [Google Scholar] [CrossRef] [PubMed]
- Szwedowicz, U.; Szewczyk, A.; Gołąb, K.; Choromańska, A. Evaluation of wound healing activity of salvianolic acid B on in vitro experimental model. Int. J. Mol. Sci. 2021, 22, 7728. [Google Scholar] [CrossRef]
- Jug, M.; Končić, M.Z.; Kosalec, I. Modulation of antioxidant, chelating and antimicrobial activity of poplar chemo-type propolis by extraction procures. LWT—Food Sci. Technol. 2014, 57, 530–537. [Google Scholar] [CrossRef]
- Zovko Koncić, M.; Kremer, D.; Karlović, K.; Kosalec, I. Evaluation of antioxidant activities and phenolic content of Berberis vulgaris L. and Berberis croatica Horvat. Food Chem. Toxicol. 2010, 48, 2176–2180. [Google Scholar] [CrossRef]
- Rajić, Z.; Končić, M.; Miloloža, K.; Perković, I.; Butula, I.; Bucar, F.; Zorc, B. Primaquine-nsaid twin drugs: Synthesis, radical scavenging, antioxidant and Fe2+ chelating activity. Acta Pharm. 2010, 60, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Jabłonowska, M.; Ciganović, P.; Jablan, J.; Marguí, E.; Tomczyk, M.; Zovko Končić, M. Silybum marianum glycerol extraction for the preparation of high-value anti-ageing extracts. Ind. Crops Prod. 2021, 168, 113613. [Google Scholar] [CrossRef]
- Kim, M.; Shin, S.; Ryu, D.; Cho, E.; Yoo, J.; Park, D.; Jung, E. Evaluating the sun protection factor of cosmetic formulations containing afzelin. Chem. Pharm. Bull. 2021, 69, 1039–1044. [Google Scholar] [CrossRef]
- Chekir, S.; Debbabi, M.; Regazzetti, A.; Dargère, D.; Laprévote, O.; Ben Jannet, H.; Gharbi, R. Design, synthesis and biological evaluation of novel 1,2,3-triazole linked coumarinopyrazole conjugates as potent anticholinesterase, anti-5-lipoxygenase, anti-tyrosinase and anti-cancer agents. Bioorg. Chem. 2018, 80, 189–194. [Google Scholar] [CrossRef]
- Blažević, F.; Milekić, T.; Romić, M.D.; Juretić, M.; Pepić, I.; Filipović-Grčić, J.; Lovrić, J.; Hafner, A. Nanoparticle-mediated interplay of chitosan and melatonin for improved wound epithelialisation. Carbohydr. Polym. 2016, 146, 445–454. [Google Scholar] [CrossRef] [PubMed]
No. | Rt (min) | UV Spectra λ max (nm) | Observed a | Δ (ppm) | Formula | Fragmentation in Negative Ionization Mode | Predicted Compounds |
---|---|---|---|---|---|---|---|
1 | 14.532 | 270, 348 | 609.14343 | −5.56 | C27H30O16 | 369, 399, 489, 609 | luteolin C-dihexoside |
2 | 15.036 | 272, 334 | 593.14913 | −4.17 | C27H30O15 | 353,383, 473, 593 | apigenin C-dihexoside |
3 | 15.476 | 256, 266, 348 | 637.10243 | −3.21 | C27H26O18 | 285, 351, 637 | luteolin O-diglucuronide |
4 | 16.219 | 234, 282, 344 | 477.06622 | −2.83 | C21H18O13 | 301, 477 | quercetin O-glucuronide |
5 | 17.453 | 250, 268, 336 | 593.14785 | −5.34 | C27H30O15 | 179, 285, 593, 799 | luteolin derivative |
6 | 17.881 | 244, 340 | 843.15980 | −3.15 | C38H36O22 | 285, 463, 557, 843 | luteolin derivative |
7 | 18.094 | 254, 348 | 461.07185 | −1.87 | C21H18O12 | 285, 461 | luteolin 7-O-glucuronide (s) |
8 | 20.148 | 252, 344 | 607.16478 | −3.68 | C28H32O15 | 299, 359,511, 607 | flavonoid O-deoxyhexosohexoside |
9 | 20.835 | 232, 328 | 359.07699 | −0.71 | C18H16O8 | 197, 359, 719 | rosmarinic acid (s) |
10 | 21.911 | 234, 324 | 537.10311 | −1.58 | C27H22O12 | 293, 493, 537 | lithospermic acid A isomer |
11 | 24.296 | 288, 324 | 717.14371 | −3.34 | C36H30O16 | 339, 493, 717 | salvianolic acid B isomer |
12 | 24.692 | 236, 322 | 535.08748 | −1.44 | C27H20O12 | 177, 248, 359, 535 | sagecoumarin |
13 | 25.293 | 234, 290, 322 | 493.11374 | −0.71 | C26H22O10 | 135, 295, 493 | salvianolic acid isomer |
Extracts | X1 (%, w/w) | X2 (mmol) | X3 (°C) | X4 (g) | X5 (min) | X6 (W) |
---|---|---|---|---|---|---|
OPT-TP | 70 | 0 | 45 | 0.80 | 15 | 504 |
OPT-TPA-RA | 70 | 0.15 | 20 | 0.77 | 9 | 288 |
OPT-TF | 70 | 0.20 | 65 | 0.77 | 25 | 720 |
OPT-LG | 57 | 0.34 | 20 | 0.80 | 14 | 288 |
Extracts | TP (μg/mL) | TPA (μg/mL) | TF (μg/mL) | RA (μg/mL) | LG (μg/mL) |
---|---|---|---|---|---|
OPT-TP | 5936.7 ± 176.4 | 3294.8 ± 281.8 | 676.7 ± 46.6 | 44.5 | 50.8 |
OPT-TPA-RA | 5487.7 ± 37.9 | 4172.2 ± 21.9 | 517.1 ± 46.1 | 1163.3 | 245.8 |
OPT-TF | 4352.2 ± 141.4 | 3267.6 ± 112.2 | 991.2 ± 19 | 637.1 | 103.7 |
OPT-LG | 3663.8 ± 113.8 | 2708.7 ± 151.5 | 479.6 ± 45.9 | 930.6 | 284.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakupović, L.; Strawa, J.W.; Nižić Nodilo, L.; Marijan, M.; Hafner, A.; Jakimiuk, K.; Tomczykowa, M.; Tomczyk, M.; Končić, M.Z. Cosmeceutical and Wound-Healing Activities of Green Hydroxypropyl-β-Cyclodextrin-Glycerol-Based Satureja montana Extracts. Molecules 2025, 30, 2638. https://doi.org/10.3390/molecules30122638
Jakupović L, Strawa JW, Nižić Nodilo L, Marijan M, Hafner A, Jakimiuk K, Tomczykowa M, Tomczyk M, Končić MZ. Cosmeceutical and Wound-Healing Activities of Green Hydroxypropyl-β-Cyclodextrin-Glycerol-Based Satureja montana Extracts. Molecules. 2025; 30(12):2638. https://doi.org/10.3390/molecules30122638
Chicago/Turabian StyleJakupović, Lejsa, Jakub W. Strawa, Laura Nižić Nodilo, Marijan Marijan, Anita Hafner, Katarzyna Jakimiuk, Monika Tomczykowa, Michał Tomczyk, and Marijana Zovko Končić. 2025. "Cosmeceutical and Wound-Healing Activities of Green Hydroxypropyl-β-Cyclodextrin-Glycerol-Based Satureja montana Extracts" Molecules 30, no. 12: 2638. https://doi.org/10.3390/molecules30122638
APA StyleJakupović, L., Strawa, J. W., Nižić Nodilo, L., Marijan, M., Hafner, A., Jakimiuk, K., Tomczykowa, M., Tomczyk, M., & Končić, M. Z. (2025). Cosmeceutical and Wound-Healing Activities of Green Hydroxypropyl-β-Cyclodextrin-Glycerol-Based Satureja montana Extracts. Molecules, 30(12), 2638. https://doi.org/10.3390/molecules30122638