Dispersed PM10 Microspheres from Coal Fly Ash: Fine Fraction Separation, Characterisation, and Glass–Ceramic Preparation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Separation of PM10 Microspheres from CFA
2.2. Characterisation of Fine Narrow Fractions
2.3. Single-Particle SEM-EDS Analysis
2.4. Thermochemical and Phase Transformations in Dispersed Microspheres
2.5. Preparation and Characterisation of Glass–Ceramic Materials
3. Materials and Methods
3.1. Materials and Sampling
3.2. Separation of Fine Narrow Fractions
3.3. Characterisation Methods
3.4. Glass–Ceramic Preparation
3.5. Glass–Ceramic Characterisation Techniques
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASMS | Aqueous suspension of microsilica. |
AR | lat. Aqua Regia. |
CFA | Coal fly ash. |
DSC-TG | Differential Scanning Calorimeter—Thermogravimetry. |
EDS | Energy-dispersive spectroscopy. |
ESP | Electrostatic precipitator. |
LOI | Loss on ignition. |
PM | Particulate matter. |
SEM | Scanning electronic microscopy. |
TPPs | Thermal power plants. |
XRD | X-ray diffraction. |
References
- Energy Strategy of the Russian Federation for the Period Up to 2050. Order of the Government of the Russian Federation from 12.04.2025 № 908-r [Electronic Resource]. Available online: http://government.ru/docs/all/54754/ (accessed on 9 May 2025). (In Russian).
- Blissett, R.S.; Rowson, N.A. A review of the multi-component utilisation of coal fly ash. Fuel 2012, 97, 1–23. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Hooda, P.S.; Tsadilas, C.D. Opportunities and challenges in the use of coal fly ash for soil improvements—A review. J. Environ. Manag. 2014, 145, 249–267. [Google Scholar] [CrossRef] [PubMed]
- Ahmaruzzaman, M. A review on the utilization of fly ash. Progress in energy and combustion. Science 2010, 36, 327–363. [Google Scholar]
- Yao, Z.T.; Ji, X.S.; Sarker, P.K.; Tang, J.H.; Ge, L.-Q.; Xia, M.S.; Xi, Y.Q. A Comprehensive review on the applications of coal fly ash. Earth-Sci. Rev. 2015, 141, 105–121. [Google Scholar] [CrossRef]
- Zong, Y.; Wan, Q.; Cang, D. Preparation of anorthite-based porous ceramics using high-alumina fly ash microbeads and steel slag. Ceram. Int. 2019, 45, 22445–22451. [Google Scholar] [CrossRef]
- Yoon, S.-D.; Lee, J.-U.; Lee, J.-H.; Yun, Y.-H.; Yoon, W.-J. Characterization of wollastonite glass-ceramics made from waste glass and coal fly ash. J. Mater. Sci. Technol. 2013, 29, 149–153. [Google Scholar] [CrossRef]
- Peng, F.; Liang, K.M.; Shao, H.; Hu, A.M.; Zhou, F. Nucleation and crystallization of glass-ceramics from coal fly ash. Key Eng. Mater. 2005, 280–283, 1651–1654. [Google Scholar]
- He, Y.; Cheng, W.; Cai, H. Characterization of α-cordierite glass-ceramics from fly ash. J. Hazard. Mater. 2005, 120, 265–269. [Google Scholar] [CrossRef]
- Zhu, J.; Yan, H. Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al2O3. Int. J. Miner. Metall. Mater. 2017, 24, 309–315. [Google Scholar] [CrossRef]
- Li, C.; Zhou, Y.; Tian, Y.; Zhao, Y.; Wang, K.; Li, G.; Chai, Y. Preparation and characterization of mullite whisker reinforced ceramics made from coal fly ash. Ceram. Int. 2019, 45, 5613–5616. [Google Scholar] [CrossRef]
- Angjusheva, B.; Jovanov, V.; Fidanchevski, E. Conversion of coal fly ash glass into glass-ceramics by controlled thermal treatment. Maced. J. Chem. Chem. Eng. 2021, 40, 307–319. [Google Scholar] [CrossRef]
- DeGuire, E.J.; Risbud, S.H. Crystallization and properties of glasses prepared from Illinois coal fly ash. J. Mater. Sci. 1984, 19, 1760–1766. [Google Scholar] [CrossRef]
- Erol, M.; Kücükbayrak, S.; Ersoy-Mericboyu, A. Comparison of the properties of glass. glass-ceramic and ceramic materials produced from coal fly ash. J. Hazard. Mater. 2008, 153, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Li, S.; Hou, X.; Li, H. Preparation of high performance mullite ceramics from high-aluminum fly ash by an effective method. J. Alloys Compd. 2015, 623, 359–361. [Google Scholar] [CrossRef]
- Acar, I.; Atalay, M.U. Characterization of sintered class F fly ashes. Fuel 2013, 106, 195–203. [Google Scholar] [CrossRef]
- Zeng, L.; Sun, H.J.; Peng, T.J.; Zheng, W.M. The sintering kinetics and properties of sintered glass-ceramics from coal fly ash of different particle size. Results Phys. 2019, 15, 102774. [Google Scholar] [CrossRef]
- Martinez-Tarazona, M.R.; Spears, D.A. The fate of trace elements and bulk minerals in pulverized coal combustion in a power station. Fuel Process. Technol. 1996, 47, 79–92. [Google Scholar] [CrossRef]
- Moreno, N.; Querol, X.; Andrés, J.M.; Stanton, K.; Towler, M.; Nugteren, H.; Janssen-Jurkovicová, M.; Jones, R. Physico-chemical characteristics of European pulverized coal combustion fly ashes. Fuel 2005, 84, 1351–1363. [Google Scholar] [CrossRef]
- Lighty, J.S.; Veranth, J.M.; Sarofim, A.F. Combustion aerosols: Factors governing their size and composition and implications to human health. J. Air Waste Manag. Assoc. 2000, 50, 1565–1618. [Google Scholar] [CrossRef]
- Riffault, V.; Arndt, J.; Marris, H.; Mbengue, S.; Setyan, A.; Alleman, L.Y.; Deboudt, K.; Flament, P.; Augustin, P.; Delbarre, H.; et al. Fine and ultrafine particles in the vicinity of industrial activities: A review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2305–2356. [Google Scholar] [CrossRef]
- Li, Z. Drying shrinkage prediction of paste containing meta-kaolin and ultrafine fly ash for developing ultra-high performance concrete. Mater. Today Commun. 2016, 6, 74–80. [Google Scholar] [CrossRef]
- Yu, J.; Lu, C.; Leung, C.K.Y.; Li, G. Mechanical properties of green structural concrete with ultrahigh-volume fly ash. Constr. Build. Mater. 2017, 147, 510–518. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, X.; Leiva, C.; Cornejo, A.; Font, O.; Querol, X.; Moeno, N.; Arenas, C.; Fernández-Pereira, C. Potential utilization of FGD gypsum and fly ash from a Chinese power plant for manufacturing fire-resistant panels. Constr. Build. Mater. 2015, 95, 910–921. [Google Scholar] [CrossRef]
- van der Merwe, E.M.; Prinsloo, L.; Mathebula, C.; Swart, H.; Coetsee, E.; Doucet, F.J. Surface and bulk characterization of an ultrafine South African coal fly ash with reference to polymer applications. Appl. Surf. Sci. 2014, 317, 73–83. [Google Scholar] [CrossRef]
- Phoo-ngernkham, T.; Chindaprasirt, P.; Sata, V.; Hanjitsuwan, S.; Hatanak, S. The effect of adding nano-SiO2 and Nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature. Mater. Des. 2014, 55, 58–65. [Google Scholar] [CrossRef]
- Fomenko, E.V.; Anshits, N.N.; Kushnerova, O.A.; Akimochkina, G.V.; Kukhtetskiy, S.V.; Anshits, A.G. Separation of nonmagnetic fine narrow fractions of PM10 from coal fly ash and their characteristics and mineral precursors. Energy Fuels 2019, 33, 3584–3593. [Google Scholar] [CrossRef]
- ASTM Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete (C618-05) Annual Book of ASTM Standards, Concrete and Aggregates, Volume 04.02, American Society for Testing Materials 2005. Available online: www.astm.org (accessed on 15 March 2025).
- Raask, E. Cenospheres in pulverized-fuel ash. J. Inst. Fuel 1968, 43, 339–344. [Google Scholar]
- Bryers, R.W. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Prog. Energy Combust. Sci. 1996, 22, 29–120. [Google Scholar] [CrossRef]
- Fix, G.; Seames, W.S.; Mann, M.D.; Benson, S.A.; Miller, D.J. The effect of combustion temperature on coal ash fine-fragmentation mode formation mechanisms. Fuel 2013, 113, 140–147. [Google Scholar] [CrossRef]
- Linak, W.P.; Miller, C.A.; Seames, W.S.; Wendt, J.O.L.; Ishinomori, T.; Endo, Y.; Miyamae, S. On trimodal particle size distributions in fly ash from pulverized coal combustion. Proc. Combust. Inst. 2002, 29, 441–447. [Google Scholar] [CrossRef]
- Osborn, E.F.; Muan, A. Phase Equilibrium Diagrams of Oxide Systems; American Ceramic Society and Edward Orton, Ir., Ceramic Foundation: Columbus, OH, USA, 1960; 204p. [Google Scholar]
- Fomenko, E.V.; Akimochkina, G.V.; Knyazev, Y.V.; Semenov, S.V.; Yumashev, V.V.; Solovyov, L.A.; Anshits, A.G. Characterization and Magnetic Properties of Sintered Glass-Ceramics from Dispersed Fly Ash Microspheres. Magnetochemistry 2023, 9, 177. [Google Scholar] [CrossRef]
- Fomenko, E.V.; Akimochkina, G.V.; Anshits, A.G.; Fadeeva, N.P.; Kharchenko, I.A.; Elsuf’ev, E.V.; Shabanova, K.A.; Maksimova, A.A.; Ryzhkov, I.I. Ceramic substrates for filtration membranes based on fine fly ash microspheres. Membr. Membr. Technol. 2024, 6, 71–83. [Google Scholar] [CrossRef]
- Morrell, R. Handbook of Properties of Technical and Engineering Ceramics; The Stationery Office Books; HMSO: London, UK, 1989; 348p. [Google Scholar]
- Glass, S.J.; Ewsuk, K.G. Ceramic Powder Compaction. MRS Bull. 1997, 22, 24–28. [Google Scholar] [CrossRef]
- GOST 7025-91; Ceramic and Calcium Silicate Bricks and Stones. Methods for Water Absorption and Density Determination and Frost Resistance Control. Standards Inform: Moscow, Russia, 2006. Available online: https://docs.cntd.ru/document/901700526 (accessed on 20 January 2025). (In Russian)
- GOST 2409-14; Refractories. Method for Determination of Bulk Density, Apparent and True Porosity, Water Absorption. Standards Inform: Moscow, Russia, 2014. Available online: https://docs.cntd.ru/document/1200114732 (accessed on 20 May 2025). (In Russian)
- GOST 57606-2017 (ISO 20504:2006); Ceramic Composites. Compression Test Method at Normal Temperature. Standards Inform: Moscow, Russia, 2017. Available online: https://docs.cntd.ru/document/1200146631 (accessed on 20 May 2025). (In Russian)
- GOST 473.1-2023; Chemical-Resistant and Heat-Resistant Ceramic Products. Method for Determination of Acid Resistance. Standards Inform: Moscow, Russia, 2023. Available online: https://docs.cntd.ru/document/1301168692 (accessed on 20 May 2025). (In Russian)
- Dyatlova, E.M.; Klimosh, Y.A. Chemical Technology of Ceramics and Refractories; BSTU: Minsk, Belarus, 2014; 226p. (In Russian) [Google Scholar]
- Strathmann, H. Introduction to Membrane Science and Technology; VCH: Weinheim, Germany, 2011; 498p. [Google Scholar]
- Baker, R.W. Membrane Technology and Applications; John Wiley & Sons: Chichester, UK, 2004; 538p. [Google Scholar]
- Li, K. Ceramic Membranes for Separation and Reaction; John Wiley & Sons: Chichester, UK, 2007; 545p. [Google Scholar]
- Arumugham, T. Recent developments in porous ceramic membranes for wastewater treatment and desalination: A review. Environ. Manag. 2021, 293, 112925. [Google Scholar] [CrossRef]
- Gitis, V.; Rothenberg, G. Ceramic Membranes: New Opportunities and Practical Applications; Wiley-VCH: Weinheim, Germany, 2016; 403p. [Google Scholar]
- Abdullayev, A.; Bekheet, M.F.; Hanaor, D.A.H.; Gurlo, A. Materials and applications for low-cost ceramic membranes. Membranes 2019, 9, 105. [Google Scholar] [CrossRef]
- Fang, J.; Qin, G.; Wei, W.; Zhao, X. Preparation and characterization of tubular supported ceramic microfiltration membranes from fly ash. Sep. Purif. Technol. 2011, 80, 585–591. [Google Scholar] [CrossRef]
- Fu, M.; Liu, J.; Dong, X.; Zhu, L.; Dong, Y.; Hampshire, S. Waste recycling of coal fly ash for design of highly porous whisker-structured mullite ceramic membranes. J. Eur. Ceram. Soc. 2019, 39, 5320–5331. [Google Scholar] [CrossRef]
- Wei, Z.; Hou, J.; Zhu, Z. High-aluminum fly ash recycling for fabrication of cost-effective ceramic membrane supports. J. Alloys Compd. 2016, 683, 474–480. [Google Scholar] [CrossRef]
- Zhu, L.; Dong, Y.; Hampshire, S.; Cerneaux, S.; Winnubst, L. Waste-to-resource preparation of a porous ceramic membrane support featuring elongated mullite whiskers with enhanced porosity and permeance. J. Eur. Ceram. Soc. 2015, 35, 711–721. [Google Scholar] [CrossRef]
- Chen, M.; Zhu, L.; Dong, Y.; Li, L.; Liu, J. Waste-to-resource strategy to fabricate highly porous whisker-structured mullite ceramic membrane for simulated oil-in-water emulsion wastewater treatment. ACS Sustain. Chem. Eng. 2016, 4, 2098–2106. [Google Scholar] [CrossRef]
- Dong, Y.; Hampshire, S.; Zhou, J.; Lin, B.; Ji, Z.; Zhang, X.; Meng, G. Recycling of fly ash for preparing porous mullite membrane supports with titania addition. J. Hazard. Mater. 2010, 180, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Zou, D.; Xu, J.; Chen, X.; Qiu, M.; Fan, Y. Enhanced performance of fly ash-based supports for low-cost ceramic membranes with the addition of bauxite. Membranes 2021, 11, 711. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Hao, T.; Yao, S.; Xu, H. Preparation of porous mullite ceramic supports from high alumina fly ash. J. Mater. Cycles Waste Manag. 2023, 25, 1120–1129. [Google Scholar] [CrossRef]
- Agarwal, A.; Samanta, A.; Nandi, B.K.; Mandal, A. Synthesis, characterization and performance studies of kaolin-fly ash-based membranes for microfiltration of oily waste water. J. Pet. Sci. Eng. 2020, 194, 107475. [Google Scholar] [CrossRef]
- Malik, N.; Bulasara, V.K.; Basu, S. Preparation of novel porous ceramic microfiltration membranes from fly ash, kaolin and dolomite mixtures. Ceram. Int. 2020, 46, 6889–6898. [Google Scholar] [CrossRef]
- Zou, D.; Qiu, M.; Chen, X.; Drioli, E.; Fan, Y. One step co-sintering process for low-cost fly ash based ceramic microfiltration membrane in oil-in-water emulsion treatment. Sep. Purif. Technol. 2019, 210, 511–520. [Google Scholar] [CrossRef]
- Chihi, R.; Blidi, I.; Trabelsi-Ayadi, M.; Ayari, F. Elaboration and characterization of a low-cost porous ceramic support from natural Tunisian bentonite clay. C. R. Chim. 2019, 22, 188–197. [Google Scholar] [CrossRef]
- Fakhfakh, S.; Baklouti, S.; Baklouti, S.; Bouaziz, J. Preparation, characterization and application in BSA solution of silica ceramic membranes. Adv. Appl. Ceram. 2010, 262, 188–195. [Google Scholar] [CrossRef]
- Bouazizi, A.; Breida, M.; Karim, A.; Achiou, B.; Ouammou, M.; Calvao, J.I.; Aaddane, A.; Khiat, K.; Alami Younssi, S. Development of a new TiO2 ultrafiltration membrane on flat ceramic support made from natural bentonite and micronized phosphate and applied for dye removal. Ceram. Int. 2017, 43, 1479–1487. [Google Scholar] [CrossRef]
- GD 34.09.603-88; Methodical Instructions on Organization of Control of Composition and Properties of Ashes and Slags Supplied to Consumers by Thermal Power Plants. Scientific and Technical Information Department: Moscow, Russia, 1988; 23p. Available online: https://docs.cntd.ru/document/1200040767 (accessed on 9 May 2025). (In Russian)
- GOST 23148-98 (ISO 3954-77); Powders Used in Powder Metallurgy. Sampling. Publishing House of Standards: Moscow, Russia, 2001; 12p. Available online: https://docs.cntd.ru/document/1200018127 (accessed on 9 May 2025). (In Russian)
- GOST 5382-2019; Cements and Materials for Cement Production. Chemical Analysis Methods. Publishing House of Standards: Moscow, Russia, 2019. Available online: https://docs.cntd.ru/document/1200168999 (accessed on 20 January 2025). (In Russian)
- Powder Diffraction File Database. Available online: https://www.icdd.com/pdf-2 (accessed on 13 February 2025).
- Solovyov, L.A. Full-profile refinement by derivative difference minimization. J. Appl. Crystallogr. 2004, 37, 743–749. [Google Scholar] [CrossRef]
- Fomenko, E.V.; Anshits, N.N.; Solovyov, L.A.; Mikhailova, O.A.; Anshits, A.G. Compositions and morphology of fly ash cenospheres produced from the combustion of Kuznetsk coal. Energy Fuels 2013, 27, 5440–5448. [Google Scholar] [CrossRef]
- DIN 51007:1994-06; Thermal Analysis; Differential Thermal Analysis; Principles. Deutsche Institut für Normung e.V. (DIN): Berlin, Germany, 1994.
Glass–Ceramic Materials | Raw Materials | Temperature (°C) | Characteristics of Glass–Ceramic Materials | Reference | |
---|---|---|---|---|---|
Fly Ash Composition (wt %) | Additives | ||||
Anorthite porous ceramics | SiO2—54.08, Al2O3—38.00, Fe2O3—1.89, CaO—1.08 | Steel slag | 1120–1200 | Apparent porosity: 5–65% Flexural strength: 5–60 MPa | [6] |
Wollastonite glass–ceramic | SiO2—43.24, Al2O3—20.49, Fe2O3—4.99, CaO—24.38 | Glass | 850–1050 | Density: 2.042–2.501 g/cm3. Flexural strength: 60.8–94.1 MPa Compressive strength: 162.7–238.6 MPa | [7] |
Wollastonite glass–ceramic | SiO2—55.30, Al2O3—29.36, Fe2O3—5.84, CaO—4.58 | Na2O CaCO3 | 1550 | Density: 2.58–2.72 g/cm3 Four-point flexural strength: 48–103 MPa | [8] |
Cordierite glass–ceramic | SiO2—57.99, Al2O3—28.98, Fe2O3—4.33, CaO—2.49 | Al2O3 MgCO3 | 1125–1320 | Density: 1.57–2.05 g/cm3 Compressive strength: 35–50 MPa | [9] |
Mullite ceramic | SiO2—50.70, Al2O3—36.38, Fe2O3—5.63, CaO—3.59 | Al2O3 | 1600 | Porosity: 77–79%. Frame density: 2.59–2.89 g/cm3 Compressive strength: 1.21–2.33 MPa | [10] |
Mullite ceramic | SiO2—44.3, Al2O3—47.9, Fe2O3—1.73, CaO—2.11 | Al2O3 AlF3 | 1200 | Porosity: 20–28%. Density: 0.6–1.3 g/cm3 Flexural strength: 24–59 MPa | [11] |
Bulk Density (g/cm3) | Magnetic Fraction Content (wt %) | Particle Size Distribution (µm) | Phase Composition (wt %) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dav | d10 | d50 | d90 | Glass Phase | Quartz | Mullite | Fe-Spinel | Hematite | |||||||
1.39 | 7.9 | 34 | 2 | 23 | 80 | 86.8 | 5.2 | 2.9 | 3.9 | 1.2 | |||||
Chemical composition (wt %) * | |||||||||||||||
LOI ** | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | K2O | SO3 | |||||||
10.70 | 60.52 | 26.30 | 6.62 | 3.28 | 1.24 | 0.62 | 1.35 | 0.07 |
Fraction | Bulk Density (g/cm3) | Particle Size Distribution (µm) | ||||
---|---|---|---|---|---|---|
dav | d10 | d50 | d90 | d99 | ||
NM-2 | 0.80 | 2.1 | 0.7 | 1.7 | 4.1 | 7.3 |
NM-2.5 | 1.05 | 2.5 | 0.8 | 2.0 | 4.8 | 8.3 |
NM-3 | 1.14 | 3.0 | 0.9 | 2.4 | 5.8 | 10.0 |
NM-6 | 1.23 | 6.4 | 0.9 | 5.6 | 12.4 | 19.5 |
NM-10 | 1.24 | 9.9 | 3.8 | 9.4 | 16.9 | 24.2 |
Fraction | Chemical Composition (wt %) * | Phase Composition (wt %) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LOI | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | Na2O | K2O | SO3 | Glass Phase | Mullite | Quartz | Fe-Spinel | Hematite | Calcite | |
NM-2 | 16.20 | 60.07 | 24.76 | 8.03 | 3.30 | 1.04 | 0.74 | 1.95 | 0.11 | 94.1 | 3.2 | 1.8 | 0.5 | 0.4 | – |
NM-2.5 | 12.28 | 59.33 | 26.93 | 7.26 | 2.98 | 0.87 | 0.69 | 1.83 | 0.11 | 93.4 | 3.6 | 1.9 | 0.9 | 0.2 | – |
NM-3 | 9.85 | 58.76 | 25.85 | 7.66 | 4.61 | 1.32 | 0.67 | 1.06 | 0.07 | 93.1 | 3.0 | 2.2 | 0.9 | 0.5 | 0.3 |
NM-6 | 7.60 | 61.55 | 25.29 | 6.36 | 3.15 | 1.19 | 0.67 | 1.70 | 0.09 | 92.3 | 3.2 | 3.5 | – | 0.7 | 0.3 |
NM-10 | 7.30 | 63.41 | 24.59 | 4.88 | 3.02 | 1.53 | 0.70 | 1.79 | 0.08 | 91.4 | 4.1 | 3.6 | – | 0.6 | 0.3 |
Fraction | Glass Phase | Mullite | Quartz | Hematite | Cristobalite | Anorthite |
---|---|---|---|---|---|---|
HM-2/1100 | 70.4 | 18.5 | 0.7 | 3.6 | 3.5 | 3.3 |
HM-2.5/1100 | 71.8 | 16.2 | 0.8 | 3.5 | 2.9 | 4.8 |
HM-3/1100 | 69.5 | 16.5 | 1.3 | 3.7 | 3.4 | 5.6 |
HM-6/1100 | 67.0 | 16.8 | 3.1 | 2.7 | 3.4 | 7.0 |
HM-10/1100 | 66.8 | 18.7 | 5.6 | 1.3 | 2.3 | 5.3 |
Parameter | NM-3 | NN-10 | NM-10/AR * | |||
---|---|---|---|---|---|---|
Sintering temperature (°C) | 1000 | 1100 | 1000 | 1100 | 1100 | 1150 |
Sintering coefficient | 0.61 | 0.44 | 0.90 | 0.64 | 0.68 | 0.64 |
Apparent density (g/cm3) | 1.78 | 2.76 | 1.35 | 1.82 | 1.63 | 1.89 |
Water absorption (%) | 10 | 0.2 | 28 | 10 | 19 | 14 |
Open porosity (%) | 18 | 0.4 | 37 | 18 | 31 | 24 |
Compressive strength (MPa) | 48 | 56 | 5 | 143 | 99 | 159 |
Minimum pore size (µm) | 0.10 | – | 0.28 | 0.07 | 0.32 | 0.18 |
Average pore size (µm) | 0.12 | – | 0.92 | 0.22 | 0.92 | 0.34 |
Maximum pore size (µm) | 0.67 | – | 3.60 | 2.03 | 2.71 | 1.12 |
Acid resistance (%) | 97.3 | 98.9 | 96.3 | 98.7 | 99.9 | 99.9 |
Water permeability (L·m−2·h−1·bar−1) | 24 | – | 1194 | 217 | 240 | 170 |
ASMS ** permeability (L·m−2·h−1·bar−1) | 10 | – | 265 | 82 | – | 76 |
Retention coefficient | 0.99 | – | 0.99 | 0.99 | 0.99 | 0.99 |
Ceramics | Apparent Density (g/cm3) | Open Porosity (%) | Compressive Strength (MPa) |
---|---|---|---|
Building bricks | 1.6–1.9 | 15–20 | 7.5–20 |
Faience | 1.9–2.4 | 18–20 | 100 |
Narrow fractions of dispersed microspheres (this work) | 1.8–1.9 | 18–24 | 48–159 |
Membrane Material | Sintering Temperature (°C) | Pore Size (µm) | Open Porosity (%) | Flexural Strength (MPa) | Reference |
---|---|---|---|---|---|
Fly ash | 1200 | 0.7–3.0 | – | – | [49] |
Fly ash + Al(OH)3 + MoO3 | 1200–1500 | 0.2–1.6 | 30–58 | 26–141 | [50] |
Fly ash + CaCO3 | 1200–1350 | 0.6–1.7 | 0–50 | 34–90 | [51] |
Fly ash + bauxite + AlF3 + MoO3 | 1100–1500 | 0.3–0.5 | 10–50 | 20–150 | [52] |
Fly ash + bauxite + WO3 | 1200–1400 | 0.7–1.8 | 45–52 | 35–88 | [53] |
Fly ash + bauxite +TiO2 | 1300–1500 | 5–10 | 39–47 | 27–36 | [54] |
Fly ash + bauxite | 1150–1300 | 2–4 | 0–40 | 20–95 | [55] |
High-alumina fly ash + kaolin + alumina + graphite | 1150–1550 | – | 40–70 | – | [56] |
Fly ash + kaolin + CaCO3, Na2CO3, H3BO3 | 750–900 | 0.3–2 | 30–40 | 7–26 | [57] |
Fly ash + kaolin + dolomite | 800–1000 | 0.4–2.5 | 35–50 | 15–55 | [58] |
Fly ash + mullite | 1000–1200 | 1–2 | 30–35 | 15–50 | [59] |
Narrow fractions of dispersed microspheres with dav = 10 μm | 1000–1150 | 0.1–3.6 | 18–37 | 5–159 * | This work |
Oxide | Method | The Mean Squared Error | The Discrepancy Between Two Parallel Definitions |
---|---|---|---|
SiO2 | Gravimetric analysis | ±0.02 ÷ ±0.35 | 0.03 ÷ 0.50 |
Al2O3 | Complexometric titration | ±0.05 ÷ ±0.30 | 0.07 ÷ 0.40 |
Fe2O3 | Complexometric titration | ±0.15 ÷ ±0.60 | 0.20 ÷ 0.80 |
FeO | Permanganometric titration | ±0.02 ÷ ±0.04 | 0.03 ÷ 0.05 |
CaO | Complexometric titration | ±0.15 | 0.20 |
MgO | Complexometric titration | ±0.10 ÷ ±0.20 | 0.15 ÷ 0.30 |
Na2O | Flame photometric method | ±0.04 ÷ ±0.10 | 0.06 ÷ 0.15 |
MnO | Photocolorimetry | ±0.04 | 0.05 |
SO3 | Gravimetric analysis | ±0.04 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fomenko, E.V.; Akimochkina, G.V.; Anshits, N.N. Dispersed PM10 Microspheres from Coal Fly Ash: Fine Fraction Separation, Characterisation, and Glass–Ceramic Preparation. Molecules 2025, 30, 2600. https://doi.org/10.3390/molecules30122600
Fomenko EV, Akimochkina GV, Anshits NN. Dispersed PM10 Microspheres from Coal Fly Ash: Fine Fraction Separation, Characterisation, and Glass–Ceramic Preparation. Molecules. 2025; 30(12):2600. https://doi.org/10.3390/molecules30122600
Chicago/Turabian StyleFomenko, Elena V., Galina V. Akimochkina, and Natalia N. Anshits. 2025. "Dispersed PM10 Microspheres from Coal Fly Ash: Fine Fraction Separation, Characterisation, and Glass–Ceramic Preparation" Molecules 30, no. 12: 2600. https://doi.org/10.3390/molecules30122600
APA StyleFomenko, E. V., Akimochkina, G. V., & Anshits, N. N. (2025). Dispersed PM10 Microspheres from Coal Fly Ash: Fine Fraction Separation, Characterisation, and Glass–Ceramic Preparation. Molecules, 30(12), 2600. https://doi.org/10.3390/molecules30122600