Facile One-Step Fabrication of 1T-Phase-Rich Bimetallic CoFe Co-Doped MoS2 Nanoflower: Synergistic Engineering for Bi-Functional Water Splitting Electrocatalysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Morphology Characterizations
2.2. Electrocatalytic Performance Investigation
3. Materials and Methods
3.1. Materials and Reagents
3.2. Synthesis of CoFe-MoS2
3.3. Electrochemical Characterization
3.4. Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TAA | Thioacetamide |
References
- Luo, Y.; Zhang, Z.; Chhowalla, M.; Liu, B. Recent Advances in Design of Electrocatalysts for High-Current-Density Water Splitting. Adv. Mater. 2022, 34, 2108133. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Duan, Y.; Feng, X.; Yu, X.; Gao, M.; Yu, S. Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Adv. Mater. 2021, 33, 2007100. [Google Scholar] [CrossRef] [PubMed]
- Ge, B.; Deng, J.; Wang, Z.; Liang, Q.; Hu, L.; Ren, X.; Li, R.; Lin, Y.; Li, Y.; Wang, Q.; et al. Aggregate-Dominated Dilute Electrolytes with Low-Temperature-Resistant Ion-Conducting Channels for Highly Reversible Na Plating/Stripping. Adv. Mater. 2024, 36, 2408161. [Google Scholar] [CrossRef]
- Ge, B.; Hu, L.; Yu, X.; Wang, L.; Fernandez, C.; Yang, N.; Liang, Q.; Yang, Q. Engineering Triple-Phase Interfaces around the Anode toward Practical Alkali Metal–Air Batteries. Adv. Mater. 2024, 36, 2400937. [Google Scholar] [CrossRef]
- Wang, J.; Cui, W.; Liu, Q.; Xing, Z.; Asiri, A.M.; Sun, X. Recent Progress in Cobalt-Based Heterogeneous Catalysts for Electrochemical Water Splitting. Adv. Mater. 2016, 28, 215–230. [Google Scholar] [CrossRef]
- Yu, Q. Boron Doping Activate Strong Metal-Support Interaction for Electrocatalytic Hydrogen Evolution Reaction in Full pH Range. Appl. Catal. B Environ. 2023, 324, 122297. [Google Scholar] [CrossRef]
- Luyen Doan, T.L.; Nguyen, D.C.; Kang, K.; Ponnusamy, A.; Eya, H.I.; Dzade, N.Y.; Kim, C.S.; Park, C.H. Advanced Mott-Schottky Heterojunction of Semi-Conductive MoS2 Nanoparticles/Metallic CoS2 Nanotubes as an Efficient Multifunctional Catalyst for Urea-Water Electrolysis. Appl. Catal. B Environ. 2024, 342, 123295. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhou, X.; Pan, Q.-M.; Zhang, L.-F.; Cao, Y.-F.; Qian, T. Bimetallic Active Site Nuclear-Shell Heterostructure Enables Efficient Dual-Functional Electrocatalysis in Alkaline Media. Rare Met. 2023, 42, 3024–3033. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, H.; Qian, X.; He, G.; Chen, H. Sulfur Vacancies Engineered Self-Supported Co3S4 Nanoflowers as an Efficient Bifunctional Catalyst for Electrochemical Water Splitting. Appl. Catal. B Environ. 2023, 322, 122104. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Luyen Doan, T.L.; Prabhakaran, S.; Tran, D.T.; Kim, D.H.; Lee, J.H.; Kim, N.H. Hierarchical Co and Nb Dual-Doped MoS2 Nanosheets Shelled Micro-TiO2 Hollow Spheres as Effective Multifunctional Electrocatalysts for HER, OER, and ORR. Nano Energy 2021, 82, 105750. [Google Scholar] [CrossRef]
- Sultan, S.; Tiwari, J.N.; Singh, A.N.; Zhumagali, S.; Ha, M.; Myung, C.W.; Thangavel, P.; Kim, K.S. Single Atoms and Clusters Based Nanomaterials for Hydrogen Evolution, Oxygen Evolution Reactions, and Full Water Splitting. Adv. Energy Mater. 2019, 9, 1900624. [Google Scholar] [CrossRef]
- Wang, P.; Han, X.; Bai, P.; Mu, J.; Zhao, Y.; He, J.; Su, Y. Utilizing an Electron Redistribution Strategy to Inhibit the Leaching of Sulfur from CeO2/NiCo2S4 Heterostructure for High-Efficiency Oxygen Evolution. Appl. Catal. B Environ. 2024, 344, 123659. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, S.; Lv, X.; Dai, S.; Wang, H.; Huang, M. Local-Reconstruction Enables Cobalt Phosphide Array with Bifunctional Hydrogen Evolution and Hydrazine Oxidation. Appl. Catal. B Environ. 2024, 345, 123661. [Google Scholar] [CrossRef]
- Luo, Q.; Sun, L.; Zhao, Y.; Wang, C.; Xin, H.; Li, D.; Ma, F. Synergistic Effects of 1T MoS2 and Interface Engineering on Hollow NiCoP Nanorods for Enhanced Hydrogen Evolution Activity. J. Mater. Sci. Technol. 2023, 145, 165–173. [Google Scholar] [CrossRef]
- Wang, R.; Sun, X.; Zhong, J.; Wu, S.; Wang, Q.; (Ken) Ostrikov, K. Low-Temperature Plasma-Assisted Synthesis of Iron and Nitrogen Co-Doped CoFeP-N Nanowires for High-Efficiency Electrocatalytic Water Splitting. Appl. Catal. B Environ. Energy 2024, 352, 124027. [Google Scholar] [CrossRef]
- Chen, J.; Li, Z.; Li, Z.; Zhou, Y.; Lai, Y. Lattice-Matched Spinel/Layered Double Hydroxide 2D/2D Heterojunction towards Large-Current-Density Overall Water Splitting. Appl. Catal. B Environ. Energy 2024, 355, 124204. [Google Scholar] [CrossRef]
- Li, S.-M.; Liu, Z.; Li, X.-Y.; Ye, C.-F.; Li, Y.; Liu, J.-P.; Yu, S.; Sun, M.-H.; Chen, L.-H.; Su, B.-L.; et al. Synergistically Modulating D-Band Centers of Bimetallic Elements for Activating Cobalt Atoms and Promoting Water Dissociation toward Accelerating Alkaline Hydrogen Evolution. Appl. Catal. B Environ. Energy 2024, 351, 123972. [Google Scholar] [CrossRef]
- Naresh, B.; Sreekanth, T.V.M.; Yoo, K.; Kim, J. Electrocatalytic Behavior of Transition Metal Cr and Co Doped ZnO Nanoparticles for Oxygen Evolution Reaction. Mater. Lett. 2024, 373, 137095. [Google Scholar] [CrossRef]
- Chen, H.; Hu, M.; Jing, P.; Liu, B.; Gao, R.; Zhang, J. Constructing Heterostructure of CeO2/WS2 to Enhance Catalytic Activity and Stability toward Hydrogen Generation. J. Power Sources 2022, 521, 230948. [Google Scholar] [CrossRef]
- Zeng, P.; Meng, Y.; Liu, Z.; Sun, G.; Li, X.; Yang, X.; Ye, C.; Li, Y.; Liu, J.; Chen, L.; et al. N-Doping Coupled with Co-Vacancies Activating Sulfur Atoms and Narrowing Bandgap for CoS Toward Synergistically Accelerating Hydrogen Evolution. Small 2023, 19, 2301279. [Google Scholar] [CrossRef]
- Li, S.; Zhuo, Y.; Liu, D.; Pan, H.; Wang, Z. Anchoring Highly Surface-Exposed Pt Single Atoms on Ni3S2/Co9S8 with Abundant S Vacancies Triggers d-Orbital Electron Rearrangements for Boosted Seawater Hydrogen Evolution. Appl. Catal. B Environ. Energy 2024, 355, 124188. [Google Scholar] [CrossRef]
- Gao, Y.; Qian, S.; Wang, H.; Yuan, W.; Fan, Y.; Cheng, N.; Xue, H.; Jiang, T.; Tian, J. Boron-Doping on the Surface Mediated Low-Valence Co Centers in Cobalt Phosphide for Improved Electrocatalytic Hydrogen Evolution. Appl. Catal. B-Environ. 2023, 320, 122014. [Google Scholar] [CrossRef]
- Cao, W.; Zhao, R.; Liu, G.; Wu, L.; Li, J. Three-Dimensional Ordered Macroporous Design of Heterogeneous Nickel-Iron Phosphide as Bifunctional Electrocatalyst for Enhanced Overall Water Splitting. Appl. Surf. Sci. 2023, 607, 154905. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, S. Constructing Built-in Electric Field to Accelerate the Asymmetric Local Charge Distribution for Efficient Alkaline Overall Water/Seawater Splitting. Appl. Catal. B Environ. Energy 2024, 352, 124002. [Google Scholar] [CrossRef]
- He, C.; Yang, L.; Peng, X.; Liu, S.; Wang, J.; Dong, C.; Du, D.; Li, L.; Bu, L.; Huang, X. Alkylamine-Confined Thickness-Tunable Synthesis of Co(OH)2-CoO Nanosheets toward Oxygen Evolution Catalysis. ACS Nano 2023, 17, 5861–5870. [Google Scholar] [CrossRef]
- Wang, B.; Chen, X.; He, Y.; Liu, Q.; Zhang, X.; Luo, Z.; Kennedy, J.V.; Li, J.; Qian, D.; Liu, J.; et al. Fe2O3/P-Doped CoMoO4 Electrocatalyst Delivers Efficient Overall Water Splitting in Alkaline Media. Appl. Catal. B Environ. 2024, 346, 123741. [Google Scholar] [CrossRef]
- Dong, Y.; Wu, A.; Yang, G.; Wang, J.; Liu, Y.; Yan, H.; Tian, C.; Fu, H. Lower-Temperature Synthesis of Nitrogen-Rich Molybdenum Nitride/Nickel (Cobalt) Heterojunctional Assembly for the Effective Water Electrolysis. Adv. Funct. Mater. 2024, 35, 2412979. [Google Scholar] [CrossRef]
- Kavinkumar, T.; Yang, H.; Sivagurunathan, A.T.; Jeong, H.; Han, J.W.; Kim, D. Regulating Electronic Structure of Iron Nitride by Tungsten Nitride Nanosheets for Accelerated Overall Water Splitting. Small 2023, 19, 2300963. [Google Scholar] [CrossRef]
- Qiao, H.; Li, Z.; Liu, F.; Ma, Q.; Ren, X.; Huang, Z.; Liu, H.; Deng, J.; Zhang, Y.; Liu, Y.; et al. Au Nanoparticle Modification Induces Charge-Transfer Channels to Enhance the Electrocatalytic Hydrogen Evolution Reaction of InSe Nanosheets. ACS Appl. Mater. Interfaces 2022, 14, 2908–2917. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, S.; Liu, S.; Wu, J.; Guan, J.; Li, Q.; Wang, Y.; Tao, Y.; Hu, S.; Bai, Y.; et al. The Heterointerface between Fe1/NC and Selenides Boosts Reversible Oxygen Electrocatalysis. Adv. Funct. Mater. 2023, 33, 2300815. [Google Scholar] [CrossRef]
- Lu, B. The CoSe2 Hollow Cube/CoSe2 Nanosheet Interface Catalyst for Efficient Electrolysis of Urea–Assisted Hydrogen Production at Industrial–Grade Currents. Appl. Catal. B Environ. Energy 2024, 350, 123940. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X.; Xin, P.; Wang, H.; Wu, Y.; Gao, C.; He, Q.; Jiang, Y.; Hu, Z.; Huang, S. Interface Engineering of NiS@MoS2 Core-Shell Microspheres as an Efficient Catalyst for Hydrogen Evolution Reaction in Both Acidic and Alkaline Medium. J. Alloys Compd. 2021, 853, 157352. [Google Scholar] [CrossRef]
- Gonzalez-Anota, D.E.; Castaneda-Morales, E.; Paredes-Carrera, S.P.; Manzo-Robledo, A. Modulating the HER-Overpotential at the Interface of Nanostructured MoS2 Synthesized via Hydrothermal Route: An in-Situ Mass-Spectroscopy Approach. Int. J. Hydrogen Energy 2023, 48, 17852–17867. [Google Scholar] [CrossRef]
- Chen, D.-R.; Muthu, J.; Guo, X.-Y.; Chin, H.-T.; Lin, Y.-C.; Haider, G.; Ting, C.-C.; Kalbac, M.; Hofmann, M.; Hsieh, Y.-P. Edge-Dominated Hydrogen Evolution Reactions in Ultra-Narrow MoS2 Nanoribbon Arrays. J. Mater. Chem. A 2023, 11, 15802–15810. [Google Scholar] [CrossRef]
- Alsabban, M.M.; Min, S.; Hedhili, M.N.; Ming, J.; Li, L.-J.; Huang, K.-W. Growth of Layered WS2 Electrocatalysts for Highly Efficient Hydrogen Production Reaction. ECS J. Solid State Sci. Technol. 2016, 5, Q3067–Q3071. [Google Scholar] [CrossRef]
- Agboola, P.O.; Shakir, I.; Almutairi, Z.A.; Shar, S.S. Hydrothermal Synthesis of Cu-Doped CoS2@NF as High Performance Binder Free Electrode Material for Supercapacitors Applications. Ceram. Int. 2022, 48, 8509–8516. [Google Scholar] [CrossRef]
- Gao, C.; Hua, H.; Du, M.; Liu, J.; Wu, X.; Pu, Y.; Li, X. Sulfurized Co-Mo Alloy Thin Films as Efficient Electrocatalysts for Hydrogen Evolution Reaction. Appl. Surf. Sci. 2020, 515, 145842. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Y.; Ren, X.; Wang, W. Facile Synthesis of NiS2-MoS2 Heterostructured Nanoflowers for Enhanced Overall Water Splitting Performance. J. Mater. Sci. 2020, 55, 13892–13904. [Google Scholar] [CrossRef]
- Zhu, D.; Liu, J.; Zhao, Y.; Zheng, Y.; Qiao, S.-Z. Engineering 2D Metal-Organic Framework/MoS2 Interface for Enhanced Alkaline Hydrogen Evolution. Small 2019, 15, 1805511. [Google Scholar] [CrossRef]
- Nie, K.; Qu, X.; Gao, D.; Li, B.; Yuan, Y.; Liu, Q.; Li, X.; Chong, S.; Liu, Z. Engineering Phase Stability of Semimetallic MoS2 Monolayers for Sustainable Electrocatalytic Hydrogen Production. ACS Appl. Mater. Interfaces 2022, 14, 19847–19856. [Google Scholar] [CrossRef]
- Bai, Z.; Wang, L.; Cao, H.; Zhang, X.; Li, G. Symbiosis of 1 T and 2H Phases in the Basal Plane of Defective MoS2 Nanoflowers for Efficient Hydrodesulfurization. Fuel 2022, 322, 124252. [Google Scholar] [CrossRef]
- Ghanashyam, G.; Kim, H. Co-Doped 1T-MoS2 Microspheres Embedded in N-Doped Reduced Graphene Oxide for Efficient Electrocatalysis toward Hydrogen and Oxygen Evolution Reactions. J. Power Sources 2024, 596, 234088. [Google Scholar] [CrossRef]
- Gurusamy, P.; Perumalsamy, S.V.; Pandian, T.; Vellingiri, G.; Kulanthaivel, J.; Sinthika, S.; Mithra, K.M. Effective Solar-Driven Overall Electrocatalytic Water-Splitting by Co-Doped 1T/2H MoS2 Nanoparticles. Int. J. Hydrogen Energy 2025, 130, 452–461. [Google Scholar] [CrossRef]
- Kong, L.; Gao, C.; Liu, Z.; Pan, L.; Yin, P.; Lin, J. Cerium-Doped 1 T Phase Enriched MoS2 Flower-like Nanoflakes for Boosting Hydrogen Evolution Reaction. Chem. Eng. J. 2024, 479, 147725. [Google Scholar] [CrossRef]
- Li, B.; Nie, K.; Zhang, Y.; Yi, L.; Yuan, Y.; Chong, S.; Liu, Z.; Huang, W. Engineering Single-Layer Hollow Structure of Transition Metal Dichalcogenides with High 1T-Phase Purity for Hydrogen Evolution Reaction. Adv. Mater. 2023, 35, 2303285. [Google Scholar] [CrossRef]
- Wu, K.; Wang, D.; Fu, Q.; Xu, T.; Xiong, Q.; Peera, S.G.; Liu, C. Co/Ce-MOF-Derived Oxygen Electrode Bifunctional Catalyst for Rechargeable Zinc–Air Batteries. Inorg. Chem. 2024, 63, 11135–11145. [Google Scholar] [CrossRef]
- Li, H.; Du, L.; Zhang, Y.; Liu, X.; Li, S.; Yang, C.C.; Jiang, Q. A Unique Adsorption-Diffusion-Decomposition Mechanism for Hydrogen Evolution Reaction towards High-Efficiency Cr, Fe-Modified CoP Nanorod Catalyst. Appl. Catal. B Environ. 2024, 346, 123749. [Google Scholar] [CrossRef]
- Saini, R.; Naaz, F.; El-Sheikh, M.A.; Farooq, U. Co-Doping-Assisted Systematic Evolution of a Truncated Octahedral from Tetrahedral Cu2O for Enhanced Electrochemical OER Activity. ACS Appl. Energy Mater. 2024, 7, 8882–8893. [Google Scholar] [CrossRef]
- Ajmal, M.; Zhang, S.; Guo, X.; Liu, X.; Shi, C.; Gao, R.; Huang, Z.-F.; Pan, L.; Zhang, X.; Zou, J.-J. Rapid Reconstruction of Nickel Iron Hydrogen Cyanamide with In-Situ Produced Proton Acceptor for Efficient Oxygen Evolution. Appl. Catal. B Environ. Energy 2025, 361, 124561. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, Z.; Wang, K.; Ye, Q.; Shen, B.; Yang, F.; Cheng, Y. Dual Doping of B and Fe Activated Lattice Oxygen Participation for Enhanced Oxygen Evolution Reaction Activity in Alkaline Freshwater and Seawater. Adv. Funct. Mater. 2024, 34, 2402264. [Google Scholar] [CrossRef]
- Jung, S.; Senthil, R.A.; Min, A.; Kumar, A.; Moon, C.J.; Choi, M.Y. Laser-Synthesized Co-Doped CuO Electrocatalyst: Unveiling Boosted Methanol Oxidation Kinetics for Enhanced Hydrogen Production Efficiency by In Situ/Operando Raman and Theoretical Analyses. Small Methods 2024, 8, 2301628. [Google Scholar] [CrossRef]
- Gu, Y.; Wu, A.; Jiao, Y.; Zheng, H.; Wang, X.; Xie, Y.; Wang, L.; Tian, C.; Fu, H. Two-Dimensional Porous Molybdenum Phosphide/Nitride Heterojunction Nanosheets for pH-Universal Hydrogen Evolution Reaction. Angew. Chem.-Int. Edit. 2021, 60, 6673–6681. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Z.; Li, Y.; Guo, L.; Wang, Y.; Fan, C.; Wang, Y.; Li, R.; Zhang, X.; Li, F.; et al. Sulfur Vacancy MoS2 for Electrocatalytic Reduction of Nitrate to Ammonia with Enhanced Selectivity. J. Alloys Compd. 2023, 955, 170199. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S.; Chai, Y.; Dong, B. Ligand Modulation of Active Sites to Promote Cobalt-Doped 1T-MoS2 Electrocatalytic Hydrogen Evolution in Alkaline Media. Angew. Chem. Int. Edtion 2023, 62, e202313845. [Google Scholar] [CrossRef]
- Dong, J.; An, B.; Liu, W.; Su, H.; Li, N.; Gao, Y.; Ge, L. Cation-Induced Interface Electric Field Redistribution and Molecular Orbital Coupling in Co-FeS/MoS2 for Boosting Electrocatalytic Overall Water Splitting. Chem. Eng. J. 2024, 498, 155102. [Google Scholar] [CrossRef]
- Sang, Y.; Xue, J.; Hu, J.; Chen, L. High-Current Density Alkaline Water/Seawater Splitting by Mo and Fe Co-Doped Ni3S2: Invariant Active Sites with Accelerated Water Dissociation Kinetics. Appl. Catal. B Environ. Energy 2025, 361, 124698. [Google Scholar] [CrossRef]
- Xu, X.; Guo, K.; Sun, J.; Yu, X.; Miao, X.; Lu, W.; Jiao, L. Interface Engineering of Mo-doped Ni2P/FexP-V Multiheterostructure for Efficient Dual-pH Hydrogen Evolution and Overall Water Splitting. Adv. Funct. Mater. 2024, 34, 2400397. [Google Scholar] [CrossRef]
- Cheng, X.; Tong, Y. Interface Coupling of Cobalt Hydroxide/Molybdenum Disulfide Heterostructured Nanosheet Arrays for Highly Efficient Hydrazine-Assisted Hydrogen Generation. ACS Sustain. Chem. Eng. 2023, 11, 3219–3227. [Google Scholar] [CrossRef]
- Sun, L.; Zhou, Z.; Xie, Y.; Zheng, J.; Pan, X.; Li, L.; Zhao, G. Surface Self-Reconstruction of Fe-Ni3S2 Electrocatalyst for Value-Generating Nitrile Evolution Reaction to Drive Efficient Hydrogen Production. Adv. Funct. Mater. 2023, 33, 2301884. [Google Scholar] [CrossRef]
- Deng, Y.; Cao, Y.; Xia, Y.; Xi, X.; Wang, Y.; Jiang, W.; Yang, D.; Dong, A.; Li, T. Self-Templated Synthesis of CoFeP@C Cage-In-Cage Superlattices for Enhanced Electrocatalytic Water Splitting. Adv. Energy Mater. 2022, 12, 2202394. [Google Scholar] [CrossRef]
- Wang, J.; Ling, Q.; Yao, Y.; Zhu, D.; Shu, S.; Zhou, Z.; Wu, X.; Wu, P. Willow Catkin-like Co4S3–WS2 Nanostructured Electrocatalyst for Efficient Overall Alkaline Water Splitting. ACS Appl. Nano Mater. 2024, 7, 24408–24416. [Google Scholar] [CrossRef]
- Mounesh; Thippeswamy, B.A.; Shiralkar, P.; Balakrishna, R.G.; Nagaraja, B.M.; Pramoda, K. Non-Precious Tetra-(4-Methylthiazole)-Carboxamide Cobalt(II) Phthalocyanine Supported on Functionalized Carbon Nanotubes as an Efficient Electrocatalyst for a Hydrogen Evolution Reaction. ACS Appl. Energy Mater. 2024, 8, acsaem.4c01292. [Google Scholar] [CrossRef]
- Cheng, T.; Chen, C.; Wen, M.; Pan, F.; Zhang, X.; Ma, H.; Hou, B.; Xin, X. Low-Cost Composite Electrodes by Active Fe3O4 (111) of Fly Ash Magnetic-Sphere for Efficient Electrochemical Overall Water Splitting. Int. J. Environ. Sci. Technol. 2025, 24, 1475–1496. [Google Scholar] [CrossRef]
- Shooshtari Gugtapeh, H.; Abbasi, M.; Hasanzadeh Moghadam, M.; Rezaei, M. Solvent-Exchange-Assisted Activation of Cu-1,4-Benzene Dicarboxylate Metal-Organic Framework for Use as a Bifunctional Water Splitting Electrocatalyst. Electrochim. Acta 2024, 508, 145224. [Google Scholar] [CrossRef]
- Rashid, U.; Zhu, Y.; Cao, C. Microwave Assisted Synthesis of Cobalt-Doped Copper Selenite Nanorice as Bifunctional Electrocatalyst for Overall Water Splitting. J. Electroanal. Chem. 2024, 962, 118267. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Wan, Z.; Wang, Z.; Gao, F.; Xuan, C. Nitrogen-Doped Carbon Nanotubes/Nanoparticles Confined Co/FeCo Composites with Metal-Nitrogen Sites for Efficient Multifunctional Electrocatalysis. J. Environ. Chem. Eng. 2024, 12, 114326. [Google Scholar] [CrossRef]
- Huang, C.; Zhan, G.; Xiao, Z.; Lin, S. Synergistic Dual-Functional Full Deionization and Electrocatalysis of Water by ZnO/Ti3C2Tx Heterojunction Supported with Novel Template. Next Mater. 2024, 5, 100267. [Google Scholar] [CrossRef]
- Zahid, R.; Abdul Karim, M.R.; Khan, F.S.; Zeb, G.; Marwat, M.A.; Khan, M.Z.; Gohar, O.; Haq, E.U. Catalytically Active Bimetallic Nickel–Cobalt MOF Linked Via Pyridine 2, 6-Dicarboxylate for Electrochemical Water Splitting Applications. Arab. J. Sci. Eng. 2025, 50, 6625–6637. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Yang, Y.; Pan, S.; Pan, W.; Tang, M.; Liu, K. Electronic Modulation of MOF-Derived CoxMnyB Nanosheet Arrays toward Efficient Bifunctional Electrocatalysts for Water Splitting. J. Electroanal. Chem. 2024, 970, 118553. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, Y.; Lv, T.; Tan, X.; Wang, Q.; Wang, Y.; Meng, C. Core-Shell Cobalt-Iron Silicide Electrocatalysts with Enhanced Bifunctional Performance in Hydrogen and Oxygen Evolution Reactions. J. Colloid Interface Sci. 2025, 682, 1–10. [Google Scholar] [CrossRef]
- Kang, H.; Liu, Y.; Wei, M.; Zhou, L.; Wang, C. Activating Spinel CoMn2O4 Supported on CNT via Zn Substitution for Bifunctional Oxygen Electrocatalysis. J. Alloys Compd. 2024, 1000, 175089. [Google Scholar] [CrossRef]
- Yu, T. FeNi/Ni2P Nanoparticles Encapsulated in Nitrogen-Doped Porous Carbon: Efficient Electrocatalysts for Oxygen Evolution Reaction. J. Mater. Sci. 2024, 59, 21710. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Song, Y.; Huang, Y.; Zhang, J.; Wu, S.; Zhang, W.; Wang, J.; Zhang, X. Facile One-Step Fabrication of 1T-Phase-Rich Bimetallic CoFe Co-Doped MoS2 Nanoflower: Synergistic Engineering for Bi-Functional Water Splitting Electrocatalysis. Molecules 2025, 30, 2343. https://doi.org/10.3390/molecules30112343
Li X, Song Y, Huang Y, Zhang J, Wu S, Zhang W, Wang J, Zhang X. Facile One-Step Fabrication of 1T-Phase-Rich Bimetallic CoFe Co-Doped MoS2 Nanoflower: Synergistic Engineering for Bi-Functional Water Splitting Electrocatalysis. Molecules. 2025; 30(11):2343. https://doi.org/10.3390/molecules30112343
Chicago/Turabian StyleLi, Xinyue, Yahui Song, Yiming Huang, Jihui Zhang, Siyu Wu, Wentao Zhang, Jin Wang, and Xian Zhang. 2025. "Facile One-Step Fabrication of 1T-Phase-Rich Bimetallic CoFe Co-Doped MoS2 Nanoflower: Synergistic Engineering for Bi-Functional Water Splitting Electrocatalysis" Molecules 30, no. 11: 2343. https://doi.org/10.3390/molecules30112343
APA StyleLi, X., Song, Y., Huang, Y., Zhang, J., Wu, S., Zhang, W., Wang, J., & Zhang, X. (2025). Facile One-Step Fabrication of 1T-Phase-Rich Bimetallic CoFe Co-Doped MoS2 Nanoflower: Synergistic Engineering for Bi-Functional Water Splitting Electrocatalysis. Molecules, 30(11), 2343. https://doi.org/10.3390/molecules30112343