Enhanced Photocatalytic CO2 Reduction with Incorporation of WO3 Cocatalyst in g-C3N4-TiO2 Heterojunction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterizations of WO3/g-C3N4-TiO2
2.2. CO2 Photoreduction Efficiencies
2.3. Insight into Increased Photocatalytic Activity
3. Materials and Methods
3.1. Materials
3.2. Material Preparation
3.3. Characterization
3.4. Photoreduction of CO2
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CT | g-C3N4-TiO2 |
WCT | WO3/g-C3N4-TiO2 |
References
- Wang, H.; Guo, Q.; Zhang, H.; Zuo, C. Developments and challenges on enhancement of photocatalytic CO2 reduction through photocatalysis. Carbon Resour. Convers. 2024, 7, 100263. [Google Scholar] [CrossRef]
- Fang, S.; Rahaman, M.; Bharti, J.; Reisner, E.; Robert, M.; Ozin, G.A.; Hu, Y.H. Photocatalytic CO2 reduction. Nat. Rev. Methods Primers. 2023, 3, 61. [Google Scholar] [CrossRef]
- Zhang, W.; Deng, C.; Wang, W.; Sheng, H.; Zhao, J. Achieving Almost 100% Selectivity in Photocatalytic CO2 Reduction to Methane via In-Situ Atmosphere Regulation Strategy. Adv. Mater. 2024, 36, 2405825. [Google Scholar] [CrossRef]
- Nahar, S.; Zain, M.F.M.; Kadhum, A.A.H.; Abu Hasan, H.; Hasan, R. Advances in photocatalytic CO2 reduction with water: A review. Materials 2017, 10, 629. [Google Scholar] [CrossRef] [PubMed]
- Ran, J.; Jaroniec, M.; Qiao, S.Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Tong, L.; Wang, Y.; Zhang, P.; Zhu, M.; Dong, H. Recent progress and challenges of photocatalytic CO2 conversion into value-added multi-carbon products. Coord. Chem. Rev. 2024, 502, 215623. [Google Scholar] [CrossRef]
- Fu, J.; Jiang, K.; Qiu, X.; Yu, J.; Liu, M. Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 2020, 32, 222–243. [Google Scholar] [CrossRef]
- Yin, S.; Sun, L.; Zhou, Y.; Li, X.; Li, J.; Song, X.; Huo, P.; Wang, H.; Yan, Y. Enhanced electron–hole separation in SnS2/Au/g-C3N4 embedded structure for efficient CO2 photoreduction. Chem. Eng. J. 2021, 406, 126776. [Google Scholar] [CrossRef]
- Yin, S.; Liu, Y.; Zhou, W.; Wang, H.; Song, X.; Wang, H.; Huo, P. Nanocluster-mediated electron–hole separation for efficient CO2 photoreduction. Chem. Eng. J. 2023, 477, 147292. [Google Scholar] [CrossRef]
- Low, J.; Cheng, B.; Yu, J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review. Appl. Surf. Sci. 2017, 392, 658–686. [Google Scholar] [CrossRef]
- Bonchio, M.; Bonin, J.; Ishitani, O.; Lu, T.-B.; Morikawa, T.; Morris, A.J.; Reisner, E.; Sarkar, D.; Toma, F.M.; Robert, M. Best practices for experiments and reporting in photocatalytic CO2 reduction. Nat. Catal. 2023, 6, 657–665. [Google Scholar] [CrossRef]
- Khan, M.D.; Fareed, I.; Farooq, M.U.H.; Akram, M.; Rehman, S.U.; Ali, Z.; Tariq, Z.; Irshad, M.; Li, C.; Butt, F.K. Methodologies for enriched photocatalytic CO2 reduction: An overview. Int. J. Environ. Sci. Technol. 2024, 21, 3489–3526. [Google Scholar] [CrossRef]
- Yang, J.; Wang, D.; Han, H.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909. [Google Scholar] [CrossRef] [PubMed]
- Shandilya, P.; Sambyal, S.; Sharma, R.; Mandyal, P.; Fang, B. Properties, optimized morphologies, and advanced strategies for photocatalytic applications of WO3 based photocatalysts. J. Hazard. Mater. 2022, 428, 128218. [Google Scholar] [CrossRef] [PubMed]
- Dutta, V.; Sharma, S.; Raizada, P.; Thakur, V.K.; Khan, A.A.P.; Saini, V.; Asiri, A.M.; Singh, P. An overview on WO3 based photocatalyst for environmental remediation. J. Environ. Chem. Eng. 2021, 9, 105018. [Google Scholar] [CrossRef]
- Tahir, B.; Tahir, M.; Nawawi, M.G.M. Highly stable 3D/2D WO3/g-C3N4 Z-scheme heterojunction for stimulating photocatalytic CO2 reduction by H2O/H2 to CO and CH4 under visible light. J. CO2 Util. 2020, 41, 101270. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, J.; Wei, Z.; Guo, Q.; Jin, H.; Wang, S. Recent advances in solar-driven CO2 reduction over g-C3N4-based photocatalysts. Carbon Energy 2023, 5, e205. [Google Scholar] [CrossRef]
- Ghosh, U.; Majumdar, A.; Pal, A. Photocatalytic CO2 reduction over g-C3N4 based heterostructures: Recent progress and prospects. J. Environ. Chem. Eng. 2021, 9, 104631. [Google Scholar] [CrossRef]
- Hussien, M.K.; Sabbah, A.; Qorbani, M.; Elsayed, M.H.; Raghunath, P.; Lin, T.-Y.; Quadir, S.; Wang, H.-Y.; Wu, H.-L.; Tzou, D.-L.M.; et al. Metal-free four-in-one modification of g-C3N4 for superior photocatalytic CO2 reduction and H2 evolution. Chem. Eng. J. 2022, 430, 132853. [Google Scholar] [CrossRef]
- Zhang, X.; Kim, D.; Yan, J.; Lee, L.Y.S. Photocatalytic CO2 reduction enabled by interfacial S-scheme heterojunction between ultrasmall copper phosphosulfide and g-C3N4. ACS Appl. Mater. Interfaces 2021, 13, 9762–9770. [Google Scholar] [CrossRef]
- Zhang, X. Layered g-C3N4/TiO2 nanocomposites for efficient photocatalytic water splitting and CO2 reduction: A review. Mater. Today Energy 2022, 23, 100904. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Chen, Z.; Li, J.; Li, X.; Huo, P.; Wang, Q. TiO2 modified g-C3N4 with enhanced photocatalytic CO2 reduction performance. Solid State Sci. 2020, 100, 106099. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, L.; Guo, Y.; Shen, M.; Wang, M.; Li, B.; Shi, J. Multifunctional 2D Porous g-C3N4 Nanosheets Hybridized with 3D Hierarchical TiO2 Micro-flowers for Selective Dye Adsorption, Antibiotic Degradation and CO2 Reduction. Chem. Eng. J. 2020, 396, 125347. [Google Scholar] [CrossRef]
- Ibrahim, Y.O.; Gondal, M.A. Visible-light-driven photocatalytic performance of a Z-scheme based TiO2/WO3/g-C3N4 ternary heterojunctions. Mol. Catal. 2021, 505, 111494. [Google Scholar] [CrossRef]
- Huo, Y.; Chang, Z.; Zhang, X.; Dong, B. Reuse of TiO2 from Waste SCR Catalyst to Synthesis g-C3N4/TiO2 for Photocatalytic CO2 Reduction. Waste Biomass Valoriz. 2024, 15, 6775–6785. [Google Scholar] [CrossRef]
- Saad, M.; Bahadur, A.; Iqbal, S.; Mahmood, S.; Tayyab, M.; Alshalwi, M.; Shah, M. Development of stable S-scheme 2D-2D g-C3N4/CdS nanoheterojunction arrays for enhanced visible light photomineralisation of nitrophenol priority water pollutants. Sci. Rep. 2024, 14, 2897. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, K.; Mane, G.P.; Rane, V.; Tripathi, A.K.; Tyagi, A.K. Selective CO2 photoreduction with Cu-doped TiO2 photocatalyst: Delineating the crucial role of Cu-oxidation state and oxygen vacancies. J. Phys. Chem. C 2021, 125, 1793–1810. [Google Scholar] [CrossRef]
- Raza, A.; Shen, H.; Haidry, A.A.; Sun, L.; Liu, R.; Cui, S. Studies of Z-scheme WO3-TiO2/Cu2ZnSnS4 ternary nanocomposite with enhanced CO2 photoreduction under visible light irradiation. J. CO2 Util. 2020, 37, 260–271. [Google Scholar] [CrossRef]
- Li, B.; Sun, L.; Bian, J.; Sun, N.; Sun, J.; Chen, L.; Li, Z.; Jing, L. Controlled synthesis of novel Z-scheme iron phthalocyanine/porous WO3 nanocomposites as efficient photocatalysts for CO2 reduction. Appl. Catal. B Environ. 2020, 270, 118849. [Google Scholar] [CrossRef]
- Linh, P.H.; Chung, P.D.; Van Khien, N.; Oanh, L.T.M.; Thu, V.T.; Bach, T.N.; Hang, L.T.; Hung, N.M.; Lam, V.D. A simple approach for controlling the morphology of g-C3N4 nanosheets with enhanced photocatalytic properties. Diam. Relat. Mater. 2021, 111, 108214. [Google Scholar] [CrossRef]
- He, F.; Zhu, B.; Cheng, B.; Cheng, B.; Yu, J.; Ho, W.; Macyk, W. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO₂ reduction activity. Appl. Catal. B Environ. 2020, 272, 119006. [Google Scholar] [CrossRef]
- Ekoi, E.; Gowen, A.; Dorrepaal, R.; Dowling, D. Characterisation of titanium oxide layers using Raman spectroscopy and optical profilometry: Influence of oxide properties. Results Phys. 2019, 12, 1574–1585. [Google Scholar] [CrossRef]
- Feng, J.; Dong, Y.; Yan, Y.; Zhao, W.; Yang, T.; Zheng, J.; Li, Z.; Wu, M. Extended lattice space of TiO2 hollow nanocubes for improved sodium storage. Chem. Eng. J. 2019, 373, 565–571. [Google Scholar] [CrossRef]
- Xu, A.; Zhang, Y.; Fan, H.; Liu, X.; Wang, F.; Qu, X.; Cao, J.; Wei, M. WO3 nanosheet/ZnIn2S4 S-scheme heterojunctions for enhanced CO2 photoreduction. ACS Appl. Nano Mater. 2024, 7, 3488–3498. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Wu, X.; Liu, Z.; Zhao, Z.; Liu, Y.; Dou, S.; Xiao, Y. Selective CO2 Photoreduction into CH4 Triggered by the Synergy between Oxygen Vacancy and Ru Substitution under Near-Infrared Light Irradiation. Adv. Sci. 2024, 11, 2405668. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Hu, Y.; Liu, X.; Li, J.; Liu, B. Visible-light-driven CO2 photoreduction over atomically strained indium sites in ambient air. Nat. Commun. 2025, 16, 2094. [Google Scholar] [CrossRef]
- Zhao, F.; Feng, Y.; Wang, Y.; Zhang, X.; Liang, X.; Li, Z.; Gong, J.; Feng, W. Two-dimensional gersiloxenes with tunable bandgap for photocatalytic H2 evolution and CO2 photoreduction to CO. Nat. Commun. 2020, 11, 1443. [Google Scholar] [CrossRef]
- Priyadharsan, A.; Vasanthakumar, V.; Shanavas, S.; Karthikeyan, S.; Anbarasan, P. Crumpled sheet like graphene based WO3-Fe2O3 nanocomposites for enhanced charge transfer and solar photocatalysts for environmental remediation. Appl. Surf. Sci. 2019, 470, 114–128. [Google Scholar] [CrossRef]
- Fu, M.; Liao, J.; Dong, F.; Li, H.; Liu, H. Growth of g-C3N4 Layer on Commercial TiO2 for Enhanced Visible Light Photocatalytic Activity. J. Nanomater. 2014, 2014, 869094. [Google Scholar] [CrossRef]
- Jiang, G.; Yang, X.; Wu, Y.; Li, Z.; Han, Y.; Shen, X. A study of spherical TiO2/g-C3N4 photocatalyst: Morphology, chemical composition and photocatalytic performance in visible light. Mol. Catal. 2017, 432, 232–241. [Google Scholar] [CrossRef]
- Kadi, M.W.; Mohamed, R.M. Increasing visible light water splitting efficiency through synthesis route and charge separation in measoporous g-C3N4 decorated with WO3 nanoparticles. Ceram. Int. 2019, 45, 3886–3893. [Google Scholar] [CrossRef]
- Mhalsekar, M.; Kole, P.; Borker, V. Synthesis, characterization and application of MWCNT/TiO2 composite for photocatalytic reduction of benzophenone to benzopinacol. J. Environ. Chem. Eng. 2024, 12, 114681. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X.; Fang, J.; Lu, C. TiO2@ g-C3N4 heterojunction with directional charge migration behavior for photodegradation of tetracycline antibiotics. Mater. Lett. 2019, 236, 622–624. [Google Scholar] [CrossRef]
- Yu, X.; Xie, J.; Liu, Q.; Dong, H.; Li, Y. The origin of enhanced photocatalytic activity in g-C3N4/TiO2 heterostructure revealed by DFT calculations. J. Colloid Interface Sci. 2021, 593, 133–141. [Google Scholar] [CrossRef]
- Fu, J.; Xu, Q.; Low, J.; Jiang, C.; Yu, J. Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl. Catal. B Environ. 2019, 243, 556–565. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, H.; Yang, P. Microstructure driven charge carrier separation in superior thin g-C3N4 nanosheets towards enhanced photocatalytic activities. Colloids Surf. A 2024, 689, 133759. [Google Scholar] [CrossRef]
- Alghasham, H.A.; Alzahrani, S.O.; Alfi, A.A.; Alkhamis, K.M.; Alaysuy, O.; Mogharbel, R.T.; Alkhatib, F.M.; El-Metwaly, N.M. TiO2-MWCNTs/PVDF: Photophysical properties, photocatalytic activity, and recycling in industrial effluent wastewater treatment by different photocatalytic sources. J. Water Process. Eng. 2024, 65, 105905. [Google Scholar] [CrossRef]
- Bo, Y.; Wang, H.; Lin, Y.; Yang, T.; Ye, R.; Li, Y.; Hu, C.; Du, P.; Hu, Y.; Liu, Z.; et al. Altering hydrogenation pathways in photocatalytic nitrogen fixation by tuning local electronic structure of oxygen vacancy with dopant. Angew. Chem. Int. Ed. 2021, 60, 16085–16092. [Google Scholar] [CrossRef]
- Xu, F.; He, Y.; Zhang, J.; Liang, G.; Liu, C.; Yu, J. Prolonging Charge Carrier Lifetime via Intraband Defect Levels in S-Scheme Heterojunctions for Artificial Photosynthesis. Angew. Chem. Int. Ed. 2025, 64, e202414672. [Google Scholar] [CrossRef]
- Tan, Y.; Shu, Z.; Zhou, J.; Li, T.; Wang, W.; Zhao, Z. One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution. Appl. Catal. B Environ. 2018, 230, 260–268. [Google Scholar] [CrossRef]
- Wang, L.; Hu, H.; Xu, J.; Zhu, S.; Ding, A.; Deng, C. WO3 nanocubes: Hydrothermal synthesis, growth mechanism, and photocatalytic performance. J. Mater. Res. 2019, 34, 2955–2963. [Google Scholar] [CrossRef]
Catalyst | CO Yield (μmol·g–1·h–1) | CH4 Yield (μmol·g–1·h–1) | Fold Increase in CH4 Production | AQE (%) | Ref. |
---|---|---|---|---|---|
Our work: WCT | 12.08 | 19.30 | >45 | 4.41 | This study |
WO3/ZnIn2S4 | 44.1 | 0 | 0 | 3.63 | [34] |
Ru@H-MoO3-x | 28.0 | 111.6 | 8.8 | 1.05 | [35] |
strained In2S3 | 99.25 | 11.0 | 2.11 | 0.45 | [36] |
(GeH)1–xSix(OH)0.5Hx–0.5 | 6.91 | 0 | 0 | 5.95 | [37] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huo, Y.; Wu, Z.; Yang, Y.; Dong, B.; Chang, Z. Enhanced Photocatalytic CO2 Reduction with Incorporation of WO3 Cocatalyst in g-C3N4-TiO2 Heterojunction. Molecules 2025, 30, 2317. https://doi.org/10.3390/molecules30112317
Huo Y, Wu Z, Yang Y, Dong B, Chang Z. Enhanced Photocatalytic CO2 Reduction with Incorporation of WO3 Cocatalyst in g-C3N4-TiO2 Heterojunction. Molecules. 2025; 30(11):2317. https://doi.org/10.3390/molecules30112317
Chicago/Turabian StyleHuo, Yiting, Zhen Wu, Yanhui Yang, Bin Dong, and Zhidong Chang. 2025. "Enhanced Photocatalytic CO2 Reduction with Incorporation of WO3 Cocatalyst in g-C3N4-TiO2 Heterojunction" Molecules 30, no. 11: 2317. https://doi.org/10.3390/molecules30112317
APA StyleHuo, Y., Wu, Z., Yang, Y., Dong, B., & Chang, Z. (2025). Enhanced Photocatalytic CO2 Reduction with Incorporation of WO3 Cocatalyst in g-C3N4-TiO2 Heterojunction. Molecules, 30(11), 2317. https://doi.org/10.3390/molecules30112317