Anti-Aging Efficacy of Fructosazine and Deoxyfructosazine: A Comprehensive In Vitro and In Vivo Analysis
Abstract
:1. Introduction
2. Results
2.1. Effects of Compound Treatments on Cell Viability
2.2. Effects of Compound Treatments on the Secretion of Col I, HA, and MMP-1 in Normal Cells
2.3. Effects of Compound Treatments on CAT Activity and MDA Content in Normal Cultured Cells
2.4. Effects of Compound Treatments on Cell Viability of Oxidatively Stressed Cells
2.5. Effects of Compound Treatments on ROS and MMP-1 Levels in Oxidatively Stressed Cells
2.6. Effects of Compound Treatments on SA-β-gal Expression and Cell Morphology in Oxidatively Stressed Cells
2.7. Effects of Compound Treatments on CAT Activity and MDA Content in Oxidatively Stressed Cells
2.8. Effects of Compound Treatments on Skin Morphology
2.9. Effects of Compound Treatments on Skin Collagen Fibers
2.10. Effects of Compound Treatments on Rat Skin Elastic Fibers
3. Discussion
4. Materials and Methods
4.1. Cell Culture and Oxidative Stress Model
4.2. Drug Treatment of Normal Cultured Cells and Oxidatively Damaged Cells
4.3. Cell Viability Assay
4.4. Measurement of Col I, HA, and MMP-1 Secretion
4.5. Measurement of Intracellular ROS Levels
4.6. Measurement of CAT Activity and MDA Content
4.7. Measurement of β-Galactosidase Expression
4.8. Animal Grouping and Drug Administration
4.9. Sample Collection and Processing
4.10. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FZ | Fructosazine |
DOF | Deoxyfructosazine |
NHDF | Normal human dermal fibroblast |
mtDNA | mitochondrial DNA |
PHAPs | Polyhydroxyalkylpyrazines |
ROS | Reactive oxygen species |
HA | Hyaluronic acid |
Col | Collagens |
MMP | Matrix metalloproteinase |
CAT | Catalase |
MDA | Malondialdehyde |
SA-β-Gal | Senescence-associated β-galactosidase |
HE | Hematoxylin-Eosin |
References
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef] [PubMed]
- Dyring-Andersen, B.; Løvendorf, M.B.; Coscia, F.; Santos, A.; Møller, L.B.P.; Colaço, A.R.; Niu, L.; Bzorek, M.; Doll, S.; Andersen, J.L.; et al. Spatially and cell-type resolved quantitative proteomic atlas of healthy human skin. Nat. Commun. 2020, 11, 5587. [Google Scholar] [CrossRef]
- Khavkin, J.; Ellis, D.A. Aging skin: Histology, physiology, and pathology. Facial Plast. Surg. Clin. N. Am. 2011, 19, 229–234. [Google Scholar] [CrossRef]
- Csekes, E.; Račková, L. Skin aging, cellular senescence and natural polyphenols. Int. J. Mol. Sci. 2021, 23, 12641. [Google Scholar] [CrossRef]
- Man, M.Q.; Xin, S.J.; Song, S.P.; Cho, S.Y.; Zhang, X.J.; Tu, C.X.; Feingold, K.R.; Elias, P.M. Variation of skin surface pH, sebum content and stratum corneum hydration with age and gender in a large Chinese population. Skin Pharmacol. Physiol. 2009, 22, 190–199. [Google Scholar] [CrossRef]
- Kohl, E.; Steinbauer, J.; Landthaler, M.; Szeimies, R.M. Skin ageing. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 873–884. [Google Scholar] [CrossRef] [PubMed]
- Watson, R.E.; Gibbs, N.K.; Griffiths, C.E.; Sherratt, M.J. Damage to skin extracellular matrix induced by UV exposure. Antioxid. Redox Signal. 2014, 21, 1063–1077. [Google Scholar] [CrossRef] [PubMed]
- Ansary, T.M.; Hossain, M.R.; Kamiya, K.; Komine, M.; Ohtsuki, M. Inflammatory molecules associated with ultraviolet radiation-mediated skin aging. Int. J. Mol. Sci. 2021, 22, 3974. [Google Scholar] [CrossRef]
- He, X.; Wan, F.; Su, W.; Xie, W. Research progress on skin aging and active ingredients. Molecules 2023, 28, 5556. [Google Scholar] [CrossRef]
- Kohen, R. Skin antioxidants: Their role in aging and in oxidative stress-new approaches for their evaluation. Biomed. Pharmacother. 1999, 53, 181–192. [Google Scholar] [CrossRef]
- Zhou, X.; Cao, Q.; Orfila, C.; Zhao, J.; Zhang, L. Systematic review and meta-analysis on the effects of Astaxanthin on human skin ageing. Nutrients 2021, 13, 2917. [Google Scholar] [CrossRef] [PubMed]
- Babizhayev, M.A.; Deyev, A.I.; Savel’yeva, E.L.; Lankin, V.Z.; Yegorov, Y.E. Skin beautification with oral non-hydrolized versions of carnosine and carcinine: Effective therapeutic management and cosmetic skincare solutions against oxidative glycation and free-radical production as a causal mechanism of diabetic complications and skin aging. J. Dermatolog. Treat. 2012, 23, 345–384. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jiang, Y.; Zhao, C. The effects of advanced glycation end-products on skin and potential anti-glycation strategies. Exp. Dermatol. 2024, 33, e15065. [Google Scholar] [CrossRef]
- Saini, R.; Dhiman, N.K. Natural anti-inflammatory and antiallergy agents: Herbs and botanical ingredients. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2022, 21, 90–114. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.N.; Wang, Y.; Jin, J.H.; Yang, Z.; Guo, R.X.; Li, X.; Yang, L.; Li, Z. Resveratrol treats UVB- induced photoaging by anti-MMP expression, through anti-inflammatory, antioxidant, and antiapoptotic properties, and treats photoaging by upregulating VEGF-B expression. Oxid. Med. Cell. Longev. 2022, 2022, 6037303. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; He, T.; Fisher, G.J.; Voorhees, J.J.; Quan, T. Molecular basis of retinol anti-ageing properties in naturally aged human skin in vivo. Int. J. Cosmet. Sci. 2017, 39, 56–65. [Google Scholar] [CrossRef]
- Chae, M.; Moon, C.Y.; Lim, S.H.; Yamashita, Y.; Yamada, H.; Ide, M.; Park, C.W.; Roh, J.; Kim, W. Oral ingestion of AP collagen peptide leads to systemic absorption of Gly-Pro-Hyp, alleviating HO-induced dermal fibroblast aging. J. Med. Food 2023, 26, 299–306. [Google Scholar] [CrossRef]
- Pineau, N.; Carrino, D.A.; Caplan, A.I.; Breton, L. Biological evaluation of a new C-xylopyranoside derivative (C-Xyloside) and its role in glycosaminoglycan biosynthesis. Eur. J. Dermatol. 2011, 21, 359–370. [Google Scholar] [CrossRef]
- Tsuchida, H.; Morinaka, K.; Fujii, S.; Komoto, M.; Mizuno, S. Identification of novel non-volatile pyrazines in commercial caramel colors. Dev. Food Sci. 1986, 13, 85–94. [Google Scholar]
- Tsuchida, H.; Komoto, M.; Mizuno, S. Isolation and identification of polyhydroxyalkylpyrazines in soy sauce. J. Jpn. Soc. Food. Sci. 1990, 37, 154–161. [Google Scholar] [CrossRef]
- Magaletta, R.L.; Ho, C.T. Effect of roasting time and temperature on the generation of nonvolatile (polyhydroxyalkyl)pyrazine compounds in peanuts, as determined by high-performance liquid chromatography. J. Agric. Food. Chem. 1996, 44, 2629–2635. [Google Scholar] [CrossRef]
- Sherif, M.M.; Elshikh, H.H.; Abdel-Aziz, M.M.; Elaasser, M.M.; Yosri, M. In vitro antibacterial and phytochemical screening of hypericum perforatum extract as potential antimicrobial agents against multi-drug-resistant (MDR) strains of clinical origin. Biomed. Res. Int. 2023, 2023, 6934398. [Google Scholar] [CrossRef] [PubMed]
- Hrynets, Y.; Bhattacherjee, A.; Ndagijimana, M.; Hincapie Martinez, D.J.; Betti, M. Iron (Fe2+)-catalyzed glucosamine browning at 50 °C: Identification and quantification of major flavor compounds for antibacterial activity. J. Agric. Food. Chem. 2016, 64, 3266–3275. [Google Scholar] [CrossRef]
- Sumoto, K.; Irie, M.; Mibu, N.; Miyano, S.; Nakashima, Y.; Watanabe, K.; Yamaguchi, T. Formation of pyrazine derivatives from D-glucosamine and their deoxyribonucleic acid (DNA) strand breakage activity. Chem. Pharm. Bull. 1991, 39, 792–794. [Google Scholar] [CrossRef]
- Zhu, A.; Huang, J.B.; Clark, A.; Romero, R.; Petty, H.R. 2,5-Deoxyfructosazine, a D-glucosamine derivative, inhibits T-cell interleukin-2 production better than D-glucosamine. Carbohydr. Res. 2007, 342, 2745–2749. [Google Scholar] [CrossRef] [PubMed]
- Bashiardes, G.; Carry, J.C.; Evers, M.; Filoche, B.; Mignani, S. Preparation of Polyhydroxyalkylpyrazine Sugars as Hypoglycemic Agents. WO9903842, 28 January 1999. [Google Scholar]
- Jiang, D.N.; Li, Y.Q.; Guo, X.H.; Li, G.Z.; Wang, S.S.; Zhao, W.J. Synthesis and anti-aging evaluation of fructosazine. Fine Chem. 2021, 38, 1644–1649. [Google Scholar] [CrossRef]
- Lee, H.; Hong, Y.; Kim, M. Structural and functional changes and possible molecular mechanisms in aged skin. Int. J. Mol. Sci. 2021, 22, 12489. [Google Scholar] [CrossRef] [PubMed]
- Bukhari, S.N.A.; Roswandi, N.L.; Waqas, M.; Habib, H.; Hussain, F.; Khan, S.; Sohail, M.; Ramli, N.A.; Thu, H.E.; Hussain, Z. Hyaluronic acid, a promising skin rejuvenating biomedicine: A review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects. Int. J. Biol. Macromol. 2018, 120, 1682–1695. [Google Scholar] [CrossRef]
- Li, F.; Zhi, J.; Zhao, R.; Sun, Y.; Wen, H.; Cai, H.; Chen, W.; Jiang, X.; Bai, R. Discovery of matrix metalloproteinase inhibitors as anti-skin photoaging agents. Eur. J. Med. Chem. 2024, 267, 116152. [Google Scholar] [CrossRef]
- Baker, A.; Lin, C.C.; Lett, C.; Karpinska, B.; Wright, M.H.; Foyer, C.H. Catalase: A critical node in the regulation of cell fate. Free Radic. Biol. Med. 2023, 199, 56–66. [Google Scholar] [CrossRef]
- Paculová, V.; Prasad, A.; Sedlářová, M.; Pospíšil, P. Oxidative modification of collagen by malondialdehyde in porcine skin. Arch. Biochem. Biophys. 2023, 752, 109850. [Google Scholar] [CrossRef]
- Villalpando-Rodriguez, G.E.; Gibson, S.B. Reactive oxygen species (ROS) regulates different types of cell death by acting as a rheostat. Oxid. Med. Cell. Longev. 2021, 2021, 9912436. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Won, G.W.; Choi, S.H.; Kim, M.Y.; Oh, C.H.; Park, J.T.; Park, J.I. Antiaging effect of inotodiol on oxidative stress in human dermal fibroblasts. Biomed. Pharmacother. 2022, 153, 113311. [Google Scholar] [CrossRef]
- Rinnerthaler, M.; Bischof, J.; Streubel, M.K.; Trost, A.; Richter, K. Oxidative stress in aging human skin. Biomolecules 2015, 5, 545–589. [Google Scholar] [CrossRef] [PubMed]
- Dimri, G.P.; Lee, X.; Basile, G.; Acosta, M.; Scott, G.; Roskelley, C.; Medrano, E.E.; Linskens, M.; Rubelj, I.; Pereira-Smith, O. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 1995, 92, 9363–9367. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.W.; Kwon, S.H.; Choi, J.Y.; Na, J.I.; Huh, C.H.; Choi, H.R.; Park, K.C. Molecular mechanisms of dermal aging and antiaging approaches. Int. J. Mol. Sci. 2019, 20, 2126. [Google Scholar] [CrossRef]
- Starcher, B.; Aycock, R.L.; Hill, C.H. Multiple roles for elastic fibers in the skin. J. Histochem. Cytochem. 2005, 53, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Dalko, M.; Breton, L. C-Glycoside Compounds for Stimulating the Synthesis of Glycosaminoglycans. U.S. Patent 7,049,300, 23 May 2006. [Google Scholar]
- Jeong, J.H.; Kim, M.B.; Kim, C.; Hwang, J.K. Inhibitory effect of vitamin C on intrinsic aging in human dermal fibroblasts and hairless mice. Food Sci. Biotechnol. 2017, 27, 555–564. [Google Scholar] [CrossRef]
- Rattanawiwatpong, P.; Wanitphakdeedecha, R.; Bumrungpert, A.; Maiprasert, M. Anti-aging and brightening effects of a topical treatment containing vitamin C, vitamin E, and raspberry leaf cell culture extract: A split-face, randomized controlled trial. J. Cosmet. Dermatol. 2020, 19, 671–676. [Google Scholar] [CrossRef]
- Cho, S.Y.; Kim, A.Y.; Kim, J.; Choi, D.H.; Son, E.D.; Shin, D.W. Oxytocin alleviates cellular senescence through oxytocin receptor-mediated extracellular signal-regulated kinase/Nrf2 signalling. Br. J. Dermatol. 2019, 181, 1216–1225. [Google Scholar] [CrossRef]
- Cicchetti, E.; Duroure, L.; Le Borgne, E.; Laville, R. Upregulation of skin-aging biomarkers in aged nhdf cells by a sucrose ester extract from the agroindustrial waste of physalis peruviana calyces. J. Nat. Prod. 2018, 81, 1946–1955. [Google Scholar] [CrossRef] [PubMed]
- Pinho, S.A.; Oliveira, P.J.; Cunha-Oliveira, T. Heterogeneous redox responses in nhdf cells primed to enhance mitochondrial bioenergetics. BBA—Mol. Basis Dis. 2024, 1871, 167495. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.H. Prostaglandin E2 induces skin aging via E-prostanoid 1 in normal human dermal fibroblasts. Int. J. Mol. Sci. 2019, 20, 5555. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, A.; Ma, C.; Song, Q.; Li, W.; Lv, S.; Guo, X.; Wang, S.; Gao, Z.; Wang, S.; Meng, Q.; et al. Anti-Aging Efficacy of Fructosazine and Deoxyfructosazine: A Comprehensive In Vitro and In Vivo Analysis. Molecules 2025, 30, 2263. https://doi.org/10.3390/molecules30112263
Yang A, Ma C, Song Q, Li W, Lv S, Guo X, Wang S, Gao Z, Wang S, Meng Q, et al. Anti-Aging Efficacy of Fructosazine and Deoxyfructosazine: A Comprehensive In Vitro and In Vivo Analysis. Molecules. 2025; 30(11):2263. https://doi.org/10.3390/molecules30112263
Chicago/Turabian StyleYang, Ao, Chunyan Ma, Qiling Song, Wenhui Li, Shixuan Lv, Xiuhan Guo, Shisheng Wang, Zhigang Gao, Shuai Wang, Qingwei Meng, and et al. 2025. "Anti-Aging Efficacy of Fructosazine and Deoxyfructosazine: A Comprehensive In Vitro and In Vivo Analysis" Molecules 30, no. 11: 2263. https://doi.org/10.3390/molecules30112263
APA StyleYang, A., Ma, C., Song, Q., Li, W., Lv, S., Guo, X., Wang, S., Gao, Z., Wang, S., Meng, Q., & Li, Y. (2025). Anti-Aging Efficacy of Fructosazine and Deoxyfructosazine: A Comprehensive In Vitro and In Vivo Analysis. Molecules, 30(11), 2263. https://doi.org/10.3390/molecules30112263