Waste Biomass-Mediated Synthesis of TiO2/P, K-Containing Grapefruit Peel Biochar Composites with Enhanced Photocatalytic Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Composition Analysis of Prepared Samples
2.2. Structural Analysis of Prepared Samples
2.3. Surface Elemental Analysis of Prepared Samples
2.4. Morphological Analysis of Prepared Samples
2.5. The Formation Mechanism of TiO2/P, K-PC Composites
2.6. Photovoltaic Performance Analysis of Prepared Samples
2.7. The Photocatalytic Performance of TiO2/P, K-PC Composites
2.8. Photocatalytic Mechanism Research
3. Materials and Methods
3.1. Materials
3.2. Preparation of TiO2/P, K-PC Composites
3.3. Photocatalytic Performance Test
3.4. Sample Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, L.; Zhang, Q.Q.; Niu, C.; Wang, H.W. Spatiotemporal Patterns in River Water Quality and Pollution Source Apportionment in the Arid Beichuan River Basin of Northwestern China Using Positive Matrix Factorization Receptor Modeling Techniques. Int. J. Environ. Res. Public Health 2020, 17, 5015. [Google Scholar] [CrossRef]
- Bidu, J.M.; Van der Bruggen, B.; Rwiza, M.J.; Njau, K.N. Current status of textile wastewater management practices and effluent characteristics in Tanzania. Water Sci. Technol. 2021, 83, 2363–2376. [Google Scholar] [CrossRef] [PubMed]
- Han, T.X.; Zheng, J.J.; Han, Y.T.; Xu, X.Y.; Li, M.Y.; Schwarz, C.; Zhu, L.Z. Comprehensive insights into core microbial assemblages in activated sludge exposed to textile-dyeing wastewater stress. Sci. Total Environ. 2021, 791, 148145. [Google Scholar] [CrossRef] [PubMed]
- Al-Tohamy, R.; Ali, S.S.; Li, F.H.; Okasha, K.M.; Mahmoud, Y.A.G.; Elsamahy, T.; Jiao, H.X.; Fu, Y.Y.; Sun, J.Z. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Wu, J.J.; Liu, J.; Wen, B.Y.; Li, Y.P.; Zhou, B.H.; Wang, Z.P.; Yang, S.H.; Zhao, R.S. Nitrogen-rich covalent triazine frameworks for high-efficient removal of anion dyes and the synergistic adsorption of cationic dyes. Chemosphere 2021, 272, 129622. [Google Scholar] [CrossRef] [PubMed]
- Rahman, H.A.; Jusoh, N.; Othman, N.; Rosly, M.B.; Sulaiman, R.N.R.; Noah, N.F.M. Green formulation for synthetic dye extraction using synergistic mixture of acid-base extractant. Sep. Purif. Technol. 2019, 209, 293–300. [Google Scholar] [CrossRef]
- Varjani, S.; Rakholiya, P.; Ng, H.Y.; You, S.M.; Teixeira, J.A. Microbial degradation of dyes: An overview. Bioresour. Technol. 2020, 314, 123728. [Google Scholar] [CrossRef]
- Sajna, M.S.; Simon, S.M.; Unnikrishnan, N.V.; Sadasivuni, K.K. An overview of graphene-based 2D/3D nanostructures for photocatalytic applications. Top. Catal. 2022, 64, 1–25. [Google Scholar] [CrossRef]
- Chairungsri, W.; Subkomkaew, A.; Kijjanapanich, P.; Chimupala, Y. Direct dye wastewater photocatalysis using immobilized titanium dioxide on fixed substrate. Chemophere 2022, 286, 131762. [Google Scholar] [CrossRef]
- Zhang, W.; He, H.L.; Li, H.Z.; Duan, L.L.; Zu, L.H.; Zhai, Y.P.; Li, W.; Wang, L.Z.; Fu, H.G.; Zhao, D.Y. Visible-light responsive TiO2-based materials for efficient solar energy utilization. Adv. Energy Mater. 2020, 11, 2003303. [Google Scholar] [CrossRef]
- Xie, Y.F.; Liu, A.; Bandala, E.R.; Goonetilleke, A. TiO2-biochar composites as alternative photocatalyst for stormwater disinfection. J. Water Process Eng. 2022, 48, 102913. [Google Scholar] [CrossRef]
- Cai, J.J.; Zhou, M.H.; Xu, X.; Du, X.D. Stable boron and cobalt co-doped TiO2 nanotubes anode for efficient degradation of organic pollutants. J. Hazard. Mater. 2020, 396, 122723. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.Z.; Chen, L.Y.; Ma, R.J.; Tomovska, R.; Luo, X.; Xie, X.L.; Su, T.M.; Ji, H.B. TiO2/BiYO3 composites for enhanced photocatalytic hydrogen production. J. Alloys Compd. 2020, 836, 155428. [Google Scholar] [CrossRef]
- Cheng, H.G.; Song, H.P.; Toan, S.; Wang, B.F.; Gasem, K.A.M.; Fan, M.H.; Cheng, F.Q. Experimental investigation of CO2 adsorption and desorption on multi-type amines loaded HZSM-5 zeolites. Chem. Eng. J. 2021, 406, 126882. [Google Scholar] [CrossRef]
- Zhou, Z.L.; Li, B.; Liu, X.M.; Li, Z.Y.; Zhu, S.L.; Liang, Y.Q.; Cui, Z.D.; Wu, S.L. Recent progress in photocatalytic antibacterial. ACS Appl. Bio Mater. 2021, 4, 3909–3936. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Deng, L.; Sun, C.C.; Li, J.Q.; Zhu, Z.F. Titanium dioxide encapsulation of supported Ag nanoparticles on the porous silica bead for increased photocatalytic activity. Appl. Surf. Sci. 2015, 326, 82–90. [Google Scholar] [CrossRef]
- Khammar, S.; Bahramifar, N.; Younesi, H. Preparation and surface engineering of CM-β-CD functionalized Fe3O4@TiO2 nanoparticles for photocatalytic degradation of polychlorinated biphenyls (PCBs) from transformer oil. J. Hazard. Mater. 2020, 394, 122422. [Google Scholar] [CrossRef]
- Moon, J.T.; Lee, S.K.; Joo, J.B. Controllable one-pot synthesis of uniform colloidal TiO2 particles in a mixed solvent solution for photocatalysis. Beilstein J. Nanotechnol. 2018, 9, 1715–1727. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Cai, Y.W.; Zhang, S.; Zhuang, L.; Hu, B.W.; Wang, S.H.; Chen, J.R.; Wang, X.K. Application of biochar-based photocatalysts for adsorption-(photo) degradation/reduction of environmental contaminants: Mechanism, challenges and perspective. Biochar 2022, 4, 45. [Google Scholar] [CrossRef]
- Mishra, R.K.; Mohanty, K. A review of the next-generation biochar production from waste biomass for material applications. Sci. Total Environ. 2023, 904, 167171. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Chen, K.D.; Zhang, J.C.; Huang, K.Z.; Liang, Y.H.; Hu, H.W.; Xu, X.J.; Chen, D.C.; Chang, M.L.; Wang, Y.Z. Dense and uniform growth of TiO2 nanoparticles on the pomelo-peel-derived biochar surface for efficient photocatalytic antibiotic degradation. J. Environ. Chem. Eng. 2023, 11, 109358. [Google Scholar] [CrossRef]
- Thuan, D.V.; Chu, T.T.H.; Thanh, H.D.H.; Le, M.V.; Ngo, H.L.; Le, C.L.; Thi, H.P. Adsorption and photodegradation of micropollutant in wastewater by photocatalyst TiO2/rice husk biochar. Environ. Res. 2023, 236, 116789. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.H.; Chen, H.Y.; Lu, L.L.; Shan, R.; Zhang, Y.Y.; Yuan, H.R.; Chen, Y. Nitrogen-Doped TiO2/Nitrogen-Containing Biochar Composite Catalyst as a Photocatalytic Material for the Decontamination of Aqueous Organic Pollutants. ACS Omega 2023, 8, 791–803. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.L.; He, Y. Optimal ranges of variables for an effective adsorption of lead (II) by the agricultural waste pomelo (citrus grandis) peels using Doehlert designs. Sci. Rep. 2018, 8, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.Z.; Xie, S.S.; Chen, C.Q.; Quan, H.Y.; Hua, L.; Luo, X.B.; Guo, L. Activated biochar derived from pomelo peel as a high-capacity sorbent for removal of carbamazepine from aqueous solution. RSC Adv. 2017, 7, 54969–54979. [Google Scholar] [CrossRef]
- Nu, T.T.V.; Tran, N.H.T.; Truong, P.L.; Phan, B.T.; Dinh, M.T.N.; Dinh, V.P.; Phan, T.S.; Chang, S.G.M.; Trinh, K.T.L.; Tran, V.V. Green synthesis of microalgae-based carbon dots for decoration of TiO2 nanoparticles in enhancement of organic dye photodegradation. Environ. Res. 2022, 206, 112631. [Google Scholar] [CrossRef] [PubMed]
- Ramamoorthy, M.; Ragupathy, S.; Sakthi, D.; Arun, V.; Kannadasan, N. Synthesis of SnO2 loaded on corn cob activated carbon for enhancing the photodegradation of methylene blue under sunlight irradiation. J. Environ. Chem. Eng. 2020, 8, 104331. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Gu, D.; Zhu, L.Y.; Wang, B.H. Highly ordered Fe3+/TiO2 nanotube arrays for efficient photocataltyic degradation of nitrobenzene. Appl. Surf. Sci. 2017, 420, 896–904. [Google Scholar] [CrossRef]
- Raju, K.; Rajendran, S.; Hoang, T.K.A.; Durgalakshmi, D.; Qin, J.Q.; Diaz-Droguett, D.E.; Gracia, F.; Gracia-Pinilla, M.A. Photosynthesis of H2 and its storage on the band gap engineered mesoporous (Ni2+/Ni3+)O@TiO2 heterostructure. J. Power Sources 2020, 466, 228305. [Google Scholar] [CrossRef]
- Ratso, S.; Kruusenberg, I.; Käärik, M.; Kook, M.; Saar, R.; Pärs, M.; Leis, J.; Tammeveski, K. Highly efficient nitrogen-doped carbide-derived carbon materials for oxygen reduction reaction in alkaline media. Carbon 2017, 113, 159–169. [Google Scholar] [CrossRef]
- Oschatz, M.; Boukhalfa, S.; Nickel, W.; Hofmann, J.P.; Fischer, C.; Yushin, G.; Kaskel, S. Carbide-derived carbon aerogels with tunable pore structure as versatile electrode material in high power supercapacitors. Carbon 2017, 113, 283–291. [Google Scholar] [CrossRef]
- Xiao, J.; Pan, Z.C.; Zhang, B.; Liu, G.; Zhang, H.C.; Song, X.F.; Hu, G.H.; Xiao, C.M.; Wei, Z.G.; Zheng, Y.Y. The research of photocatalytic activity on Si doped TiO2 nanotubes. Mater. Lett. 2017, 188, 66–68. [Google Scholar] [CrossRef]
- Bharti, B.; Kumar, S.; Lee, H.N.; Kumar, R. Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Sci. Rep. 2016, 6, 32355. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.Q.; Zhang, G.S.; Cui, H.H.; Wei, N.; Song, X.J.; Li, J.; Tian, J. Porous TiB2-TiC/TiO2 heterostructures: Synthesis and enhanced photocatalytic properties from nanosheets to sweetened rolls. Appl. Catal. B Environ. 2017, 217, 12–20. [Google Scholar] [CrossRef]
- Abdullah, S.A.; Sahdan, M.Z.; Nayan, N.; Embong, Z.; Hak, C.R.C.; Adriyanto, F. Neutron beam interaction with rutile TiO2 single crystal (1 1 1): Raman and XPS study on Ti3+-oxygen vacancy formation. Mater. Lett. 2020, 263, 127143. [Google Scholar] [CrossRef]
- Chen, W.; Fang, Y.; Li, K.X.; Chen, Z.Q.; Xia, M.W.; Gong, M.; Chen, Y.Q.; Yang, H.P.; Tu, X.; Chen, H.P. Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products. Appl. Energy 2020, 260, 114242. [Google Scholar] [CrossRef]
- Kalantari, K.; Kalbasi, M.; Sohrabi, M.; Royaeee, S.J. Enhancing the photocatalytic oxidation of dibenzothiophene using visible light responsive Fe and N co-doped TiO2 nanoparticles. Ceram. Int. 2017, 43, 973–981. [Google Scholar] [CrossRef]
- Qian, M.; Xu, F.; Bi, H.; Lin, T.Q.; Huang, F.Q. Facile sol-gel method combined with chemical vapor deposition for mesoporous few-layer carbon. Carbon 2017, 112, 47–52. [Google Scholar] [CrossRef]
- Gao, F.; Zeng, Y.Q.; Zhang, S.; Zhong, Z.Z. Oxalic acid-mediated regeneration strategy and mechanism of phosphorus poisoned CeO2/TiO2 catalysts for selective catalytic reduction of NOx with NH3. J. Environ. Chem. 2024, 1, 111792. [Google Scholar] [CrossRef]
- Zhao, S.; Ji, Y.; Jeong, M.; Choe, H.; Lee, J.W.; Kim, S.Y.; Saqlain, S.; Peng, Z.K.; Liu, Z.Y.; Kim, Y.D. Enhanced photocatalytic activity of TiO2 by K incorporation towards acetaldehyde and NO oxidation: The role of K single-ion dopants and additional K-compound structures. Chem. Eng. J. 2022, 444, 136500. [Google Scholar] [CrossRef]
- Ibragic, S.; Smjecanin, N.; Milusic, R.; Nuhanovic, M. Pomelo peel and sugar beet pulp as novel biosorbents in purification of biodiesel. Biofuels 2021, 8, 755–762. [Google Scholar] [CrossRef]
- Yavari, R.; Asadollahi, N.; Mohsen, M.A. Preparation, characterization and evaluation of a hybrid material based on multiwall carbon nanotubes and titanium dioxide for the removal of thorium from aqueous solution. Prog. Nucl. Energy 2017, 100, 183–191. [Google Scholar] [CrossRef]
- Huang, F.; Rad, A.T.; Zheng, W.; Nieh, M.P.; Cornelius, C.J. Hybrid organic-inorganic 6FDA-6pFDA and multi-block 6FDA-DABA polyimide SiO2-TiO2 nanocomposites: Synthesis, FFV, FTIR, swelling, stability, and X-ray scattering. Polymer 2017, 108, 105–120. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, H.; Liu, S.; Zhang, B.; Zhu, H.; Chen, H.; Wen, B.; Chen, L. Preparation of TiO2-graphitized carbon composite photocatalyst and their degradation properties for tetracycline antibiotics. J. Mol. Struct. 2022, 1270, 133897. [Google Scholar] [CrossRef]
- Fazal, T.; Razzaq, A.; Javed, F.; Hafeez, A.; Rashid, N.; Amjad, U.S.; Rehman, M.S.U.; Faisal, A.; Rehman, F. Integrating adsorption and photocatalysis: A cost effective strategy for textile wastewater treatment using hybrid biochar-TiO2 composite. J. Hazard. Mater. 2020, 390, 121623. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; He, X.; Gao, Z.; Xue, Y.; Chen, X.; Zhang, L. Synthesis and characterization of Ni-doped anatase TiO2 loaded on magnetic activated carbon for rapidly removing triphenylmethane dyes. Environ. Sci. Pollut. Res. 2021, 28, 3475–3483. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Peng, J.J.; Song, Y.B.; Chen, Y.W.; Lu, F.S.; Gao, W.H. Porous hollow carbon nanobubbles@ZnCdS multi-shelled dodecahedral cages with enhanced visible-light harvesting for ultrasensitive photoelectrochemical biosensors. Biosens. Bioelectron. 2019, 133, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.C.; Cazetta, A.L.; Pezoti, O.; Souza, J.R.B.; Zhang, T.; Pilau, E.J.; Asefa, T.; Almeida, V.C. Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline. Ceram. Int. 2017, 43, 4411–4418. [Google Scholar] [CrossRef]
- Wang, X.B.; Yan, Y.; Hao, B.; Chen, G. Biomimetic layer-by-layer deposition assisted synthesis of Cu, N co-doped TiO2 nanosheets with enhanced visible light photocatalytic performance. Dalton Trans. 2014, 43, 14054–14060. [Google Scholar] [CrossRef]
- Shen, G.D. Preparation of BiOBr-Based Composite Photocatalytic Materials and Their Degradation of Dyeing Wastewater. Ph.D. Thesis, Shanxi University of Science and Technology, Xi’an, China, November 2019. [Google Scholar]
- Belghiti, M.; Tanji, K.; Mersly, L.E.; Lamsayety, I.; Ouzaouit, K.; Faqir, H.; Benzakour, I.; Rafqah, S.; Outzourhit, A. Fast and non-selective photodegradation of basic yellow 28, malachite green, tetracycline, and sulfamethazine using a nanosized ZnO synthesized from zinc ore. React. Kinet. Mech. Catal. 2022, 135, 2265–2278. [Google Scholar] [CrossRef]
- Peñas-Garzón, M.; Gómez-Avilés, A.; Bedia, J.; Rodriguez, J.J.; Belver, C. Effect of activating agent on the properties of TiO2/activated carbon heterostructures for solar photocatalytic degradation of acetaminophen. Materials 2019, 12, 378. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Silva, J.M.; Aguilar-Aguilar, A.; Labrada-Delgado, G.J.; Villabona-Leal, E.G.; Ojeda-Galvan, H.J.; Sánchez-García, J.L.; Collins-Martinez, H.; Lopez-Ramon, M.V.; Ocampo-Perez, R. Hydrothermal synthesis of a photocatalyst based on Byrsonima crassifolia and TiO2 for degradation of crystal violet by UV and visible radiation. Environ. Res. 2023, 231, 116280. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, S.N.; Ren, H.Y.; Cao, G.L.; Xie, G.J.; Xing, D.F.; Ren, N.Q. Highly efficient activation of persulfate by encapsulated nano-Fe0 biochar for acetaminophen degradation: Rich electron environment and dominant effect of superoxide radical. Chem. Eng. J. 2022, 440, 135947. [Google Scholar] [CrossRef]
- Li, Z.H.; Bai, H.; Wei, J.L.; Wang, J.J.; Kong, L.L.; Wang, X.; Xia, X.D.; Duan, J.Y. One-step synthesis of melamine-sponge functionalized carbon nitride for excellent water sterilization via photogenerated holes and photothermal conversion. J. Colloid Interface Sci. 2022, 610, 893–904. [Google Scholar] [CrossRef]
- Yang, J.; Dai, J.; Chen, C.C.; Zhao, J.C. Effects of hydroxyl radicals and oxygen species on the 4-chlorophenol degradation by photoelectrocatalytic reactions with TiO2-film electrodes. J. Photochem. Photobiol. A 2009, 208, 66–77. [Google Scholar] [CrossRef]
- Yan, Y.; Tang, X.; Ma, C.C.; Huang, H.; Yu, K.S.; Liu, Y.; Lu, Z.Y.; Li, C.X.; Zhu, Z.; Huo, P.W. A 2D mesoporous photocatalyst constructed by the modification of biochar on BiOCl ultrathin nanosheets for enhancing the TC-HCl degradation activity. New J. Chem. 2020, 44, 79–86. [Google Scholar] [CrossRef]
- Zhang, P.; Tan, H.; Wang, Z.; Lyu, L.; Hu, C. Efficient H2O2 dissociation and formation on zinc chalcogenides: A density functional theory study. Appl. Surf. Sci. 2023, 616, 156495. [Google Scholar] [CrossRef]
Materials | Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Average Pore Diameter (nm) |
---|---|---|---|
PCT-0-550 | 69.40 | 0.11 | 11.9 |
PCT-300-550 | 81.27 | 0.17 | 12.0 |
PCT-350-550 | 86.73 | 0.17 | 12.2 |
PCT-400-550 | 103.84 | 0.24 | 15.4 |
PCT-450-550 | 99.80 | 0.22 | 14.5 |
PCT-500-550 | 95.79 | 0.19 | 13.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, R.; Liu, W.; Bai, R.; Zheng, D.; Tian, X.; Lin, W.; Ke, Q.; Li, L. Waste Biomass-Mediated Synthesis of TiO2/P, K-Containing Grapefruit Peel Biochar Composites with Enhanced Photocatalytic Activity. Molecules 2024, 29, 2090. https://doi.org/10.3390/molecules29092090
Wu R, Liu W, Bai R, Zheng D, Tian X, Lin W, Ke Q, Li L. Waste Biomass-Mediated Synthesis of TiO2/P, K-Containing Grapefruit Peel Biochar Composites with Enhanced Photocatalytic Activity. Molecules. 2024; 29(9):2090. https://doi.org/10.3390/molecules29092090
Chicago/Turabian StyleWu, Ruixiang, Wenhua Liu, Renao Bai, Delun Zheng, Xiufang Tian, Weikai Lin, Qianwei Ke, and Lejian Li. 2024. "Waste Biomass-Mediated Synthesis of TiO2/P, K-Containing Grapefruit Peel Biochar Composites with Enhanced Photocatalytic Activity" Molecules 29, no. 9: 2090. https://doi.org/10.3390/molecules29092090
APA StyleWu, R., Liu, W., Bai, R., Zheng, D., Tian, X., Lin, W., Ke, Q., & Li, L. (2024). Waste Biomass-Mediated Synthesis of TiO2/P, K-Containing Grapefruit Peel Biochar Composites with Enhanced Photocatalytic Activity. Molecules, 29(9), 2090. https://doi.org/10.3390/molecules29092090