Green Approach to Enhance the Recovery of Polyphenols from Blackcurrant and Bilberry Leaves: Evaluation of Microwave-Assisted and Pressurized Liquid Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Effect of MAE and PLE Parameters on the Total Phenolic Yield from Blackcurrant and Bilberry Leaves
2.2. Profiling of the Optimized MAE and PLE Extracts of Blackcurrant and Bilberry Leaves
2.3. Antioxidant Capacity of the Optimized MAE and PLE Extracts of Blackcurrant and Bilberry Leaves
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals and Reagents
3.3. Extractions
3.3.1. MAE
3.3.2. PLE
3.4. TPC Determination
3.5. UPLC ESI MS2 Analysis
3.6. Antioxidant Capacity Determination
3.6.1. Ferric Reducing Antioxidant Power (FRAP) Assay
3.6.2. 2,2-Diphenyl-1-picrylhydrazyl Radical (DPPH) Scavenging Assay
3.6.3. 2,2-Azinobis(3-ethylbenzothiazoline-6-sulfonic Acid (ABTS) Assay
3.6.4. Oxygen Radical Absorbance Capacity (ORAC) Assay
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlemi, A.-V.; Lamari, F.N. Berry leaves: An alternative source of bioactive natural products of nutritional and medicinal value. Antioxidants 2016, 5, 17. [Google Scholar] [CrossRef]
- Vagiri, M.; Conner, S.; Stewart, D.; Andersson, S.C.; Verrall, S.; Johansson, E.; Rumpunen, K. Phenolic compounds in blackcurrant (Ribes nigrum L.) leaves relative to leaf position and harvest date. Food Chem. 2015, 172, 135–142. [Google Scholar] [CrossRef]
- Raudsepp, P.; Kaldmäe, H.; Kikas, A.; Libek, A.-V.; Püssa, T. Nutritional quality of berries and bioactive compounds in the leaves of black currant (Ribes nigrum L.) cultivars evaluated in Estonia. J. Berry Res. 2010, 1, 53–59. [Google Scholar] [CrossRef]
- Hokkanen, J.; Mattila, S.; Jaakola, L.; Pirttilä, A.M.; Tolonen, A. Identification of phenolic compounds from lingonberry (Vaccinium vitis-idaea L.), bilberry (Vaccinium myrtillus L.) and hybrid bilberry (Vaccinium x intermedium Ruthe L.) leaves. J. Agric. Food Chem. 2009, 57, 9437–9447. [Google Scholar] [CrossRef]
- Ieri, F.; Martini, S.; Innocenti, M.; Mulinacci, N. Phenolic distribution in liquid preparations of Vaccinium myrtillus L. and Vaccinium vitis idaea L. Phytochem. Anal. 2013, 24, 467–475. [Google Scholar] [CrossRef]
- Sadowska, B.; Paszkiewicz, M.; Podsędek, A.; Redzynia, M.; Różalska, B. Vaccinium myrtillus leaves and Frangula alnus bark derived extracts as potential antistaphylococcal agents. Acta Biochim. Pol. 2014, 61, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Mechikova, G.Y.; Kuzmich, A.S.; Ponomarenko, L.P.; Kalinovsky, A.I.; Stepanova, T.A.; Fedorov, S.N.; Stonik, V.A. Cancer-preventive activities of secondary metabolites from leaves of the bilberry Vaccinium smallii A. Gray. Phyther. Res. 2010, 24, 1730–1732. [Google Scholar] [CrossRef] [PubMed]
- Dobroslavić, E.; Elez Garofulić, I.; Šeparović, J.; Zorić, Z.; Pedisić, S.; Dragović-Uzelac, V. Pressurized Liquid Extraction as a Novel Technique for the Isolation of Laurus nobilis L. Leaf Polyphenols. Molecules 2022, 27, 5099. [Google Scholar] [CrossRef] [PubMed]
- Dobroslavić, E.; Elez Garofulić, I.; Zorić, Z.; Pedisić, S.; Dragović-Uzelac, V. Polyphenolic characterization and antioxidant capacity of Laurus nobilis L. leaf extracts obtained by green and conventional extraction techniques. Processes 2021, 9, 1840. [Google Scholar] [CrossRef]
- Terpinc, P.; Dobroslavić, E.; Garofulić, I.E.; Repajić, M.; Cegledi, E.; Dobrinčić, A.; Pedisić, S.; Levaj, B. Maximizing the Recovery of Phenolic Antioxidants from Wild Strawberry (Fragaria vesca) Leaves Using Microwave-Assisted Extraction and Accelerated Solvent Extraction. Processes 2023, 11, 3378. [Google Scholar] [CrossRef]
- Elez Garofulić, I.; Malin, V.; Repajić, M.; Zorić, Z.; Pedisić, S.; Sterniša, M.; Smole Možina, S.; Dragović-Uzelac, V. Phenolic profile, antioxidant capacity and antimicrobial activity of nettle leaves extracts obtained by advanced extraction techniques. Molecules 2021, 26, 6153. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V. MAE of phenolic compounds from blueberry leaves and comparison with other extraction methods. Ind. Crops Prod. 2014, 58, 36–45. [Google Scholar] [CrossRef]
- Chemat, F.; Cravotto, G. Microwave-Assisted Extraction for Bioactive Compounds: Theory and Practice; Springer Science & Business Media: New York, NY, USA, 2012; Volume 4, ISBN 1461448301. [Google Scholar]
- Picó, Y. Pressurized liquid extraction of organic contaminants in environmental and food samples. Compr. Anal. Chem. 2017, 76, 83–110. [Google Scholar]
- Casazza, A.A.; Pettinato, M.; Perego, P. Polyphenols from apple skins: A study on microwave-assisted extraction optimization and exhausted solid characterization. Sep. Purif. Technol. 2020, 240, 116640. [Google Scholar] [CrossRef]
- Oancea, A.-M.; Onofrei, C.; Turturică, M.; Bahrim, G.; Râpeanu, G.; Stănciuc, N. The kinetics of thermal degradation of polyphenolic compounds from elderberry (Sambucus nigra L.) extract. Food Sci. Technol. Int. 2018, 24, 361–369. [Google Scholar] [CrossRef]
- Routray, W.; Orsat, V. Microwave-assisted extraction of flavonoids: A review. Food Bioprocess Technol. 2012, 5, 409–424. [Google Scholar] [CrossRef]
- Wong, B.Y.; Tan, C.P.; Ho, C.W. Effect of solid-to-solvent ratio on phenolic content and antioxidant capacities of” Dukung Anak”(Phyllanthus niruri). Int. Food Res. J. 2013, 20, 325–330. [Google Scholar]
- Tan, P.W.; Tan, C.P.; Ho, C.W. Antioxidant properties: Effects of solid-to-solvent ratio on antioxidant compounds and capacities of Pegaga (Centella asiatica). Int. Food Res. J. 2011, 18, 557. [Google Scholar]
- Nour, V.; Trandafir, I.; Cosmulescu, S. Antioxidant capacity, phenolic compounds and minerals content of blackcurrant (Ribes nigrum L.) leaves as influenced by harvesting date and extraction method. Ind. Crops Prod. 2014, 53, 133–139. [Google Scholar] [CrossRef]
- Cao-Ngoc, P.; Leclercq, L.; Rossi, J.-C.; Hertzog, J.; Tixier, A.-S.; Chemat, F.; Nasreddine, R.; Al Hamoui Dit Banni, G.; Nehmé, R.; Schmitt-Kopplin, P. Water-based extraction of bioactive principles from blackcurrant leaves and Chrysanthellum americanum: A comparative study. Foods 2020, 9, 1478. [Google Scholar] [CrossRef]
- Ziemlewska, A.; Zagórska-Dziok, M.; Nizioł-Łukaszewska, Z. Assessment of cytotoxicity and antioxidant properties of berry leaves as by-products with potential application in cosmetic and pharmaceutical products. Sci. Rep. 2021, 11, 3240. [Google Scholar] [CrossRef]
- Stanoeva, J.P.; Stefova, M.; Andonovska, K.B.; Vankova, A.; Stafilov, T. Phenolics and mineral content in bilberry and bog bilberry from Macedonia. Int. J. Food Prop. 2017, 20, S863–S883. [Google Scholar] [CrossRef]
- Bujor, O.-C.; Le Bourvellec, C.; Volf, I.; Popa, V.I.; Dufour, C. Seasonal variations of the phenolic constituents in bilberry (Vaccinium myrtillus L.) leaves, stems and fruits, and their antioxidant activity. Food Chem. 2016, 213, 58–68. [Google Scholar] [CrossRef]
- Zhao, C.-N.; Zhang, J.-J.; Li, Y.; Meng, X.; Li, H.-B. Microwave-assisted extraction of phenolic compounds from Melastoma sanguineum fruit: Optimization and identification. Molecules 2018, 23, 2498. [Google Scholar] [CrossRef]
- Dahmoune, F.; Nayak, B.; Moussi, K.; Remini, H.; Madani, K. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food Chem. 2015, 166, 585–595. [Google Scholar] [CrossRef]
- Djemaa-Landri, K.; Hamri-Zeghichi, S.; Valls, J.; Cluzet, S.; Tristan, R.; Boulahbal, N.; Kadri, N.; Madani, K. Phenolic content and antioxidant activities of Vitis vinifera L. leaf extracts obtained by conventional solvent and microwave-assisted extractions. J. Food Meas. Charact. 2020, 14, 3551–3564. [Google Scholar] [CrossRef]
- Lin, D.; Ma, Q.; Zhang, Y.; Peng, Z. Phenolic compounds with antioxidant activity from strawberry leaves: A study on microwave-assisted extraction optimization. Prep. Biochem. Biotechnol. 2020, 50, 874–882. [Google Scholar] [CrossRef]
- Mustafa, A.; Turner, C. Pressurized liquid extraction as a green approach in food and herbal plants extraction: A review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef]
- Vergara-Salinas, J.R.; Pérez-Jiménez, J.; Torres, J.L.; Agosin, E.; Pérez-Correa, J.R. Effects of temperature and time on polyphenolic content and antioxidant activity in the pressurized hot water extraction of deodorized thyme (Thymus vulgaris). J. Agric. Food Chem. 2012, 60, 10920–10929. [Google Scholar] [CrossRef]
- Saldaña, M.D.A.; Ekaette, I.; Valdivieso Ramirez, C.S.; dos Reis Coimbra, J.S.; Cardozo-Filho, L. Pressurized fluid extraction of phytochemicals from fruits, vegetables, cereals, and herbs. In Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 721–748. [Google Scholar] [CrossRef]
- Pedisić, S.; Zorić, Z.; Bursać Kovačević, D.; Elez Garofulić, I.; Dragović-Uzelac, V. Pressurized hot water extraction of phenolic compounds from leaves of Stevia rebaudiana: An UPLC-ESI-MSMS study. J. Food Process Eng. 2020, 43, e13319. [Google Scholar] [CrossRef]
- Santos, P.H.; Kammers, J.C.; Silva, A.P.; Oliveira, J.V.; Hense, H. Antioxidant and antibacterial compounds from feijoa leaf extracts obtained by pressurized liquid extraction and supercritical fluid extraction. Food Chem. 2021, 344, 128620. [Google Scholar] [CrossRef]
- Alhallaf, W.; Bishop, K.; Perkins, L.B. Optimization of accelerated solvent extraction of phenolic compounds from chaga using response surface methodology. Food Anal. Methods 2022, 15, 2777–2790. [Google Scholar] [CrossRef]
- Repajić, M.; Cegledi, E.; Kruk, V.; Pedisić, S.; Çınar, F.; Bursać Kovačević, D.; Žutić, I.; Dragović-Uzelac, V. Accelerated Solvent Extraction as a Green Tool for the Recovery of Polyphenols and Pigments from Wild Nettle Leaves. Processes 2020, 8, 803. [Google Scholar] [CrossRef]
- Elez Garofulić, I.; Kruk, V.; Martić, A.; Martić, I.; Zorić, Z.; Pedisić, S.; Dragović, S.; Dragović-Uzelac, V. Evaluation of polyphenolic profile and antioxidant activity of Pistacia lentiscus L. leaves and fruit extract obtained by optimized microwave-assisted extraction. Foods 2020, 9, 1556. [Google Scholar] [CrossRef]
- Repajić, M.; Cegledi, E.; Zorić, Z.; Pedisić, S.; Elez Garofulić, I.; Radman, S.; Palčić, I.; Dragović-Uzelac, V. Bioactive compounds in wild nettle (Urtica dioica L.) leaves and stalks: Polyphenols and pigments upon seasonal and habitat variations. Foods 2021, 10, 190. [Google Scholar] [CrossRef]
- Elez Garofulić, I.; Zorić, Z.; Pedisić, S.; Brnčić, M.; Dragović-Uzelac, V. UPLC-MS2 Profiling of Blackthorn Flower Polyphenols Isolated by Ultrasound-Assisted Extraction. J. Food Sci. 2018, 83, 2782–2789. [Google Scholar] [CrossRef]
- D’Urso, G.; Montoro, P.; Piacente, S. Detection and comparison of phenolic compounds in different extracts of black currant leaves by liquid chromatography coupled with high-resolution ESI-LTQ-Orbitrap MS and high-sensitivity ESI-Qtrap MS. J. Pharm. Biomed. Anal. 2020, 179, 112926. [Google Scholar] [CrossRef]
- Chrzanowski, G.; Sempruch, C.; Sprawka, I. Investigation of phenolic acids in leaves of blackcurrant (Ribes nigrum L.) and sour cherry (Prunus cerasus L.). Electron. J. Pol. Agric. Univ. 2007, 10, 42. [Google Scholar]
- Oszmianski, J.; Wojdylo, A.; Gorzelany, J.; Kapusta, I. Identification and characterization of low molecular weight polyphenols in berry leaf extracts by HPLC-DAD and LC-ESI/MS. J. Agric. Food Chem. 2011, 59, 12830–12835. [Google Scholar] [CrossRef]
- Vagiri, M.; Ekholm, A.; Andersson, S.C.; Johansson, E.; Rumpunen, K. An optimized method for analysis of phenolic compounds in buds, leaves, and fruits of black currant (Ribes nigrum L.). J. Agric. Food Chem. 2012, 60, 10501–10510. [Google Scholar] [CrossRef]
- Cyboran, S.; Bonarska-Kujawa, D.; Pruchnik, H.; Żyłka, R.; Oszmiański, J.; Kleszczyńska, H. Phenolic content and biological activity of extracts of blackcurrant fruit and leaves. Food Res. Int. 2014, 65, 47–58. [Google Scholar] [CrossRef]
- Liazid, A.; Palma, M.; Brigui, J.; Barroso, C.G. Investigation on phenolic compounds stability during microwave-assisted extraction. J. Chromatogr. A 2007, 1140, 29–34. [Google Scholar] [CrossRef]
- Corazza, G.O.; Bilibio, D.; Zanella, O.; Nunes, A.L.; Bender, J.P.; Carniel, N.; dos Santos, P.P.; Priamo, W.L. Pressurized liquid extraction of polyphenols from Goldenberry: Influence on antioxidant activity and chemical composition. Food Bioprod. Process. 2018, 112, 63–68. [Google Scholar] [CrossRef]
- Babu, P.R.S.; Subrahmanyam, C.V.S.; Thimmasetty, J.; Manavalan, R.; Valliappan, K.; Kedarnath, S.A. Solubility enhancement of cox-II inhibitors by cosolvency approach. Dhaka Univ. J. Pharm. Sci. 2008, 7, 119–126. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, C.; Gilbert-López, B.; Mendiola, J.A.; Quirantes-Piné, R.; Segura-Carretero, A.; Ibáñez, E. Optimization of microwave-assisted extraction and pressurized liquid extraction of phenolic compounds from Moringa oleifera leaves by multiresponse surface methodology. Electrophoresis 2016, 37, 1938–1946. [Google Scholar] [CrossRef]
- Değirmencioğlu, N.; Gürbüz, O.; Karatepe, G.E.; Irkin, R. Influence of hot air drying on phenolic compounds and antioxidant capacity of blueberry (Vaccinium myrtillus) fruit and leaf. J. Appl. Bot. Food Qual. 2017, 90, 115–125. [Google Scholar] [CrossRef]
- Ștefănescu, B.-E.; Călinoiu, L.F.; Ranga, F.; Fetea, F.; Mocan, A.; Vodnar, D.C.; Crișan, G. Chemical composition and biological activities of the nord-west romanian wild bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.) leaves. Antioxidants 2020, 9, 495. [Google Scholar] [CrossRef]
- Brezoiu, A.-M.; Deaconu, M.; Mitran, R.-A.; Prelipcean, A.-M.; Matei, C.; Berger, D. Optimisation of Polyphenols Extraction from Wild Bilberry Leaves—Antimicrobial Properties and Stability Studies. Molecules 2023, 28, 5795. [Google Scholar] [CrossRef]
- Martz, F.; Jaakola, L.; Julkunen-Tiitto, R.; Stark, S. Phenolic composition and antioxidant capacity of bilberry (Vaccinium myrtillus) leaves in Northern Europe following foliar development and along environmental gradients. J. Chem. Ecol. 2010, 36, 1017–1028. [Google Scholar] [CrossRef]
- Takács, I.; Szekeres, A.; Takács, Á.; Rakk, D.; Mézes, M.; Polyák, Á.; Lakatos, L.; Gyémánt, G.; Csupor, D.; Kovács, K.J. Wild strawberry, blackberry, and blueberry leaf extracts alleviate starch-induced hyperglycemia in prediabetic and diabetic mice. Planta Med. 2020, 86, 790–799. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Cilliers, J.J.L.; Singleton, V.L.; Lamuela-Raventos, R.M. Total polyphenols in apples and ciders; correlation with chlorogenic acid. J. Food Sci. 1990, 55, 1458–1459. [Google Scholar] [CrossRef]
- El-Hamidi, M.; Zaher, F.A. Comparison between some common clays as adsorbents of carotenoids, chlorophyll and phenolic compounds from vegetable oils. Am. J. Food Technol. 2016, 11, 92–99. [Google Scholar] [CrossRef]
- Apak, R. Current issues in antioxidant measurement. J. Agric. Food Chem. 2019, 67, 9187–9202. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Schaich, K.M. Re-evaluation of the 2, 2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity. J. Agric. Food Chem. 2014, 62, 4251–4260. [Google Scholar] [CrossRef] [PubMed]
- Teleszko, M.; Wojdyło, A. Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J. Funct. Foods 2015, 14, 736–746. [Google Scholar] [CrossRef]
- Katsube, N.; Iwashita, K.; Tsushida, T.; Yamaki, K.; Kobori, M. Induction of apoptosis in cancer cells by bilberry (Vaccinium myrtillus) and the anthocyanins. J. Agric. Food Chem. 2003, 51, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Ziobroń, M.; Kopeć, A.; Skoczylas, J.; Dziadek, K.; Zawistowski, J. Basic chemical composition and concentration of selected bioactive compounds in leaves of black, red and white currant. Appl. Sci. 2021, 11, 7638. [Google Scholar] [CrossRef]
- Bujor, O.-C.; Tanase, C.; Popa, M.E. Phenolic antioxidants in aerial parts of wild Vaccinium species: Towards pharmaceutical and biological properties. Antioxidants 2019, 8, 649. [Google Scholar] [CrossRef] [PubMed]
- Colak, N.; Torun, H.; Gruz, J.; Strnad, M.; Subrtova, M.; İNCEER, H.; AYAZ, F. Comparison of phenolics and phenolic acid profiles in conjunction with oxygen radical absorbing capacity (ORAC) in berries of Vaccinium arctostaphylos L. and V. myrtillus L. Pol. J. Food Nutr. Sci. 2016, 66, 85–91. [Google Scholar] [CrossRef]
- Soobrattee, M.A.; Neergheen, V.S.; Luximon-Ramma, A.; Aruoma, O.I.; Bahorun, T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res. Mol. Mech. Mutagen. 2005, 579, 200–213. [Google Scholar] [CrossRef] [PubMed]
- Bors, W.; Michel, C.; Stettmaier, K. Electron paramagnetic resonance studies of radical species of proanthocyanidins and gallate esters. Arch. Biochem. Biophys. 2000, 374, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Aron, P.M.; Kennedy, J.A. Flavan-3-ols: Nature, occurrence and biological activity. Mol. Nutr. Food Res. 2008, 52, 79–104. [Google Scholar] [CrossRef] [PubMed]
- AOAC Official Method 920.151; Solids (Total) in Fruits and Fruit Products. AOAC International: Rockville, MD, USA, 2000.
- Shortle, E.; O’grady, M.N.; Gilroy, D.; Furey, A.; Quinn, N.; Kerry, J.P. Influence of extraction technique on the anti-oxidative potential of hawthorn (Crataegus monogyna) extracts in bovine muscle homogenates. Meat Sci. 2014, 98, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Braca, A.; De Tommasi, N.; Di Bari, L.; Pizza, C.; Politi, M.; Morelli, I. Antioxidant principles from Bauhinia t arapotensis. J. Nat. Prod. 2001, 64, 892–895. [Google Scholar] [CrossRef]
- Miller, N.J.; Rice-Evans, C.A. Cinnamates and hydroxybenzoates in the diet: Antioxidant activity assessed using the ABTS•+ radical cation. Br. Food J. 1997, 99, 57–62. [Google Scholar] [CrossRef]
- Bender, C.; Graziano, S.; Zimmerman, B.F.; Weidlich, H.H. Antioxidant potential of aqueous plant extracts assessed by the cellular antioxidant activity assay. Am. J. Biol. Life Sci 2014, 2, 72–79. [Google Scholar]
Extraction Technique | Extraction Parameters | TPC mg/g dw | |||
---|---|---|---|---|---|
Temperature (°C) | Time (min) | SS Ratio (mL/g) | Blackcurrant | Bilberry | |
MAE | 60 | 5 | 20 | 49.45 ± 1.28 | 41.21 ± 0.27 |
30 | 58.54 ± 0.73 | 34.32 ± 0.06 | |||
40 | 60.88 ± 2.45 | 39.56 ± 3.03 | |||
10 | 20 | 53.06 ± 0.06 | 37.41 ± 1.15 | ||
30 | 53.76 ± 2.44 | 43.37 ± 3.10 | |||
40 | 63.07 ± 0.32 | 46.71 ± 0.55 | |||
70 | 5 | 20 | 51.40 ± 2.09 | 40.79 ± 1.11 | |
30 | 53.58 ± 2.24 | 43.01 ± 0.11 | |||
40 | 61.02 ± 0.39 | 50.73 ± 2.16 | |||
10 | 20 | 50.70 ± 1.82 | 45.35 ± 2.87 | ||
30 | 54.27 ± 1.97 | 47.28 ± 0.10 | |||
40 | 57.78 ± 0.04 | 64.19 ± 0.58 | |||
80 | 5 | 20 | 54.96 ± 0.12 | 44.73 ± 2.44 | |
30 | 56.47 ± 0.17 | 52.84 ± 0.04 | |||
40 | 62.10 ± 3.25 | 56.20 ± 2.47 | |||
10 | 20 | 53.38 ± 1.01 | 45.55 ± 0.23 | ||
30 | 56.34 ± 1.37 | 45.09 ± 0.57 | |||
40 | 73.26 ± 2.28 | 56.06 ± 0.15 | |||
PLE | 100 | 5 | 20 | 53.07 ± 0.06 | 33.74 ± 0.07 |
30 | 58.85 ± 0.70 | 65.88 ± 0.46 | |||
40 | 54.55 ± 0.59 | 59.53 ± 0.41 | |||
10 | 20 | 52.94 ± 0.21 | 49.69 ± 0.95 | ||
30 | 42.92 ± 0.04 | 57.75 ± 0.79 | |||
40 | 52.76 ± 0.12 | 51.07 ± 0.52 | |||
125 | 5 | 20 | 60.52 ± 0.59 | 70.54 ± 0.07 | |
30 | 67.62 ± 1.58 | 54.62 ± 0.35 | |||
40 | 62.15 ± 0.13 | 45.50 ± 0.26 | |||
10 | 20 | 71.02 ± 3.35 | 60.30 ± 0.35 | ||
30 | 70.84 ± 5.24 | 53.78 ± 0.55 | |||
40 | 66.70 ± 5.59 | 70.55 ± 1.40 | |||
150 | 5 | 20 | 69.95 ± 0.58 | 58.66 ± 0.95 | |
30 | 78.90 ± 0.02 | 53.78 ± 0.55 | |||
40 | 62.23 ± 0.75 | 55.80 ± 0.21 | |||
10 | 20 | 68.58 ± 2.60 | 56.41 ± 1.24 | ||
30 | 69.49 ± 1.52 | 54.85 ± 0.18 | |||
40 | 69.88 ± 2.01 | 62.70 ± 1.56 |
MAE | TPC (mg/g dw) | PLE | TPC (mg/g dw) | ||
---|---|---|---|---|---|
Blackcurrant | Bilberry | Blackcurrant | Bilberry | ||
Temperature (°C) | p = 0.52 | p < 0.01 * | Temperature (°C) | p < 0.01 * | p = 0.44 |
60 | 56.46 ± 1.47 a | 40.43 ± 1.27 a | 100 | 52.51 ± 1.44 a | 52.94 ± 3.06 a |
70 | 54.79 ± 1.14 a | 48.56 ± 2.33 b | 125 | 66.47 ± 1.41 b | 59.21 ± 2.75 a |
80 | 57.75 ± 2.54 a | 50.08 ± 1.56 b | 150 | 69.84 ± 1.50 b | 57.03 ± 0.91 a |
Time (min) | p = 0.88 | p = 0.17 | Time (min) | p = 0.73 | p = 0.80 |
5 | 56.49 ± 1.07 a | 44.82 ± 1.64 a | 5 | 63.09 ± 1.84 a | 55.34 ± 2.48 a |
10 | 56.18 ± 1.82 a | 47.89 ± 1.80 a | 10 | 62.79 ± 2.44 a | 57.45 ± 1.48 a |
SS ratio (mL/g) | p < 0.01 * | p < 0.01 * | SS ratio (mL/g) | p = 0.66 | p = 0.83 |
20 | 52.16 ± 0.62 a | 42.51 ± 0.96 a | 20 | 62.68 ± 2.33 a | 54.89 ± 3.41 a |
30 | 53.83 ± 1.20 a | 44.32 ± 1.69 a | 30 | 64.77 ± 3.47 a | 56.78 ± 1.30 a |
40 | 63.02 ± 1.52 b | 52.24 ± 2.39 b | 40 | 61.38 ± 1.91 a | 57.53 ± 2.44 a |
Blackcurrant Leaves Extracts’ Individual Polyphenols | Precursor Ion (m/z) | Product Ion (m/z) | MAE (mg/g dw) | PLE (mg/g dw) |
---|---|---|---|---|
Phenolic acids | ||||
Quinic acid | 191 | 85 | 0.02 ± 0.00 a | 0.06 ± 0.00 b |
Ferulic acid * | 193 | 134 | 0.02 ± 0.00 a | 0.02 ± 0.00 a |
3-p-Coumaroylquinic acid | 337 | 163 | 0.01 ± 0.00 a | 0.13 ± 0.00 b |
Rosmarinic acid * | 359.1 | 161 | 0.02 ± 0.00 a | 0.02 ± 0.00 a |
Chlorogenic acid * | 353 | 191 | 0.40 ± 0.02 a | 0.88 ± 0.02 b |
3,5-Dicaffeoylquinic acid | 515 | 191 | - | 0.05 ± 0.00 |
Syringic acid * | 197 | 182 | 0.10 ± 0.0 a | 0.14 ± 0.00 b |
Caffeic acid * | 179 | 135 | 0.62 ± 0.0 a | 0.59 ± 0.00 a |
Galloylquinic acid | 343 | 191 | 0.02 ± 0.00 a | 0.04 ± 0.00 b |
Ferruloylquinic acid | 367 | 193 | - | 0.03 ± 0.00 |
Gallic acid * | 169 | 125 | 0.07 ± 0.00 a | 0.25 ± 0.00 b |
p-Coumaric acid * | 163 | 119 | 0.04 ± 0.00 a | 0.08 ± 0.00 b |
p-Hydroxybenzoic acid | 137 | 93 | 0.39 ± 0.01 b | 0.19 ± 0.00 a |
3,4-Dihydroxybenzoic acid hexoside | 317 | 155 | - | 0.01 ± 0.00 |
Flavonols | ||||
Isorhamnetin rutinoside | 625 | 317 | 0.01 ± 0.00 a | 0.13 ± 0.01 b |
Isorhamnetin hexoside | 479 | 317 | 0.01 ± 0.00 a | 0.18 ± 0.01 b |
Kaempferol-3-glucoside | 449 | 287 | 0.03 ± 0.00 a | 1.75 ± 0.07 b |
Myricetin * | 319 | 273 | 0.33 ± 0.01 b | 0.24 ± 0.00 a |
Quercetin glucuronide | 479 | 303 | 0.02 ± 0.00 a | 0.02 ± 0.00 a |
Quercetin rhamnoside | 449 | 303 | 0.02 ± 0.00 a | 0.04 ± 0.00 b |
Quercetin pentoside | 435 | 303 | - | 0.06 ± 0.00 |
Myricetin rhamnoside | 465 | 319 | 0.06 ± 0.00 b | 0.05 ± 0.00 a |
Kaempferol pentoside | 419 | 287 | - | 0.02 ± 0.00 |
Quercetin acetylhexoside | 507 | 303 | 0.01 ± 0.00 a | 1.82 ± 0.06 b |
Kaempferol acetylhexoside | 491 | 287 | - | 0.36 ± 0.01 |
Myricetin galactoside | 481 | 319 | 0.05 ± 0.00 a | 0.69 ± 0.02 b |
Quercetin-3-glucoside * | 465 | 303 | 0.07 ± 0.00 a | 3.11 ± 0.09 b |
Myricetin arabinoside | 451 | 319 | 0.20 ± 0.01 b | 0.09 ± 0.00 a |
Isorhamnetin dihexoside | 641 | 317 | 0.02 ± 0.00 a | 0.22 ± 0.01 b |
Quercetin-3-rutinoside * | 611 | 303 | 0.05 ± 0.00 a | 4.46 ± 0.21 b |
Isorhamnetin pentosylhexoside | 511 | 317 | 0.01 ± 0.00 a | 0.06 ± 0.00 b |
Kaempferol-3-rutinoside * | 595 | 287 | 0.01 ± 0.00 a | 0.65 ± 0.01 b |
Quercetin | 303 | 303 | 3.68 ± 0.12 b | 2.80 ± 0.11 a |
Kaempferol | 287 | 287 | 3.38 ± 0.08 a | 4.77 ± 0.16 b |
Quercetin pentosylhexoside | 597 | 303 | - | 0.02 ± 0.00 |
Flavan-3-ols | ||||
Catechin * | 291 | 139 | 0.28 ± 0.01 a | 0.83 ± 0.02 b |
Epicatechin * | 291 | 139 | 0.12 ± 0.00 a | 0.87 ± 0.05 b |
Epigallocatechingallate * | 459 | 289 | 0.05 ± 0.00 b | 0.03 ± 0.00 a |
Epicatechingallate * | 423 | 273 | 0.08 ± 0.00 a | 0.07 ± 0.00 a |
Flavones | ||||
Luteolin * | 287 | 153 | 0.07 ± 0.00 a | 0.25 ± 0.01 b |
Apigenin * | 271 | 153 | 0.02 ± 0.00 | - |
Luteolin glucoside | 449 | 287 | 0.03 ± 0.00 | - |
Apigenin deoxyhexosyl hexoside | 579 | 459 | - | 0.04 ± 0.00 |
Luteolin rutinoside | 595 | 287 | - | 0.64 ± 0.03 |
Procyanidins | ||||
Procyanidin trimer | 865 | 575 | - | 0.29 ± 0.01 |
Procyanidin B1 | 579 | 291 | 0.83 ± 0.03 a | 2.52 ± 0.11 b |
Procyanidin B2 * | 579 | 291 | 0.02 ± 0.00 | - |
Total UPLC ESI MS2-identified polyphenols | 11.21 ± 0.21 a | 29.59 ± 0.73 b |
Bilberry Leaves Extracts’ Individual Polyphenols | Precursor Ion (m/z) | Product Ion (m/z) | MAE (mg/g dw) | PLE (mg/g dw) |
---|---|---|---|---|
Phenolic acids | ||||
Ferulic acid * | 193 | 134 | - | 0.03 ± 0.00 |
Rosmarinic acid * | 359.1 | 161 | - | 0.02 ± 0.00 |
Chlorogenic acid * | 353 | 191 | 0.12 ± 0.00 a | 0.24 ± 0.01 b |
3,5-Dicaffeoylquinic acid | 515 | 191 | - | 0.02 ± 0.00 |
Syringic acid * | 197 | 182 | 0.17 ± 0.00 b | 0.10 ± 0.00 a |
Caffeic acid * | 179 | 135 | 0.04 ± 0.00 a | 0.80 ± 0.05 b |
Gallic acid * | 169 | 125 | 0.12 ± 0.00 a | 0.19 ± 0.01 b |
p-Coumaric acid * | 163 | 119 | 0.03 ± 0.00 b | 0.02 ± 0.00 a |
p-Hydroxybenzoic acid | 137 | 93 | 0.07 ± 0.00 a | 0.09 ± 0.00 b |
3,5-Digalloylquinic acid | 495 | 343 | - | 0.01 ± 0.00 |
Flavonols | ||||
Isorhamnetin rutinoside | 625 | 317 | - | 0.14 ± 0.00 |
Isorhamnetin hexoside | 479 | 317 | - | 0.15 ± 0.01 |
Kaempferol-3-glucoside | 449 | 287 | - | 1.19 ± 0.06 |
Myricetin * | 319 | 273 | 0.12 ± 0.00 a | 0.14 ± 0.00 b |
Quercetin glucuronide | 479 | 303 | 0.03 ± 0.00 a | 0.08 ± 0.00 b |
Kaempferol glucuronide | 463 | 287 | - | 0.01 ± 0.00 |
Quercetin rhamnoside | 449 | 303 | 0.05 ± 0.00 a | 0.12 ± 0.00 b |
Kaempferol deoxyhexoside | 434 | 287 | - | 0.01 ± 0.00 |
Quercetin pentoside | 435 | 303 | - | 0.11 ± 0.00 |
Myricetin rhamnoside | 465 | 319 | 0.02 ± 0.00 a | 0.10 ± 0.00 b |
Kaempferol pentoside | 419 | 287 | - | 0.05 ± 0.00 |
Kaempferol pentosylhexoside | 581 | 287 | - | 0.02 ± 0.00 |
Quercetin acetylhexoside | 507 | 303 | 0.01 ± 0.00 a | 0.05 ± 0.00 b |
Kaempferol acetylhexoside | 491 | 287 | 0.01 ± 0.00 a | 0.03 ± 0.00 b |
Myricetin galactoside | 481 | 319 | 0.07 ± 0.00 a | 2.88 ± 0.08 b |
Quercetin-3-glucoside * | 465 | 303 | 0.02 ± 0.00 a | 7.43 ± 0.28 b |
Myricetin arabinoside | 451 | 319 | 0.21 ± 0.00 b | 0.11 ± 0.01 a |
Quercetin acetylrutinoside | 653 | 303 | - | 0.01 ± 0.00 |
Kaempferol acetylrutinoside | 637 | 287 | 0.01 ± 0.00 | - |
Quercetin dihexoside | 625 | 317 | 0.02 ± 0.00 a | 0.03 ± 0.00 b |
Quercetin-3-rutinoside * | 611 | 303 | 0.03 ± 0.00 a | 1.08 ± 0.06 b |
Isorhamnetin pentosylhexoside | 611 | 317 | - | 0.02 ± 0.00 |
Kaempferol-3-rutinoside * | 595 | 287 | 0.01 ± 0.00 a | 0.81 ± 0.03 b |
Quercetin * | 303 | 303 | 2.03 ± 0.10 a | 5.27 ± 0.14 b |
Kaempferol * | 287 | 287 | 2.40 ± 0.12 a | 4.35 ± 0.13 b |
Quercetin pentosylhexoside | 597 | 303 | 0.01 ± 0.00 | - |
Flavan-3-ols | ||||
Catechin * | 291 | 139 | 0.14 ± 0.00 b | 0.07 ± 0.00 a |
Epicatechin * | 291 | 139 | 0.04 ± 0.00 a | 0.08 ± 0.00 b |
Epigallocatechingallate * | 459 | 289 | 0.03 ± 0.00 a | 0.08 ± 0.00 b |
Epicatechingallate * | 423 | 273 | 0.08 ± 0.00 a | 0.10 ± 0.00 b |
Flavones | ||||
Luteolin * | 287 | 153 | 0.04 ± 0.00 a | 0.63 ± 0.04 b |
Apigenin * | 271 | 153 | 0.02 ± 0.00 | - |
Luteolin rutinoside | 595 | 287 | - | 0.79 ± 0.04 |
Procyanidins | ||||
Procyanidin trimer | 865 | 575 | 0.01 ± 0.00 a | 0.05 ± 0.00 b |
Procyanidin B1 | 579 | 291 | 1.07 ± 0.04 b | 0.50 ± 0.03 a |
Total UPLC ESI MS2-identified polyphenols | 7.01 ± 0.13 a | 27.99 ± 0.39 b |
Extract | Antioxidant Capacity (µmol TE/g dw) | ||||
---|---|---|---|---|---|
FRAP | DPPH | ABTS | ORAC | ||
p < 0.01 * | p < 0.01 * | p < 0.01 * | p < 0.01 * | ||
Blackcurrant | MAE | 623.53 ± 26.04 a | 534.85 ± 3.46 b | 648.04 ± 8.97 a | 320.82 ± 5.58 a |
PLE | 934.07 ± 24.01 b | 495.98 ± 0.90 a | 1149.35 ± 40.55 b | 441.48 ± 8.74 b | |
p < 0.01 * | p < 0.01 * | p = 0.01 * | p = 0.85 | ||
Bilberry | MAE | 263.33 ± 12.57 a | 314.72 ± 1.06 a | 564.94 ± 11.32 a | 327.73 ± 6.34 a |
PLE | 471.31 ± 15.85 b | 388.76 ± 9.80 b | 659.00 ± 11.10 b | 332.48 ± 7.06 a |
Polyphenols | FRAP | DPPH | ABTS | ORAC |
---|---|---|---|---|
TPC | 0.48 | 0.46 | 0.87 | 0.82 |
Total UPLC ESI MS2 | 0.19 | 0.26 | 0.70 | 0.66 |
Phenolic acids | 0.68 | 0.81 | 0.86 | 0.75 |
Flavonols | 0.02 | 0.16 | 0.57 | 0.53 |
Flavan-3-ols | 0.90 | 0.54 | 0.99 * | 0.98 * |
Flavones | −0.19 | 0.00 | 0.39 | 0.36 |
Procyanidins | 0.91 | 0.36 | 0.94 | 0.96 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elez Garofulić, I.; Repajić, M.; Cegledi, E.; Dobroslavić, E.; Dobrinčić, A.; Zorić, Z.; Pedisić, S.; Franković, T.; Breški, M.; Dragović-Uzelac, V. Green Approach to Enhance the Recovery of Polyphenols from Blackcurrant and Bilberry Leaves: Evaluation of Microwave-Assisted and Pressurized Liquid Extraction. Molecules 2024, 29, 1351. https://doi.org/10.3390/molecules29061351
Elez Garofulić I, Repajić M, Cegledi E, Dobroslavić E, Dobrinčić A, Zorić Z, Pedisić S, Franković T, Breški M, Dragović-Uzelac V. Green Approach to Enhance the Recovery of Polyphenols from Blackcurrant and Bilberry Leaves: Evaluation of Microwave-Assisted and Pressurized Liquid Extraction. Molecules. 2024; 29(6):1351. https://doi.org/10.3390/molecules29061351
Chicago/Turabian StyleElez Garofulić, Ivona, Maja Repajić, Ena Cegledi, Erika Dobroslavić, Ana Dobrinčić, Zoran Zorić, Sandra Pedisić, Tatjana Franković, Martina Breški, and Verica Dragović-Uzelac. 2024. "Green Approach to Enhance the Recovery of Polyphenols from Blackcurrant and Bilberry Leaves: Evaluation of Microwave-Assisted and Pressurized Liquid Extraction" Molecules 29, no. 6: 1351. https://doi.org/10.3390/molecules29061351
APA StyleElez Garofulić, I., Repajić, M., Cegledi, E., Dobroslavić, E., Dobrinčić, A., Zorić, Z., Pedisić, S., Franković, T., Breški, M., & Dragović-Uzelac, V. (2024). Green Approach to Enhance the Recovery of Polyphenols from Blackcurrant and Bilberry Leaves: Evaluation of Microwave-Assisted and Pressurized Liquid Extraction. Molecules, 29(6), 1351. https://doi.org/10.3390/molecules29061351