Isolation and Structure Elucidation of New Metabolites from the Mariana-Trench-Associated Fungus Aspergillus sp. SY2601
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Procedures
3.2. Isolation and Identification of Strain SY2601
3.3. Mass Culture of Strain SY2601 in EY Liquid and Rice Solid Media
3.4. Extraction and Isolation of Compounds 1–28
3.5. Optical Rotation Calculations
3.6. ECD Calculations
3.7. 13C NMR Calculations
3.8. Antimicrobial Activity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rateb, M.E.; Ebel, R. Secondary metabolites of fungi from marine habitats. Nat. Prod. Rep. 2011, 28, 290–344. [Google Scholar] [CrossRef]
- Hasan, S.; Ansari, M.I.; Ahmad, A.; Mishra, M. Major bioactive metabolites from marine fungi: A Review. Bioinformation 2015, 11, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.Y.; Liu, H.S.; Zhu, W.M. New natural products from the marine-derived Aspergillus fungi—A review. Acta Microbilogica Sin. 2016, 56, 331–362. [Google Scholar]
- Wang, K.W.; Ding, P. New bioactive metabolites from the marine-derived fungi Aspergillus. Mini. Rev. Med. Chem. 2018, 18, 1072–1094. [Google Scholar] [CrossRef] [PubMed]
- Orfali, R.; Aboseada, M.A.; Abdel-Wahab, N.M.; Hassan, H.M.; Perveen, S.; Ameen, F.; Alturki, E.; Abdelmohsen, U.R. Recent updates on the bioactive compounds of the marine-derived genus Aspergillus. RSC Adv. 2021, 11, 17116–17150. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Chen, W.H.; Chen, L.R.; Hu, Y.W.; Wang, X.; Han, W.R.; Xiao, J.; Pang, X.Y.; Yao, X.G.; Liu, S.W.; et al. Structurally various p-terphenyls with neuraminidase inhibitory from a sponge derived fungus Aspergillus sp. SCSIO41315. Bioorg. Chem. 2023, 132, 106357. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.J.; Tian, D.M.; Chen, M.; Xia, Z.X.; Tang, X.Y.; Zhang, S.H.; Wei, J.H.; Li, X.; Yao, X.S.; Wu, B.; et al. Molecular networking-guided isolation of cyclopentapeptides from the hydrothermal vent sediment derived fungus Aspergillus pseudoviridinutans TW58-5 and their anti-inflammatory effects. J. Nat. Prod. 2023, 86, 1919–1930. [Google Scholar] [CrossRef]
- Guo, X.C.; Fan, A.; Qi, X.Y.; Liu, D.; Huang, J.; Lin, W.H. Indoloquinazoline alkaloids suppress angiogenesis and inhibit metastasis of melanoma cells. Bioorg. Chem. 2023, 141, 106873. [Google Scholar] [CrossRef] [PubMed]
- Nunoura, T.; Takaki, Y.; Hirai, M.; Shimamura, S.; Makabe, A.; Koide, O.; Kikuchi, T.; Miyazaki, J.; Koba, K.; Yoshida, N.; et al. Hadal biosphere: Insight into the microbial ecosystem in the deepest ocean on Earth. Proc. Natl. Acad. Sci. USA 2015, 112, E1230–E1236. [Google Scholar] [CrossRef]
- Tarn, J.; Peoples, L.M.; Hardy, K.; Cameron, J.; Bartlett, D.H. Identification of free-living and particle-associated microbial communities present in Hadal regions of the Mariana Trench. Front. Microbiol. 2016, 7, 665. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, Y.; Lin, H.; Wang, X.; Li, M.; Liu, Y.; Yu, M.; Zhao, M.; Pedentchouk, N.; Lea-Smith, D.J.; et al. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome 2019, 7, 47. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.L.; Mara, P.; Vik, D.; Edgcomb, V.P.; Sullivan, M.B.; Wang, Y. Ecogenomics reveals viral communities across the Challenger Deep oceanic trench. Commun. Biol. 2022, 5, 1055. [Google Scholar]
- Abdel-Mageed, W.M.; Milne, B.F.; Wagner, M.; Schumacher, M.; Sandor, P.; Pathom-Aree, W.; Goodfellow, M.; Bull, A.T.; Horikoshi, K.; Ebel, R.; et al. Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana Trench sediment. Org. Biomol. Chem. 2010, 8, 2352–2362. [Google Scholar] [CrossRef]
- Wagner, M.; Abdel-Mageed, W.M.; Ebel, R.; Bull, A.T.; Goodfellow, M.; Fiedler, H.P.; Jaspars, M. Dermacozines H-J isolated from a deep-sea strain of Dermacoccus abyssi from Mariana Trench sediments. J. Nat. Prod. 2014, 77, 416–420. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; He, X.Q.; Wu, G.W.; Liu, C.C.; Lu, C.J.; Gu, Q.Q.; Che, Q.; Zhu, T.J.; Zhang, G.J.; Li, D.H. Aniline-tetramic acids from the deep-sea-derived fungus Cladosporium sphaerospermum L3P3 cultured with the HDAC inhibitor SAHA. J. Nat. Prod. 2018, 81, 1651–1657. [Google Scholar] [CrossRef]
- Wang, J.X.; Sun, C.X.; Shah, M.; Zhang, G.J.; Gu, Q.Q.; Zhu, T.J.; Che, Q.; Li, D.H. New metabolites from a Mariana Trench-derived actinomycete Nocardiopsis sp. HDN 17-237. J. Asian Nat. Prod. Res. 2020, 22, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Mageed, W.M.; Al-Wahaibi, L.H.; Lehri, B.; Al-Saleem, M.S.M.; Goodfellow, M.; Kusuma, A.B.; Nouioui, I.; Soleh, H.; Pathom-Aree, W.; Jaspars, M.; et al. Biotechnological and ecological potential of Micromonospora provocatoris sp. nov., a gifted strain isolated from the Challenger Deep of the Mariana Trench. Mar. Drugs 2021, 19, 243. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.W.; Qin, L.; Lian, X.Y.; Zhang, Z.Z. New antifungal metabolites from the Mariana Trench sediment-associated actinomycete Streptomyces sp. SY1965. Mar. Drugs 2020, 18, 385. [Google Scholar] [CrossRef]
- Kuramochi, K.; Aoki, T.; Nakazaki, A.; Kamisuki, S.; Takeno, M.; Ohnishi, K.; Kimoto, K.; Watanabe, N.; Kamakura, T.; Arai, T.; et al. Synthesis of neoechinulin A and derivatives. Synthesis 2008, 23, 3810–3818. [Google Scholar]
- Sùrensen, D.; Larsen, T.O.; Carsten Christophersen, C.; Nielsen, P.H.; Anthoni, U. Dipodazine, a diketopiperazine from Penicillium dipodomyis. Phytochemistry 1999, 51, 1181–1183. [Google Scholar] [CrossRef]
- Caballero, E.; Avendano, C.; Menendez, C. Stereochemical issues related to the synthesis and reactivity of pyrazino[20,10 -5,1]pyrrolo[2,3-b]indole-1,4-diones. Tetrahedron Asymmetry 1998, 9, 967–981. [Google Scholar] [CrossRef]
- Mehnaz, S.; Saleem, R.S.; Yameen, B.; Pianet, I.; Schnakenburg, G.; Pietraszkiewicz, H.; Valeriote, F.; Josten, M.; Sahl, H.G.; Franzblau, S.G.; et al. Lahorenoic acids A-C, ortho-dialkyl-substituted aromatic acids from the biocontrol strain Pseudomonas aurantiaca PB-St2. J. Nat. Prod. 2013, 76, 135–141. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Mori, Y.; Oda, A.; Okuno, Y.; Kiso, Y.; Hayashi, Y. Acid catalyzed monodehydro-2,5-diketopiperazine formation from N-a-ketoacyl amino acid amides. Tetrahedron 2009, 65, 3688–3694. [Google Scholar] [CrossRef]
- Wang, H.P.; Lou, J.; Chen, L.C.; Li, Y.; Ban, Z.J.; Huang, J. Cyclodipeptides from Bacillus sp. HZ16. Nat. Prod. Res. Dev. 2017, 29, 783–786. [Google Scholar]
- Bell, R.; Carmeli, S.; Sar, N. Vibrindole A, a metabolite of the marine bacterium, Vibrio parahaemolyticus, isolated from the toxic mucus of the boxfish Ostracion cubicus. J. Nat. Prod. 1994, 57, 1587–1590. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.X.; Crews, M.S.; Draskovic, M.; Sohn, J.; Johnson, T.A.; Tenney, K.; Valeriote, F.A.; Yao, X.J.; Bjeldanes, L.F.; Crews, P. Azonazine, a novel dipeptide from a Hawaiian marine sediment-derived fungus, Aspergillus insulicola. Org. Lett. 2010, 12, 4458–4461. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Zhang, X.Y.; Xu, X.Y.; He, F.; Nong, X.H.; Qi, S.H. New cyclic tetrapeptides and asteltoxins from gorgonian-derived fungus Aspergillus sp. SCSGAF 0076. Tetrahedron 2013, 69, 2113–2117. [Google Scholar] [CrossRef]
- Wang, J.F.; Wei, X.Y.; Qin, X.C.; Tian, X.P.; Liao, L.; Li, K.; Zhou, X.F.; Yang, X.W.; Wang, F.Z.; Zhang, T.Y.; et al. Antiviral merosesquiterpenoids produced by the Antarctic fungus Aspergillus ochraceopetaliformis SCSIO 05702. J. Nat. Prod. 2016, 79, 59–65. [Google Scholar] [CrossRef]
- Adachi, H.; Doi, H.; Yuichi, K.; Sawa, R.; Nakajima, K.; Kubota, Y.; Hosokawa, N.; Tateishi, K.; Nomoto, A. Asteltoxins from the entomopathogenic fungus Pochonia bulbillosa 8-H-28. J. Nat. Prod. 2015, 78, 1730–1734. [Google Scholar] [CrossRef] [PubMed]
- Kito, K.; Ookura, R.; Yoshida, S.; Namikoshi, M.; Ooi, T.; Kusumi, T. Pentaketides relating to aspinonene and dihydroaspyrone from a marine-derived fungus, Aspergillus ostianus. J. Nat. Prod. 2007, 70, 2022–2025. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Nakahara, S.; Fujioka, S. Aspyrone, a nematicidal compound isolated from the fungus, Aspergillus melleus. Biosci. Biotech. Biochem. 1996, 60, 1375–1376. [Google Scholar] [CrossRef]
- Zhang, L.J.; Yang, M.F.; Ma, J.; Xiao, X.J.; Ma, X.Y.; Zheng, D.G.; Han, M.Y.; Xia, M.L.; Jayawardena, R.S.; Mapook, A.; et al. Neogrisphenol A, a potential ovarian cancer inhibitor from a new record fungus Neohelicosporium griseum. Metabolites 2023, 13, 435. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.Z.; Qi, S.; Zhan, Y.; Zhang, N.W.; Wu, A.A.; Gui, F.; Guo, K.; Yang, Y.R.; Cao, S.G.; Hu, Z.Y.; et al. Aspertetranones A−D, putative meroterpenoids from the marine algal-associated fungus Aspergillus sp. ZL0-1b14. J. Nat. Prod. 2015, 78, 2405–2410. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.H.; Yang, B.; Lin, X.P.; Luo, X.W.; Pang, X.Y.; Tang, L.; Liu, Y.H.; Li, X.J.; Zhou, X.F. Nitrobenzoyl sesquiterpenoids with cytotoxic activities from a marine-derived Aspergillus ochraceus fungus. J. Nat. Prod. 2018, 81, 92–97. [Google Scholar] [CrossRef]
- Haghdani, S.; Gautun, O.R.; Koch, H.; Åstrand, P.O. Optical rotation calculations for a set of pyrrole compounds. J. Phys. Chem. A 2016, 120, 7351–7360. [Google Scholar] [CrossRef]
- Yi, W.W.; Ge, Z.W.; Wu, B.; Zhang, Z.Z. New metabolites from the marine-derived bacterium Pseudomonas sp. ZZ820R. Fitoterapia 2020, 143, 104555. [Google Scholar] [CrossRef]
- Lodewyk, M.W.; Siebert, M.R.; Tantillo, D.J. Computational prediction of 1H and 13C chemical shifts: A useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem. Rev. 2012, 112, 1839–1862. [Google Scholar] [CrossRef]
- Grimblat, N.; Zanardi, M.M.; Sarotti, A.M. Beyond DP4: An improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J. Org. Chem. 2015, 80, 12526–12534. [Google Scholar] [CrossRef]
- Fan, Y.Q.; Zhou, Y.L.; Du, Y.Q.; Wang, Y.; Fu, P.; Zhu, W.M. Circumdatin-aspyrone conjugates from the coral-associated Aspergillus ochraceus LCJ11-102. Mar. Drugs 2019, 17, 400. [Google Scholar] [CrossRef]
- Hao-Chun Hu, H.C.; Li, C.Y.; Tsai, Y.H.; Yang, D.Y.; Wu, Y.C.; Hwang, T.L.; Chen, S.L.; Fülöp, F.; Attila Hunyadi, A.; Yen, C.H.; et al. Secondary metabolites and bioactivities of Aspergillus ochraceopetaliformis isolated from Anthurium brownii. ACS Omega 2020, 5, 20991–20999. [Google Scholar]
- Zou, Z.B.; Zhang, G.; Li, S.M.; He, Z.H.; Yan, Q.X.; Lin, Y.K.; Xie, C.L.; Xia, J.M.; Luo, Z.H.; Luo, L.Z.; et al. Asperochratides A-J, Ten new polyketides from the deep-sea-derived Aspergillus ochraceus. Bioorg. Chem. 2020, 105, 104349. [Google Scholar] [CrossRef]
- Ye, X.W.; Anjum, K.; Song, T.F.; Wang, W.L.; Yu, S.R.; Huang, H.C.; Lian, X.Y.; Zhang, Z.Z. A new curvularin glycoside and its cytotoxic and antibacterial analogues from marine actinomycete Pseudonocardia sp. HS7. Nat. Prod. Res. 2016, 30, 1156–1161. [Google Scholar] [CrossRef]
No. | 1 | 2 | 3 | |||
---|---|---|---|---|---|---|
δC, Type | δH, Multi. (J in Hz) | δC, Type | δH, Multi. (J in Hz) | δC, Type | δH, Multi. (J in Hz) | |
1 | – | 11.67, br s | – | 11.69, br s | – | 11.73, br s |
2 | 126.8, CH | 7.94, s | 126.8, CH | 7.95, s | 127.2, CH | 7.98, s |
3 | 108.1, C | – | 108.1, C | – | 107.9, C | – |
4 | 118.1, CH | 7.66, d (8.0) | 118.1, CH | 7.66, d (8.0) | 118.1, CH | 7.66, d (8.0) |
5 | 119.9, CH | 7.10, t (8.0) | 119.9, CH | 7.10, t (8.0) | 120.0, CH | 7.11, t (8.0) |
6 | 122.0, CH | 7.16, t (8.0) | 122.0, CH | 7.16, t (8.0) | 122.1, CH | 7.17, t (8.0) |
7 | 111.8, CH | 7.43, d (8.0) | 111.8, CH | 7.43, d (8.0) | 111.9, CH | 7.43, d (8.0) |
8 | 135.7, C | – | 135.6, C | – | 135.7, C | – |
9 | 127.0, C | – | 127.0, C | – | 126.9, C | – |
10 | 108.0, CH | 7.02, s | 108.0, CH | 7.02, s | 109.7, CH | 7.07, s |
11 | 123.7, C | – | 123.7, C | – | 123.0, C | – |
12 | – | 9.57, br s | – | 9.57, br s | – | 9.94, br s |
13 | 166.1, C | – | 166.1, C | – | 163.3, C | – |
14 | 86.5, C | – | 86.5, C | – | 91.3, C | – |
15 | 35.7, CH2 | 2.12, m | 35.7, CH2 | 2.12, m | 33.0, CH2 | 2.29, m; 2.06, m |
16 | 19.4, CH2 | 2.03, m; 1.88, m | 19.4, CH2 | 2.02, m; 1.89, m | 19.3, CH2 | 1.91, m |
17 | 44.7, CH2 | 3.62, m; 3.50, m | 44.7, CH2 | 3.62, m; 3.50, m | 45.2, CH2 | 3.63, m; 3.59, m |
19 | 159.9, C | – | 159.8, C | – | 160.0, C | – |
20 | – | – | – | – | 51.1, CH3 | 3.16, s |
OH-14 | – | 6.75, br s | – | 6.76, br s | – | – |
No. | 21 | No. | 26 | No. | 26 | |||
---|---|---|---|---|---|---|---|---|
δC, Type | δH, Mult. (J in Hz) | δC, Type | δH, Mult. (J in Hz) | δC, Type | δH, Mult. (J in Hz) | |||
2 | 163.2, C | – | 1 | 162.3, C | – | 11a | 39.6, CH | 2.12, dd (11.8, 9.0) |
3 | 128.2, C | – | 3 | 157.1, C | – | 12 | 62.5, CH | 4.36, dd (9.0, 4.3) |
4 | 146.2, CH | 6.64, s | 4 | 106.5, C | – | 12a | 102.2, C | – |
5 | 82.1, CH | 3.90, d (7.5) | 4a | 162.1, C | – | 13 | 17.0, CH3 | 2.18, s |
6 | 68.0, CH | 3.62, dq (7.5, 6.3) | 5a | 83.7, C | – | 14 | 9.1, CH3 | 1.85, s |
7 | 18.5, CH3 | 0.99, d (6.3) | 6 | 72.5, CH | 4.23, d (5.4) | 15 | 17.5, CH3 | 1.26, s |
8 | 77.9, CH | 4.15, br s | 6a | 75.2, C | – | 16 | 23.3, CH3 | 1.23, s |
9 | 66.7, CH | 4.15, br s | 7 | 207.5, C | – | 17 | 25.2, CH3 | 1.28, s |
10 | 17.6, CH3 | 1.33, d (4.3) | 8 | 54.4, C | – | 18 | 10.8, CH3 | 1.10, d (6.5) |
11 | 57.0, CH3 | 3.20, s | 9 | 209.4, C | – | OH-6 | – | 6.62, d (5.4) |
10 | 45.2, CH2 | αH: 2.65, dd (16.9, 1.9); βH: 2.57, d (16.9) | OH-6a | – | 6.69, s | |||
10a | 75.2, C | – | OH-10a | – | 4.86, d (1.9) | |||
11 | 38.7, CH | 1.87, dd (11.8, 6.5) | OH-12 | – | 4.76, d (4.3) |
Compounds | MRSA | E. coli | C. albicans |
---|---|---|---|
9 | NA | NA | 49 |
11 | NA | NA | 49 |
14 | NA | NA | 48 |
20 | 40 | 21 | NA |
22 | NA | 25 | 48 |
26 | 3.75 | 5 | NA |
27 | NA | 4 | NA |
Gentamicin | 0.78 | 0.40 | NT |
amphotericin B | NT | NT | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.; Ha, Y.; Liu, X.; Wang, N.; Lian, X.-Y.; Zhang, Z. Isolation and Structure Elucidation of New Metabolites from the Mariana-Trench-Associated Fungus Aspergillus sp. SY2601. Molecules 2024, 29, 459. https://doi.org/10.3390/molecules29020459
Sun C, Ha Y, Liu X, Wang N, Lian X-Y, Zhang Z. Isolation and Structure Elucidation of New Metabolites from the Mariana-Trench-Associated Fungus Aspergillus sp. SY2601. Molecules. 2024; 29(2):459. https://doi.org/10.3390/molecules29020459
Chicago/Turabian StyleSun, Cangzhu, Yura Ha, Xin Liu, Nan Wang, Xiao-Yuan Lian, and Zhizhen Zhang. 2024. "Isolation and Structure Elucidation of New Metabolites from the Mariana-Trench-Associated Fungus Aspergillus sp. SY2601" Molecules 29, no. 2: 459. https://doi.org/10.3390/molecules29020459
APA StyleSun, C., Ha, Y., Liu, X., Wang, N., Lian, X. -Y., & Zhang, Z. (2024). Isolation and Structure Elucidation of New Metabolites from the Mariana-Trench-Associated Fungus Aspergillus sp. SY2601. Molecules, 29(2), 459. https://doi.org/10.3390/molecules29020459