Revealing Novel Source of Breast Cancer Inhibitors from Seagrass Enhalus acoroides: In Silico and In Vitro Studies
Abstract
:1. Introduction
2. Results
2.1. List of Compounds after Metabolomic Profiling
2.2. Pa Score, Toxicity Prediction, Drug Likeness and Network Pharmacology Analysis
2.3. Docking Potency of Compounds Found in EAE and EAH
2.4. Scavenging Activity, Anticancer Capacity, and Safety of EAE and EAH
3. Discussion
4. Materials and Methods
4.1. Enhalus acoroides (EA) Extract Preparation and Metabolites Profiling
4.2. In Silico Study Assessment
4.2.1. Prediction of Bioactive Compound Activities, Toxicity Analysis, and Drug Likeness
4.2.2. Protein Target Identification and Analysis
4.2.3. Network Pharmacology Analysis
4.2.4. Molecular Docking Simulation
4.3. Antioxidant Capacity of EA against ABTS
4.4. In Vitro Study on Cancer Cell Lines
4.4.1. Antiproliferative Activity of EA via MTT Assay
4.4.2. HIF-1α, EGFR Tyrosine Kinase, and HER2 Expressions
4.5. Data Management and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nur, R.M.; Nurafni; Koroy, K.; Alwi, D.; Wahab, I.; Sulistiawati, S.; Dewi, R.; Rorano, M. The antibacterial activity of seagrass Enhalus acoroides against Staphylococcus aureus. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Ternate, Indonesia, 15 July 2021; IOP Publishing Ltd.: Bristol, UK, 2021; Volume 890. [Google Scholar]
- Gono, C.M.P.; Ahmadi, P.; Hertiani, T.; Septiana, E.; Putra, M.Y.; Chianese, G. A Comprehensive Update on the Bioactive Compounds from Seagrasses. Mar. Drugs 2022, 20, 406. [Google Scholar] [CrossRef]
- Duffy, J.E.; Benedetti-Cecchi, L.; Trinanes, J.; Muller-Karger, F.E.; Ambo-Rappe, R.; Boström, C.; Buschmann, A.H.; Byrnes, J.; Coles, R.G.; Creed, J.; et al. Toward a Coordinated Global Observing System for Seagrasses and Marine Macroalgae. Front. Mar. Sci. 2019, 6, 317. [Google Scholar] [CrossRef]
- Hemminga, M.A.; Duarte, C.M. Seagrass Ecology; Cambridge University Press: Cambridge, UK, 2000; ISBN 0521661846. [Google Scholar]
- Wahab, I.; Madduppa, H.; Kawaroe, M. Seagrass species distribution, density and coverage at Panggang Island, Jakarta. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Bogor, Indonesia, 25–26 October 2016; IOP Publishing: Bristol, UK, 2017; Volume 54, p. 012084. [Google Scholar]
- Kim, D.H.; Mahomoodally, M.F.; Sadeer, N.B.; Seok, P.G.; Zengin, G.; Palaniveloo, K.; Khalil, A.A.; Rauf, A.; Rengasamy, K.R. Nutritional and bioactive potential of seagrasses: A review. S. Afr. J. Bot. 2021, 137, 216–227. [Google Scholar] [CrossRef]
- Fatmawati, Y.; Sandrina, S.; Aina, R.N.; Narulita, E. Molecular docking analysis of seagrass (Enhalus acoroides) phytochemical compounds as an antidiabetic. J. Biol. Res. 2022, 95. [Google Scholar] [CrossRef]
- Wang, X.-B.; Sun, Z.-H.; Fan, L.-X.; Liu, Y.-Y.; Feng, J.; Ma, G.-X.; Chen, D.-L. Two novel diterpenes from the stems and leaves of tropical seagrass Enhalus acoroides in the South China sea. Nat. Prod. Res. 2021, 35, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Selim, M.S.M.; Abdelhamid, S.A.; Mohamed, S.S. Secondary metabolites and biodiversity of actinomycetes. J. Genet. Eng. Biotechnol. 2021, 19, 72. [Google Scholar] [CrossRef] [PubMed]
- El Shaffai, A.; Mettwally, W.S.A.; Mohamed, S.I.A. A comparative study of the bioavailability of Red Sea seagrass, Enhalus acoroides (L.f.) Royle (leaves, roots, and rhizomes) as anticancer and antioxidant with preliminary phytochemical characterization using HPLC, FT-IR, and UPLC-ESI-TOF-MS spectroscopic. Beni-Suef Univ. J. Basic Appl. Sci. 2023, 12, 41. [Google Scholar] [CrossRef]
- Sudo, K.; Nakaoka, M. Fine-scale distribution of tropical seagrass beds in Southeast Asia. Ecol. Res. 2020, 35, 994–1000. [Google Scholar] [CrossRef]
- Fredotović, Ž.; Puizina, J.; Nazlić, M.; Maravić, A.; Ljubenkov, I.; Soldo, B.; Vuko, E.; Bajić, D. Phytochemical Characterization and Screening of Antioxidant, Antimicrobial and Antiproliferative Properties of Allium × cornutum Clementi and Two Varieties of Allium cepa L. Peel Extracts. Plants 2021, 10, 832. [Google Scholar] [CrossRef]
- De Vincenti, L.; Glasenapp, Y.; Cattò, C.; Villa, F.; Cappitelli, F.; Papenbrock, J. Hindering the formation and promoting the dispersion of medical biofilms: Non-lethal effects of seagrass extracts. BMC Complement. Altern. Med. Ther. 2018, 18, 168. [Google Scholar] [CrossRef]
- Sritharan, S.; Sivalingam, N. A comprehensive review on time-tested anticancer drug doxorubicin. Life Sci. 2021, 278, 119527. [Google Scholar] [CrossRef]
- Renu, K.; Abilash, V.G.; Tirupathi, T.P.; Arunachalam, S. Molecular mechanism of doxorubicin-induced cardiomyopathy—An update. Eur. J. Pharmacol. 2018, 818, 241–253. [Google Scholar] [CrossRef]
- Chandel, N.S. Basics of metabolic reactions. Cold Spring Harb. Perspect. Biol. 2021, 13, a040527. [Google Scholar] [CrossRef] [PubMed]
- Mabrouk, S.B.; Reis, M.; Sousa, M.L.; Ribeiro, T.; Almeida, J.R.; Pereira, S.; Antunes, J.; Rosa, F.; Vasconcelos, V.; Achour, L.; et al. The Marine Seagrass Halophila stipulacea as a Source of Bioactive Metabolites against Obesity and Biofouling. Mar. Drugs 2020, 18, 88. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Vasantha, K.S.; John, A.K.; Shobana, C.; Usharani, B. Anticancer activity of hydroalcoholic extract of Enhalus acoroides. Int. J. Health Sci. 2022, 6, 9528–9537. [Google Scholar] [CrossRef]
- Çelik, E.E.; Rubio, J.M.A.; Gökmen, V. Behaviour of Trolox with macromolecule-bound antioxidants in aqueous medium: Inhibition of auto-regeneration mechanism. Food Chem. 2018, 243, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Harmankaya, A.; Özcan, A.; Dalginli, K.; Erdag, D.; Aydın Dursun, Y.; Gungor, B. The Effect of Trolox on Oxidative Stress Index and Nitric Oxide Levels. J. Inst. Sci. Technol. 2021, 11, 3262–3268. [Google Scholar] [CrossRef]
- Clemente, S.M.; Martínez-Costa, O.H.; Monsalve, M.; Samhan-Arias, A.K. Targeting Lipid Peroxidation for Cancer Treatment. Molecules 2020, 25, 5144. [Google Scholar] [CrossRef] [PubMed]
- Fuchs-Tarlovsky, V. Role of antioxidants in cancer therapy. Nutrition 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Nurkolis, F.; Taslim, N.A.; Qhabibi, F.R.; Kang, S.; Moon, M.; Choi, J.; Choi, M.; Park, M.N.; Mayulu, N.; Kim, B. Ulvophyte Green Algae Caulerpa lentillifera: Metabolites Profile and Antioxidant, Anticancer, Anti-Obesity, and In Vitro Cytotoxicity Properties. Molecules 2023, 28, 1365. [Google Scholar] [CrossRef]
- Druzhilovskiy, D.S.; Rudik, A.V.; Filimonov, D.A.; Gloriozova, T.A.; Lagunin, A.A.; Dmitriev, A.V.; Pogodin, P.V.; Dubovskaya, V.I.; Ivanov, S.M.; Tarasova, O.A.; et al. Computational platform Way2Drug: From the prediction of biological activity to drug repurposing. Russ. Chem. Bull. 2017, 66, 1832–1841. [Google Scholar] [CrossRef]
- Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018, 46, W257–W263. [Google Scholar] [CrossRef] [PubMed]
- Norinder, U.; Bergström, C.A.S. Prediction of ADMET properties. ChemMedChem 2006, 1, 920–937. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Wang, N.N.; Yao, Z.J.; Zhang, L.; Cheng, Y.; Ouyang, D.; Lu, A.P.; Cao, D.S. Admetlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J. Cheminform. 2018, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Gallo, K.; Goede, A.; Preissner, R.; Gohlke, B.-O. SuperPred 3.0: Drug classification and target prediction—A machine learning approach. Nucleic Acids Res. 2022, 50, W726–W731. [Google Scholar] [CrossRef] [PubMed]
- Dunkel, M.; Günther, S.; Ahmed, J.; Wittig, B.; Preissner, R. SuperPred: Drug classification and target prediction. Nucleic Acids Res. 2008, 36, W55–W59. [Google Scholar] [CrossRef] [PubMed]
- Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014, 42, W32–W38. [Google Scholar] [CrossRef] [PubMed]
- Asadzadeh, A.; Ghorbani, N.; Dastan, K. Identification of druggable hub genes and key pathways associated with cervical cancer by protein-protein interaction analysis: An in silico study. Int. J. Reprod. Biomed. 2023, 21, 809–818. [Google Scholar] [CrossRef]
- Sun, P.; Yang, Y.; Cheng, H.; Fu, S.; Liu, Y.; Qiu, Y.; Chen, H.; Zhang, J.; Zhou, H.; Shi, L.; et al. Integrated Analysis of Long Non-Coding RNA Expression Profiles in Glaesserella parasuis-Induced Meningitis: New Insight into Pathogenesis. Microbiol. Res. 2023, 14, 1427–1441. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, X.; Gan, J.; Chen, S.; Xiao, Z.X.; Cao, Y. CB-Dock2: Improved protein-ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Res. 2022, 50, W159–W164. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Gan, J.; Xiao, Z.X.; Cao, Y. FitDock: Protein–ligand docking by template fitting. Brief. Bioinform. 2022, 23, bbac087. [Google Scholar] [CrossRef] [PubMed]
- Hayes, C.; Nurkolis, F.; Laksemi, D.A.; Chung, S.; Park, M.N.; Choi, M.; Choi, J.; Darmaputra, I.G.; Gunawan, W.B.; Lele, J.A.; et al. Coffee Silverskin Phytocompounds as a Novel Anti-Aging Functional Food: A Pharmacoinformatic Approach Combined with In Vitro Study. Molecules 2023, 28, 7037. [Google Scholar] [CrossRef] [PubMed]
- Sabrina, N.; Rizal, M.; Nurkolis, F.; Hardinsyah, H.; Tanner, M.J.; Gunawan, W.B.; Handoko, M.N.; Mayulu, N.; Taslim, N.A.; Puspaningtyas, D.S.; et al. Bioactive peptides identification and nutritional status ameliorating properties on malnourished rats of combined eel and soy-based tempe flour. Front. Nutr. 2022, 9, 963065. [Google Scholar] [CrossRef]
- Nurkolis, F.; Purnomo, A.F.; Alisaputra, D.; Gunawan, W.B.; Qhabibi, F.R.; Park, W.; Moon, M.; Taslim, N.A.; Park, M.N.; Kim, B. In silico and in vitro studies reveal a synergistic potential source of novel anti-ageing from two Indonesian green algae. J. Funct. Foods 2023, 104, 105555. [Google Scholar] [CrossRef]
Samples | No | Observed Compounds | Molecular Formula | RT (min) | Observed MW (m/z) | PubChem ID or Substance ID |
---|---|---|---|---|---|---|
EAE | C1 | Thalassiolin A | C21H20O14S | 6.50 | 528.4200 | 5493604 |
C2 | Luteolin | C15H10O6 | 12.91 | 286.1500 | 5280445 | |
C3 | luteolin-O-sulphate | C15H10O9S | 10.25 | 366.2500 | NA | |
C4 | Myricetin | C15H10O8 | 20.33 | 317.9189 | 5281672 | |
C5 | di-O-caffeoyl tartaric acid | C22H18O12 | 7.15 | 473.0370 | NA | |
EAH | C6 | 6-hydroxy luteolin O-glucoside | C21H20O12 | 10.91 | 464.1050 | 185766 |
C7 | Oleamide | C18H35NO | 3.33 | 281.3700 | 5283387 | |
C8 | Thalassiolin C | C21H20O13S | 7.21 | 512.5400 | 5493606 | |
C9 | O-caffeoyl-O-coumaroyl tartaric acid | C22H18O11 | 9.10 | 458.0908 | NA | |
C10 | Betaine | C5H11NO2 | 11.73 | 117.0135 | 247 |
Compounds | Pa Score * | Toxicity Model Computation Analysis ** | Drug Likeness *** | ||||
---|---|---|---|---|---|---|---|
HIF1A Expression Inhibitor | Chlordecone Reductase Inhibitor | Predicted LD50 (mg/kg) | Toxicity Class | Lipinski Rule | Pfizer Rule | GSK | |
C1 | 0.80 | 0.46 | 5000 | 5 | Rejected | Accepted | Rejected |
C2 | 0.96 | 0.98 | 3919 | 5 | Accepted | Accepted | Accepted |
C3 | 0.90 | 0.915 | 4000 | 5 | Accepted | Accepted | Accepted |
C4 | 0.97 | 0.99 | 159 | 3 | Accepted | Accepted | Accepted |
C5 | 0.76 | 0.87 | 2980 | 5 | Rejected | Accepted | Rejected |
C6 | 0.84 | 0.71 | 5000 | 5 | Rejected | Accepted | Rejected |
C7 | 0.14 | 0.55 | 750 | 4 | Accepted | Rejected | Rejected |
C8 | 0.79 | 0.41 | 5000 | 5 | Rejected | Accepted | Rejected |
C9 | 0.58 | 0.60 | 650 | 4 | Accepted | Accepted | Rejected |
C10 | 0.12 | 0.72 | 650 | 4 | Accepted | Accepted | Accepted |
Name | Degree | Betweenness Centrality | Closeness Centrality | Overall Score | Pathway |
---|---|---|---|---|---|
EGFR | 17 | 0.2315 | 0.4655 | 17.6970 | Breast cancer, HIF-1 signaling pathway, EGFR tyrosine kinase inhibitor resistance (Cancer), ERK and HER signaling (cancer), and PI3K signaling (cancer) |
Compounds and Control as Ligands | HIF-1α | EGFR Tyrosine Kinase | HER2 |
---|---|---|---|
Control Doxorubicin | −8.6 | −7.2 | −8.7 |
Control Talazoparib | −7.7 | −7.9 | −8.4 |
C2 | −8.7 | −8.1 | −9.8 |
C3 | −9.5 | −8.4 | −10.0 |
C8 | −8.9 | −8.3 | −8.9 |
C9 | −8.9 | −8.3 | −9.9 |
Ligands | HIF-1α 3KCX | EGFR Tyrosine Kinase 1M17 | HER2 3PP0 |
---|---|---|---|
Control Doxorubicin | |||
Control Talazoparib | |||
C2 | |||
C3 | |||
C8 | |||
C9 |
No | Samples | MCF-7 | MDA-MB-231 | Normal Cell (MCF-10A) |
---|---|---|---|---|
1 | EAE | 220.5650 | 550.8885 | 1780.2050 |
2 | EAH | 345.9544 | 1500.6800 | 1950.1045 |
3 | Luteolin | 101.0012 | 1201.5516 | 1500.2159 |
4 | Thalassiolin C | 100.1150 | 985.7500 | 1312.3460 |
3 | Control Doxorubicin | 3.1955 | 0.4455 | 54.0025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prajoko, Y.W.; Qhabibi, F.R.; Gerardo, T.S.; Kizzandy, K.; Tanjaya, K.; Willyanto, S.E.; Permatasari, H.K.; Surya, R.; Mayulu, N.; Taslim, N.A.; et al. Revealing Novel Source of Breast Cancer Inhibitors from Seagrass Enhalus acoroides: In Silico and In Vitro Studies. Molecules 2024, 29, 1082. https://doi.org/10.3390/molecules29051082
Prajoko YW, Qhabibi FR, Gerardo TS, Kizzandy K, Tanjaya K, Willyanto SE, Permatasari HK, Surya R, Mayulu N, Taslim NA, et al. Revealing Novel Source of Breast Cancer Inhibitors from Seagrass Enhalus acoroides: In Silico and In Vitro Studies. Molecules. 2024; 29(5):1082. https://doi.org/10.3390/molecules29051082
Chicago/Turabian StylePrajoko, Yan Wisnu, Faqrizal Ria Qhabibi, Timothy Sahala Gerardo, Kanandya Kizzandy, Krisanto Tanjaya, Sebastian Emmanuel Willyanto, Happy Kurnia Permatasari, Reggie Surya, Nelly Mayulu, Nurpudji Astuti Taslim, and et al. 2024. "Revealing Novel Source of Breast Cancer Inhibitors from Seagrass Enhalus acoroides: In Silico and In Vitro Studies" Molecules 29, no. 5: 1082. https://doi.org/10.3390/molecules29051082
APA StylePrajoko, Y. W., Qhabibi, F. R., Gerardo, T. S., Kizzandy, K., Tanjaya, K., Willyanto, S. E., Permatasari, H. K., Surya, R., Mayulu, N., Taslim, N. A., Tjandrawinata, R. R., Syahputra, R. A., Tallei, T. E., Tsopmo, A., Kim, B., Kurniawan, R., & Nurkolis, F. (2024). Revealing Novel Source of Breast Cancer Inhibitors from Seagrass Enhalus acoroides: In Silico and In Vitro Studies. Molecules, 29(5), 1082. https://doi.org/10.3390/molecules29051082