Understanding Antidiabetic Potential of Oligosaccharides from Red Alga Dulse Devaleraea inkyuleei Xylan by Investigating α-Amylase and α-Glucosidase Inhibition
Abstract
:1. Introduction
2. Results and Discussion
2.1. Production and Purification of Xylooligosaccharides from Dulse Xylan
2.2. Dulse XOS Inhibitory Activity against MGAM and α-Amylase
2.3. Kinetics Studies
2.3.1. Kinetics of the Inhibition of MGAM by XOSs
2.3.2. Kinetics of the Inhibition of α-Amylase by XOSs
2.4. Prediction of the Interaction between Digestive Enzymes and XOSs
2.4.1. Interaction between MGAM and XOSs
2.4.2. Interaction between α-Amylase and XOSs
3. Materials and Methods
3.1. Materials
3.2. Preparation of Dulse Xylan
3.3. Preparation of XOSs and Characterization
3.4. Thin-Layer Chromatography
3.5. HPLC Analysis
3.6. MGAM Inhibition
3.7. α-Amylase Inhibition
3.8. Kinetic Analysis of the Inhibition
3.9. Molecular Docking
3.9.1. Ligand Preparation
3.9.2. Protein Preparation
3.9.3. Grid Generation and Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morgan, K.C.; Wright, J.L.C.; Simpson, F.J. Review of chemical constituents of the red alga Palmaria palmata (dulse). Econ. Bot. 1980, 34, 27–50. [Google Scholar] [CrossRef]
- IDF Diabetes Atlas 8th Edition. Available online: https://diabetesatlas.org/atlas/eighth-edition/ (accessed on 16 November 2023).
- Furuta, T.; Miyabe, Y.; Yasui, H.; Kinoshita, Y.; Kishimura, H. Angiotensin I Converting Enzyme Inhibitory Peptides Derived from Phycobiliproteins of Dulse Palmaria palmata. Mar. Drugs 2016, 14, 32. [Google Scholar] [CrossRef] [PubMed]
- Sato, N.; Furuta, T.; Takeda, T.; Miyabe, Y.; Ura, K.; Takagi, Y.; Yasui, H.; Kumagai, Y.; Kishimura, H. Antioxidant activity of proteins extracted from red alga dulse harvested in Japan. J. Food Biochem. 2019, 43, e12709. [Google Scholar] [CrossRef] [PubMed]
- Nishida, Y.; Kumagai, Y.; Michiba, S.; Yasui, H.; Kishimura, H. Efficient Extraction and Antioxidant Capacity of Mycosporine-Like Amino Acids from Red Alga Dulse Palmaria palmata in Japan. Mar. Drugs 2020, 18, 502. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, R.; Takizawa, K.; Miyabe, Y.; Mune Mune, M.A.; Kishimura, H.; Kumagai, Y. Mycosporine-like Amino Acids from Red Alga Dulse (Devaleraea inkyuleei): Monthly Variation and Improvement in Extraction. Phycology 2023, 3, 394. [Google Scholar] [CrossRef]
- Kumagai, Y.; Miyabe, Y.; Takeda, T.; Adachi, K.; Yasui, H.; Kishimura, H. In Silico Analysis of Relationship between Proteins from Plastid Genome of Red Alga Palmaria sp. (Japan) and Angiotensin I Converting Enzyme Inhibitory Peptides. Mar. Drugs 2019, 17, 190. [Google Scholar] [CrossRef] [PubMed]
- Harnedy, P.A.; O’Keeffe, M.B.; FitzGerald, R.J. Purification and identification of dipeptidyl peptidase (DPP) IV inhibitory peptides from the macroalga Palmaria palmata. Food Chem. 2015, 172, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Lahaye, M.; Michel, C.; Barry, J.L. Chemical, physicochemical and in-vitro fermentation characteristics of dietary fibres from Palmaria palmata (L.) Kuntze. Food Chem. 1993, 47, 29–36. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Kishimura, H.; Kinoshita, Y.; Saburi, W.; Kumagai, Y.; Yasui, H.; Ojima, T. Enzymatic production of xylooligosaccharides from red alga dulse (Palmaria sp.) wasted in Japan. Process Biochem. 2019, 82, 117–122. [Google Scholar] [CrossRef]
- Kobayashi, M.; Kumagai, Y.; Yamamoto, Y.; Yasui, H.; Kishimura, H. Identification of a Key Enzyme for the Hydrolysis of β-(1→3)-Xylosyl Linkage in Red Alga Dulse Xylooligosaccharide from Bifidobacterium adolescentis. Mar. Drugs 2020, 18, 174. [Google Scholar] [CrossRef] [PubMed]
- Fujii, Y.; Kobayashi, M.; Miyabe, Y.; Kishimura, H.; Hatanaka, T.; Kumagai, Y. Preparation of β(1→3)/β(1→4) xylooligosaccharides from red alga dulse by two xylanases from Streptomyces thermogriseus. Bioresour. Bioprocess. 2021, 8, 38. [Google Scholar] [CrossRef]
- Campbell, J.M.; Fahey, G.C.; Wolf, B.W. Selected Indigestible Oligosaccharides Affect Large Bowel Mass, Cecal and Fecal Short-Chain Fatty Acids, pH and Microflora in Rats. J. Nutr. 1997, 127, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Laurent, C.; Simoneau, C.; Marks, L.; Braschi, S.; Champ, M.; Charbonnel, B.; Krempf, M. Effect of acetate and propionate on fasting hepatic glucose production in humans. Eur. J. Clin. Nutr. 1995, 49, 484–491. [Google Scholar]
- Sheu, W.H.-H.; Lee, I.-T.; Chen, W.; Chan, Y.-C. Effects of Xylooligosaccharides in Type 2 Diabetes Mellitus. J. Nutr. Sci. Vitaminol. 2008, 54, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, I.M.E.; Li-Chan, E.C.Y. Overview of food products and dietary constituents with antidiabetic properties and their putative mechanisms of action: A natural approach to complement pharmacotherapy in the management of diabetes. Mol. Nutr. Food Res. 2014, 58, 61–78. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Yan, Q.; Liu, J.; Wu, X.; Jiang, Z. Can functional oligosaccharides reduce the risk of diabetes mellitus? FASEB J. 2019, 33, 11655–11667. [Google Scholar] [CrossRef]
- Jiang, C.; Cheng, D.; Liu, Z.; Sun, J.; Mao, X. Advances in agaro-oligosaccharides preparation and bioactivities for revealing the structure-function relationship. Food Res. Int. 2021, 145, 110408. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.-Q.; Cao, J.-J.; Liu, R.; Chen, H.-Q. Structural characterization, α-amylase and α-glucosidase inhibitory activities of polysaccharides from wheat bran. Food Chem. 2021, 341, 128218. [Google Scholar] [CrossRef] [PubMed]
- Cheong, K.-L.; Qiu, H.-M.; Du, H.; Liu, Y.; Khan, B.M. Oligosaccharides Derived from Red Seaweed: Production, Properties, and Potential Health and Cosmetic Applications. Molecules 2018, 23, 2451. [Google Scholar] [CrossRef] [PubMed]
- Deniaud, E.; Fleurence, J.; Lahaye, M. Interaction of the Mix-Linked β-(1,3)/β-(1,4)-D-XYLANS in the cell walls of Palmaria palmata (RHODOPHYTA)1. J. Phycol. 2003, 39, 74–82. [Google Scholar] [CrossRef]
- Veenashri, B.R.; Muralikrishna, G. Inhibition of α-amylase and α-glucosidase by various compounds isolated from finger millet bran. Trends Carbohydr. Res. 2014, 6, 10–16. Available online: http://ir.cftri.res.in/id/eprint/12185 (accessed on 20 January 2024).
- Hong, S.J.; Lee, J.-H.; Kim, E.J.; Yang, H.J.; Chang, Y.-K.; Park, J.-S.; Hong, S.-K. In vitro and in vivo investigation for biological activities of neoagarooligosaccharides prepared by hydrolyzing agar with β-agarase. Biotechnol. Bioprocess. Eng. 2017, 22, 489–496. [Google Scholar] [CrossRef]
- Tseng, P.-S.; Ande, C.; Moremen, K.W.; Crich, D. Influence of Side Chain Conformation on the Activity of Glycosidase Inhibitors. Angew. Chemie Int. Ed. 2023, 62, e202217809. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Cao, X.; Geng, P.; Bai, F.; Bai, G. Study of the inhibition of two human maltase-glucoamylases catalytic domains by different α-glucosidase inhibitors. Carbohydr. Res. 2011, 346, 2688–2692. [Google Scholar] [CrossRef]
- Simsek, M.; Quezada-Calvillo, R.; Ferruzzi, M.G.; Nichols, B.L.; Hamaker, B.R. Dietary Phenolic Compounds Selectively Inhibit the Individual Subunits of Maltase-Glucoamylase and Sucrase-Isomaltase with the Potential of Modulating Glucose Release. J. Agric. Food Chem. 2015, 63, 3873–3879. [Google Scholar] [CrossRef] [PubMed]
- Stütz, A.E.; Wrodnigg, T.M. Imino sugars and glycosyl hydrolases: Historical context, current aspects, emerging trends. Adv. Carbohydr. Chem. Biochem. 2011, 66, 187–298. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yang, W.; Sun, W.; Chen, S.; Liu, D.; Kong, X.; Tian, J.; Ye, X. Inhibition of porcine pancreatic α-amylase activity by chlorogenic acid. J. Funct. Foods 2020, 64, 103587. [Google Scholar] [CrossRef]
- Muthana, S.M.; Campbell, C.T.; Gildersleeve, J.C. Modifications of glycans: Biological significance and therapeutic opportunities. ACS Chem. Biol. 2012, 7, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Qin, X.; Cao, X.; Wang, L.; Bai, F.; Bai, G.; Shen, Y. Structural insight into substrate specificity of human intestinal maltase-glucoamylase. Protein Cell 2011, 2, 827–836. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Su, A.; Yuan, S.; Zhao, H.; Tan, S.; Hu, C.; Deng, H.; Guo, Y. Evaluation of Total Flavonoids, Myricetin, and Quercetin from Hovenia dulcis Thunb. As Inhibitors of α-Amylase and α-Glucosidase. Plant Foods Hum. Nutr. 2016, 71, 444–449. [Google Scholar] [CrossRef]
- Chenine, A.S.; Boual, Z.; Elhadj, M.D.O.; Addoun, N.; Mahfoudi, R.; Khemili, A.; Belkhalfa, H.; Bachari, K.; Fendri, I.; El Modafar, C.; et al. Inhibitory effect of arabinoxylan oligosaccharides from Plantago ciliata Desf. seeds on α-amylase and α-d-glucosidase and the inhibition kinetics. Euro-Mediterr. J. Environ. Integr. 2023, 8, 795–805. [Google Scholar] [CrossRef]
- Mune Mune, M.A.; Miyabe, Y.; Shimizu, T.; Matsui, W.; Kumagai, Y.; Kishimura, H. Characterisation of Bioactive Peptides from Red Alga Gracilariopsis chorda. Mar. Drugs 2023, 21, 49. [Google Scholar] [CrossRef] [PubMed]
- Sim, L.; Quezada-Calvillo, R.; Sterchi, E.E.; Nichols, B.L.; Rose, D.R. Human Intestinal Maltase–Glucoamylase: Crystal Structure of the N-Terminal Catalytic Subunit and Basis of Inhibition and Substrate Specificity. J. Mol. Biol. 2008, 375, 782–792. [Google Scholar] [CrossRef]
- Nahoum, V.; Roux, G.; Anton, V.; Rougé, P.; Puigserver, A.; Bischoff, H.; Henrissat, B.; Payan, F. Crystal structures of human pancreatic alpha-amylase in complex with carbohydrate and proteinaceous inhibitors. Biochem. J. 2000, 346 Pt 1, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Caner, S.; Zhang, X.; Jiang, J.; Chen, H.-M.; Nguyen, N.T.; Overkleeft, H.; Brayer, G.D.; Withers, S.G. Glucosyl epi-cyclophellitol allows mechanism-based inactivation and structural analysis of human pancreatic α-amylase. FEBS Lett. 2016, 590, 1143–1151. [Google Scholar] [CrossRef]
- Maurus, R.; Begum, A.; Kuo, H.-H.; Racaza, A.; Numao, S.; Andersen, C.; Tams, J.W.; Vind, J.; Overall, C.M.; Withers, S.G.; et al. Structural and mechanistic studies of chloride induced activation of human pancreatic alpha-amylase. Protein Sci. 2005, 14, 743–755. [Google Scholar] [CrossRef]
- Kawakami, K.; Li, P.; Uraji, M.; Hatanaka, T.; Ito, H. Inhibitory Effects of Pomegranate Extracts on Recombinant Human Maltase–Glucoamylase. J. Food Sci. 2014, 79, H1848–H1853. [Google Scholar] [CrossRef]
- Castañeda-Pérez, E.; Jiménez-Morales, K.; Castellanos-Ruelas, A.; Chel-Guerrero, L.; Betancur-Ancona, D. Antidiabetic Potential of Protein Hydrolysates and Peptide Fractions from Lima Bean (Phaseolus lunatus L.): An In Vitro Study. Int. J. Pept. Res. Ther. 2021, 27, 1979–1988. [Google Scholar] [CrossRef]
- Sun, L.; Chen, W.; Meng, Y.; Yang, X.; Yuan, L.; Guo, Y. Interactions between polyphenols in thinned young apples and porcine pancreatic α-amylase: Inhibition, detailed kinetics and fluorescence quenching. Food Chem. 2016, 208, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Leskovac, V. Comprehensive Enzyme Kinetics, 1st ed.; Springer: New York, NY, USA, 2003. [Google Scholar]
- Pollini, L.; Riccio, A.; Juan, C.; Tringaniello, C.; Ianni, F.; Blasi, F.; Mañes, J.; Macchiarulo, A.; Cossignani, L. Phenolic Acids from Lyciumbarbarum Leaves: In Vitro and In Silico Studies of the Inhibitory Activity against Porcine Pancreatic α-Amylase. Processes 2020, 8, 1388. [Google Scholar] [CrossRef]
Inhibitor (XOS) | Vmaxapp (DO/min) | Kmapp (mM) | Inhibition Type | Ki | ||||
---|---|---|---|---|---|---|---|---|
A | B | C | A | B | C | (mg/mL) | ||
X2 | 0.086 | 0.086 | 0.086 | 4.758 | 5.030 | 5.403 | Competitive | 15.20 |
X3 | 0.083 | 0.083 | 0.083 | 4.358 | 4.812 | 7.646 | Competitive | 16.00 |
DX3 | 0.101 | 0.093 | 0.102 | 4.013 | 3.743 | 5.372 | Competitive | 18.31 |
DX4 | 0.102 | 0.105 | 0.102 | 3.940 | 4.580 | 5.097 | Competitive | 23.33 |
Inhibitor (XOS) | Vmaxapp (DO/min) | Kmapp (mg/mL) |
---|---|---|
X2 (12.42 mg/mL) | 0.061 | 2.064 |
X3 (13.58 mg/mL) | 0.056 | 1.967 |
Enzyme | Molecule | Pose N°/ Total Poses | Affinity * (kcal/mol) | Number of Hydrogen Bonds | Residues Involved in Hydrogen Bonds | Number of Non-Bonded Contacts |
---|---|---|---|---|---|---|
MGAM | Acarbose | 1/34 | −7.4 | 13 | Tyr299, Asp327, Arg334, Asp443(3) **, Asp542(2), Asp571, Gln603(3), Tyr605 | 88 |
X2 | 1/7 | −5.8 | 7 | Asp327, Trp539, Asp542(3), Asp571, His600 | 96 | |
X3 | 1/9 | −5.6 | 9 | Asp203, Thr205(2), Asp327, Trp406, Asp443, Asp542(2), Arg526 | 63 | |
DX3 | 1/21 | −5.0 | 9 | Asp203(2), Thr205(2), Tyr214, Asp327, Met444, Arg526, Asp542 | 64 | |
DX4 | 1/32 | −6.0 | 11 | Arg202, Asp203(3), Asp327, Trp406, Asp443(2), Ser448, Asp542, Arg526 | 79 | |
α-amylase | Acarbose | 1/9 | −5.1 | 16 | Trp59, Arg195, Asp197(2), Glu233(2), His299, Asp300(5), His305(2), Gly306, Asp356 | 69 |
X2 | 1/4 | −5.5 | 10 | Trp59, Tyr62, Arg195, Asp197(2), Glu233(2), His299, Asp300(2) | 57 | |
X3 | 1/6 | −4.9 | 11 | Thr163, Arg195(3), Asp197, Ala198, Glu233, Asp300, His305(2), Gly306 | 63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mune Mune, M.A.; Hatanaka, T.; Kishimura, H.; Kumagai, Y. Understanding Antidiabetic Potential of Oligosaccharides from Red Alga Dulse Devaleraea inkyuleei Xylan by Investigating α-Amylase and α-Glucosidase Inhibition. Molecules 2024, 29, 1536. https://doi.org/10.3390/molecules29071536
Mune Mune MA, Hatanaka T, Kishimura H, Kumagai Y. Understanding Antidiabetic Potential of Oligosaccharides from Red Alga Dulse Devaleraea inkyuleei Xylan by Investigating α-Amylase and α-Glucosidase Inhibition. Molecules. 2024; 29(7):1536. https://doi.org/10.3390/molecules29071536
Chicago/Turabian StyleMune Mune, Martin Alain, Tadashi Hatanaka, Hideki Kishimura, and Yuya Kumagai. 2024. "Understanding Antidiabetic Potential of Oligosaccharides from Red Alga Dulse Devaleraea inkyuleei Xylan by Investigating α-Amylase and α-Glucosidase Inhibition" Molecules 29, no. 7: 1536. https://doi.org/10.3390/molecules29071536
APA StyleMune Mune, M. A., Hatanaka, T., Kishimura, H., & Kumagai, Y. (2024). Understanding Antidiabetic Potential of Oligosaccharides from Red Alga Dulse Devaleraea inkyuleei Xylan by Investigating α-Amylase and α-Glucosidase Inhibition. Molecules, 29(7), 1536. https://doi.org/10.3390/molecules29071536