Biochemical Assessments of Six Species of Edible Coastal Algae Collected from Tabuk Region in Saudi Arabia
Abstract
:1. Introduction
2. Results
2.1. Proximate Chemical Composition
2.2. Minerals
2.3. Total Phenolic Content and Oxidoreductive Compounds
2.4. Amino Acids
3. Discussion
4. Materials and Methods
4.1. Materials
Sampling Description
4.2. Methods
4.2.1. Extraction Process for Algae Samples
4.2.2. Total Phenolic Compounds
4.2.3. Determination of Ferric Reducing Antioxidant Power
4.2.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sonnewald, M.; El-Sherbiny, M.M. Editorial: Red Sea Biodiversity. Mar. Biodivers. 2017, 47, 991–993. [Google Scholar] [CrossRef]
- Ansari, A.A.; Ghanem, S.M. Seasonal Variation in the Growth Responses of Some Chlorophytic Algal Flora of the Red Sea. Egypt. J. Aquat. Res. 2017, 43, 129–134. [Google Scholar] [CrossRef]
- Gomez-Zavaglia, A.; Prieto Lage, M.A.; Jimenez-Lopez, C.; Mejuto, J.C.; Simal-Gandara, J. The Potential of Seaweeds as a Source of Functional Ingredients of Prebiotic and Antioxidant Value. Antioxidants 2019, 8, 406. [Google Scholar] [CrossRef] [PubMed]
- Cardozo, K.H.M.; Guaratini, T.; Barros, M.P.; Falcão, V.R.; Tonon, A.P.; Lopes, N.P.; Campos, S.; Torres, M.A.; Souza, A.O.; Colepicolo, P. Metabolites from Algae with Economical Impact. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2007, 146, 60–78. [Google Scholar] [CrossRef] [PubMed]
- Dhanki, A.; Sindhav, S.; Jadeja, B.A. Evaluation of the Antimicrobial and Antioxidant Activity of Two Chlorophyceae and Two Rhodophyceae Seaweeds from Porbandar Coast. Eur. J. Med. Plants 2020, 31, 34–39. [Google Scholar] [CrossRef]
- Tang, T.; Effiong, K.; Hu, J.; Li, C.; Xiao, X. Chemical Prevention and Control of the Green Tide and Fouling Organism Ulva: Key Chemicals, Mechanisms, and Applications. Front. Mar. Sci. 2021, 8, 618950. [Google Scholar] [CrossRef]
- Bayomy, H.M. Effects of Culinary Treatments on the Physicochemical Properties of Ulva Lactuca Collected from Tabuk Coast of Red Sea in Saudi Arabia. Saudi J. Biol. Sci. 2022, 29, 2355–2362. [Google Scholar] [CrossRef]
- Din, N.A.S.; Mohd Alayudin, A.S.; Sofian-Seng, N.S.; Rahman, H.A.; Mohd Razali, N.S.; Lim, S.J.; Wan Mustapha, W.A. Brown Algae as Functional Food Source of Fucoxanthin: A Review. Foods 2022, 11, 2235. [Google Scholar] [CrossRef]
- Bringloe, T.T.; Starko, S.; Wade, R.M.; Vieira, C.; Kawai, H.; De Clerck, O.; Cock, J.M.; Coelho, S.M.; Destombe, C.; Valero, M. Phylogeny and Evolution of the Brown Algae. CRC Crit. Rev. Plant Sci. 2020, 39, 281–321. [Google Scholar] [CrossRef]
- Rioux, L.-E.; Beaulieu, L.; Turgeon, S.L. Seaweeds: A Traditional Ingredients for New Gastronomic Sensation. Food Hydrocoll. 2017, 68, 255–265. [Google Scholar] [CrossRef]
- Roy, S.; Anantharaman, P. Biochemical Compositions of Seaweeds Collected from Olaikuda and Vadakkadu, Rameshwaram, Southeast Coast of India. J. Mar. Sci. Res. Dev. 2017, 7, 1–5. [Google Scholar] [CrossRef]
- Fitzgerald, C.; Gallagher, E.; Tasdemir, D.; Hayes, M. Heart Health Peptides from Macroalgae and Their Potential Use in Functional Foods. J. Agric. Food Chem. 2011, 59, 6829–6836. [Google Scholar] [CrossRef]
- Taskin, O.S.; Ersoy, N.; Aksu, A.; Kiskan, B.; Balkis, N.; Yagci, Y. Melamine-Based Microporous Polymer for Highly Efficient Removal of Copper(II) from Aqueous Solution. Polym. Int. 2016, 65, 439–445. [Google Scholar] [CrossRef]
- Osuna-Ruiz, I.; López-Saiz, C.-M.; Burgos-Hernández, A.; Velázquez, C.; Nieves-Soto, M.; Hurtado-Oliva, M.A. Antioxidant, Antimutagenic and Antiproliferative Activities in Selected Seaweed Species from Sinaloa, Mexico. Pharm. Biol. 2016, 54, 2196–2210. [Google Scholar] [CrossRef] [PubMed]
- Aksu, A.; Balkis, N.; Taşkin, Ö.S.; Erşan, M.S. Toxic Metal (Pb, Cd, As and Hg) and Organochlorine Residue Levels in Hake (Merluccius Merluccius) from the Marmara Sea, Turkey. Environ. Monit Assess 2011, 182, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Toyosaki, T.; Iwabuchi, M. New Antioxidant Protein in Seaweed (Porphyra Yezoensis Ueda). Int. J. Food Sci. Nutr. 2009, 60, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Nagayama, K.; Iwamura, Y.; Shibata, T.; Hirayama, I.; Nakamura, T. Bactericidal Activity of Phlorotannins from the Brown Alga Ecklonia Kurome. J. Antimicrob. Chemother. 2002, 50, 889–893. [Google Scholar] [CrossRef] [PubMed]
- Fernando, I.P.S.; Kim, M.; Son, K.-T.; Jeong, Y.; Jeon, Y.-J. Antioxidant Activity of Marine Algal Polyphenolic Compounds: A Mechanistic Approach. J. Med. Food 2016, 19, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Zubia, M.; Robledo, D.; Freile-Pelegrin, Y. Antioxidant Activities in Tropical Marine Macroalgae from the Yucatan Peninsula, Mexico. J. Appl. Phycol. 2007, 19, 449–458. [Google Scholar] [CrossRef]
- Kohen, R.; Nyska, A. Invited Review: Oxidation of Biological Systems: Oxidative Stress Phenomena, Antioxidants, Redox Reactions, and Methods for Their Quantification. Toxicol. Pathol. 2002, 30, 620–650. [Google Scholar] [CrossRef] [PubMed]
- Dawes, C.J. Marine Botany; John Wiley & Sons: Hoboken, NJ, USA, 1998; ISBN 0471192082. [Google Scholar]
- Fleurence, J. Seaweed Proteins: Biochemical, Nutritional Aspects and Potential Uses. Trends Food Sci. Technol. 1999, 10, 25–28. [Google Scholar] [CrossRef]
- Černá, M. Seaweed Proteins and Amino Acids as Nutraceuticals. Adv. Food Nutr. Res. 2011, 64, 297–312. [Google Scholar] [PubMed]
- Ścieszka, S.; Klewicka, E. Algae in Food: A General Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3538–3547. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, P.; Gururani, P.; Parveen, A.; Gautam, P.; Chandra Joshi, N.; Tomar, M.S.; Nanda, M.; Vlaskin, M.S.; Kumar, V. Algae: A Promising and Sustainable Protein-Rich Food Ingredient for Bakery and Dairy Products. Food Chem. 2024, 441, 138322. [Google Scholar] [CrossRef] [PubMed]
- Babich, O.; Sukhikh, S.; Larina, V.; Kalashnikova, O.; Kashirskikh, E.; Prosekov, A.; Noskova, S.; Ivanova, S.; Fendri, I.; Smaoui, S.; et al. Algae: Study of Edible and Biologically Active Fractions, Their Properties and Applications. Plants 2022, 11, 780. [Google Scholar] [CrossRef] [PubMed]
- Pangestuti, R.; Kim, S.-K. Chapter 6-Seaweed Proteins, Peptides, and Amino Acids. In Seaweed Sustainability; Tiwari, B.K., Troy, D.J., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 125–140. ISBN 978-0-12-418697-2. [Google Scholar]
- Yanshin, N.; Kushnareva, A.; Lemesheva, V.; Birkemeyer, C.; Tarakhovskaya, E. Chemical Composition and Potential Practical Application of 15 Red Algal Species from the White Sea Coast (the Arctic Ocean). Molecules 2021, 26, 2489. [Google Scholar] [CrossRef]
- Norziah, M.H.; Ching, C.Y. Nutritional Composition of Edible Seaweed Gracilaria Changgi. Food Chem. 2000, 68, 69–76. [Google Scholar] [CrossRef]
- Bhuiyan, K.A.; Qureshi, S.; Mustafa Kamal, A.H.; AftabUddin, S.; Siddique, A. Proximate Chemical Composition of Sea Grapes Caulerpa Racemosa (J. Agardh, 1873) Collected from a Sub-Tropical Coast. Virol. Mycol. 2016, 5, 2161–2517. [Google Scholar]
- Lorenzo, J.M.; Agregán, R.; Munekata, P.E.S.; Franco, D.; Carballo, J.; Şahin, S.; Lacomba, R.; Barba, F.J. Proximate Composition and Nutritional Value of Three Macroalgae: Ascophyllum Nodosum, Fucus Vesiculosus and Bifurcaria Bifurcata. Mar. Drugs 2017, 15, 360. [Google Scholar] [CrossRef]
- Denis, C.; Morançais, M.; Li, M.; Deniaud, E.; Gaudin, P.; Wielgosz-Collin, G.; Barnathan, G.; Jaouen, P.; Fleurence, J. Study of the Chemical Composition of Edible Red Macroalgae Grateloupia Turuturu from Brittany (France). Food Chem. 2010, 119, 913–917. [Google Scholar] [CrossRef]
- Sánchez-Machado, D.I.; López-Cervantes, J.; López-Hernández, J.; Paseiro-Losada, P. Fatty Acids, Total Lipid, Protein and Ash Contents of Processed Edible Seaweeds. Food Chem. 2004, 85, 439–444. [Google Scholar] [CrossRef]
- Biancarosa, I.; Belghit, I.; Bruckner, C.G.; Liland, N.S.; Waagbø, R.; Amlund, H.; Heesch, S.; Lock, E. Chemical Characterization of 21 Species of Marine Macroalgae Common in Norwegian Waters: Benefits of and Limitations to Their Potential Use in Food and Feed. J. Sci. Food Agric. 2018, 98, 2035–2042. [Google Scholar] [CrossRef] [PubMed]
- Chan, P.T.; Matanjun, P. Chemical Composition and Physicochemical Properties of Tropical Red Seaweed, Gracilaria Changii. Food Chem. 2017, 221, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Kumari, P.; Trivedi, N.; Shukla, M.K.; Gupta, V.; Reddy, C.R.K.; Jha, B. Minerals, PUFAs and Antioxidant Properties of Some Tropical Seaweeds from Saurashtra Coast of India. J. Appl. Phycol. 2011, 23, 797–810. [Google Scholar] [CrossRef]
- López-López, I.; Cofrades, S.; Ruiz-Capillas, C.; Jiménez-Colmenero, F. Design and Nutritional Properties of Potential Functional Frankfurters Based on Lipid Formulation, Added Seaweed and Low Salt Content. Meat Sci. 2009, 83, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Rupérez, P.; Ahrazem, O.; Leal, J.A. Potential Antioxidant Capacity of Sulfated Polysaccharides from the Edible Marine Brown Seaweed Fucus Vesiculosus. J. Agric. Food Chem. 2002, 50, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.; Dordevic, A.L.; Ryan, L.; Bonham, M.P. An Emerging Trend in Functional Foods for the Prevention of Cardiovascular Disease and Diabetes: Marine Algal Polyphenols. Crit. Rev. Food Sci. Nutr. 2018, 58, 1342–1358. [Google Scholar] [CrossRef]
- Chkhikvishvili, I.D.; Ramazanov, Z.M. Phenolic Substances of Brown Algae and Their Antioxidant Activity. Appl. Biochem. Microbiol. 2000, 36, 289–291. [Google Scholar] [CrossRef]
- Kang, K.; Park, Y.; Hwang, H.J.; Kim, S.H.; Lee, J.G.; Shin, H.-C. Antioxidative Properties of Brown Algae Polyphenolics and Their Perspectives as Chemopreventive Agents against Vascular Risk Factors. Arch. Pharm. Res. 2003, 26, 286–293. [Google Scholar] [CrossRef]
- Duan, X.-J.; Zhang, W.-W.; Li, X.-M.; Wang, B.-G. Evaluation of Antioxidant Property of Extract and Fractions Obtained from a Red Alga, Polysiphonia Urceolata. Food Chem. 2006, 95, 37–43. [Google Scholar] [CrossRef]
- Cho, M.; Kang, I.-J.; Won, M.-H.; Lee, H.-S.; You, S. The Antioxidant Properties of Ethanol Extracts and Their Solvent-Partitioned Fractions from Various Green Seaweeds. J. Med. Food 2010, 13, 1232–1239. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. 18-Antioxidants from Marine by-Products. In Maximising the Value of Marine By-Products; Shahidi, F., Ed.; Woodhead Publishing: Sawston, UK, 2007; pp. 397–412. ISBN 978-1-84569-013-7. [Google Scholar]
- Siriwardhana, N.; Lee, K.-W.; Jeon, Y.-J.; Kim, S.-H.; Haw, J.-W. Antioxidant Activity of Hizikia Fusiformis on Reactive Oxygen Species Scavenging and Lipid Peroxidation Inhibition. Food Sci. Technol. Int. 2003, 9, 339–346. [Google Scholar] [CrossRef]
- Milinovic, J.; Campos, B.; Mata, P.; Diniz, M.; Noronha, J.P. Umami Free Amino Acids in Edible Green, Red, and Brown Seaweeds from the Portuguese Seashore. J. Appl. Phycol. 2020, 32, 3331–3339. [Google Scholar] [CrossRef]
- Mæhre, H.K.; Malde, M.K.; Eilertsen, K.-E.; Elvevoll, E.O. Characterization of Protein, Lipid and Mineral Contents in Common Norwegian Seaweeds and Evaluation of Their Potential as Food and Feed. J. Sci. Food Agric. 2014, 94, 3281–3290. [Google Scholar] [CrossRef]
- Cofrades, S.; López-Lopez, I.; Bravo, L.; Ruiz-Capillas, C.; Bastida, S.; Larrea, M.T.; Jiménez-Colmenero, F. Nutritional and Antioxidant Properties of Different Brown and Red Spanish Edible Seaweeds. Food Sci. Technol. Int. 2010, 16, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, W. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 1975; Volume 222. [Google Scholar]
- Bharathi, S.; Dinesh Kumar, S.; Sekar, S.; Santhanam, P.; Divya, M.; Krishnaveni, N.; Pragnya, M.; Dhanalakshmi, B. Experimental Evaluation of Seaweeds Liquid Extracts as an Alternative Culture Medium on the Growth and Proximate Composition of Picochlorum Maculatum. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2021, 91, 205–215. [Google Scholar] [CrossRef]
- Hemalatha, A.; Girija, K.; Parthiban, C.; Saranya, C.; Anantharaman, P. Antioxidant Properties and Total Phenolic Content of a Marine Diatom, Navicula Clavata and Green Microalgae, Chlorella Marina and Dunaliella Salina. Adv. Appl. Sci. Res 2013, 4, 151–157. [Google Scholar]
- Dang, T.T.; Bowyer, M.C.; Van Altena, I.A.; Scarlett, C.J. Optimum Conditions of Microwave-Assisted Extraction for Phenolic Compounds and Antioxidant Capacity of the Brown Alga Sargassum Vestitum. Sep. Sci. Technol. 2018, 53, 1711–1723. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant Activity of Dietary Polyphenols As Determined by a Modified Ferric Reducing/Antioxidant Power Assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef]
Type | Species | Protein | Lipid | Ash | Crude Fiber | Carbohydrate |
---|---|---|---|---|---|---|
Brown algae | Ascophyllum nodosum | 9.25 ± 0.62 d | 3.96 ± 0.07 c | 29.38 ± 0.44 a | 24.26 ± 0.53 bc | 33.15 cd |
Fucus vesiculosus | 13.71 ± 0.17 cd | 3.74 ± 0.01 c | 21.04 ± 0.31 b | 19.61 ± 0.17 c | 41.9 bc | |
Green algae | Caulerpa racemosa | 18.39 ± 0.72 ab | 7.57 ± 0.38 a | 13.64 ± 0.16 c | 13.82 ± 0.08 d | 46.58 ab |
Ulva lactuca | 14.62 ± 0.47 cd | 5.29 ± 0.13 b | 13.82 ± 0.06 c | 11.75 ± 0.14 d | 54.52 a | |
Red algae | Digenea simplex | 15.17 ± 0.24 bc | 0.93 ± 0.03 d | 23.62 ± 0.77 ab | 32.42 ± 1.21 ab | 27.86 cd |
Hypnea musciformis | 20.06 ± 0.53 a | 1.83 ± 0.08 d | 19.74 ± 0.52 b | 34.81 ± 1.05 a | 23.56 d |
Type | Species | Ca | P | Fe | K | Na |
---|---|---|---|---|---|---|
Brown algae | Ascophyllum nodosum | 1026 ± 31.3 b | 185 ± 28.5 c | 16.85 ± 0.16 c | 3643 ± 84.8 b | 3895 ± 204 b |
Fucus vesiculosus | 1049 ± 27.1 b | 208 ± 9.3 c | 20.66 ± 2.04 b | 3758 ± 61.8 b | 1869 ± 64.7 d | |
Green algae | Caulerpa racemosa | 2458 ± 39.7 a | 747 ± 13.6 a | 29.79 ± 1.94 a | 2873 ± 68.3 c | 2188 ± 39.3 c |
Ulva lactuca | 2393 ± 3.42 a | 68.29 ± 1.6 d | 25.63 ± 0.13 a | 481 ± 23.7 d | 406 ± 14.8 f | |
Red algae | Digenea simplex | 476 ± 22.4 c | 406 ± 17.2 b | 18.03 ± 0.79 bc | 7496 ± 142.7 a | 1098 ± 15.7 e |
Hypnea musciformis | 647 ± 8.2 c | 371 ± 24.5 b | 20.3 ± 0.86 b | 477 ± 54.8 d | 6156 ± 173.6 a |
Amino Acids | Ascophyllum nodosum | Fucus vesiculosus | Caulerpa racemosa | Ulva lactuca | Digenea simplex | Hypnea musciformis | Standard Error |
---|---|---|---|---|---|---|---|
Aspartic acid | 9.35 d | 12.29 b | 10.37 c | 13.06 a | 10.49 c | 12.02 b | 0.646 |
Serine | 5.11 c | 6.74 b | 5.35 c | 7.72 a | 5.36 c | 6.32 b | 0.255 |
Glutamic acid | 18.63 a | 14.41 b | 12.29 c | 11.5 c | 10.33 d | 12.19 c | 0.803 |
Proline | 4.34 d | 5.83 a | 4.56 c | 3.37 f | 4.7 b | 4.18 e | 0.051 |
Glycine | 6.53 a | 4.75 d | 6.34 b | 5.83 c | 5.76 c | 4.31 e | 0.171 |
Alanine | 8.12 a | 7.19 b | 7.96 a | 6.98 b | 5.76 c | 5.04 d | 0.222 |
Arginine | 4.55 d | 5.07 c | 6.83 b | 7.31 a | 4.19 e | 5.41 c | 0.341 |
Cysteine | 0.24 e | 1.53 a | 0.39 d | 0.87 c | 1.04 b | 1.05 b | 0.045 |
Tyrosine | 4.77 b | 3.39 e | 3.75 c | 3.52 d | 8.62 a | 2.46 f | 0.098 |
Total Non-EAA | 61.64 | 61.2 | 57.84 | 60.16 | 56.25 | 52.98 | 0.327 |
Methionine | 2.61 a | 1.59 c | 1.6 c | 1.56 c | 0.79 d | 2.14 b | 0.130 |
Isoleucine | 4.21 c | 3.71 d | 6.17 a | 3.86 d | 4.7 b | 6.18 a | 0.029 |
Leucine | 5.84 d | 6.79 b | 7.04 a | 5.92 d | 6.42 c | 7.64 a | 0.140 |
Phenylalanine | 3.70 e | 3.95 d | 4.86 b | 4.94 b | 6.09 a | 4.5 c | 0.093 |
Histidine | 4.37 a | 3.92 b | 2.48 d | 2.55 d | 3.11 c | 4.31 a | 0.080 |
Valine | 5.84 a | 4.76 e | 4.69 f | 5.42 b | 5.03 d | 5.23 c | 0.011 |
Lysine | 3.88 f | 5.84 c | 6.41 b | 4.83 e | 9.21 a | 5.36 d | 0.037 |
Tryptophan | 1.76 e | 2.31 c | 2.07 d | 1.76 e | 2.52 b | 2.99 a | 0.046 |
Threonine | 5.95 d | 5.47 f | 6.73 c | 8.83 a | 5.63 e | 8.47 b | 0.103 |
Total EAA | 38.16 | 38.34 | 42.05 | 39.67 | 43.5 | 46.82 | 0.720 |
EAA/Total AA ratio | 38.24 | 38.52 | 42.10 | 39.74 | 43.61 | 46.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayomy, H.M.; Alamri, E.S. Biochemical Assessments of Six Species of Edible Coastal Algae Collected from Tabuk Region in Saudi Arabia. Molecules 2024, 29, 639. https://doi.org/10.3390/molecules29030639
Bayomy HM, Alamri ES. Biochemical Assessments of Six Species of Edible Coastal Algae Collected from Tabuk Region in Saudi Arabia. Molecules. 2024; 29(3):639. https://doi.org/10.3390/molecules29030639
Chicago/Turabian StyleBayomy, Hala M., and Eman S. Alamri. 2024. "Biochemical Assessments of Six Species of Edible Coastal Algae Collected from Tabuk Region in Saudi Arabia" Molecules 29, no. 3: 639. https://doi.org/10.3390/molecules29030639
APA StyleBayomy, H. M., & Alamri, E. S. (2024). Biochemical Assessments of Six Species of Edible Coastal Algae Collected from Tabuk Region in Saudi Arabia. Molecules, 29(3), 639. https://doi.org/10.3390/molecules29030639