Screening Antioxidant Components in Different Parts of Dandelion Using Online Gradient Pressure Liquid Extraction Coupled with High-Performance Liquid Chromatography Antioxidant Analysis System and Molecular Simulations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Refining Experimental Parameters
2.1.1. Optimization of Chromatographic Conditions
2.1.2. Optimization of OGPLE
2.1.3. Comparison between OGPLE and Offline Extraction
2.2. Method Validation
2.3. Identification and Quantification of Antioxidant Active Components from Dandelion Aerial Parts and Dandelion Roots
2.4. Molecular Docking Analysis
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Sample of Dandelion
3.3. Standard Solution Preparation
3.4. Preparation of Antioxidant Assay Reagents
3.4.1. FRAP Solution
3.4.2. ABTS Solution
3.4.3. DPPH Solution
3.5. Offline Extraction of Sample
3.6. OGPLE of Sample
3.7. HPLC Instruments and Conditions
3.8. Offline Antioxidant Analysis
3.9. Online Antioxidant Analysis
3.10. Preparation of Caftaric Acid and Cichoric Acid
3.11. LC-MS/MS Qualitative Analysis Conditions
3.12. Quantitative Analysis of Antioxidant Compounds
3.13. Molecular Docking Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, C. Taraxacum: Phytochemistry and health benefits. Chin. Herb. Med. 2018, 10, 353–361. [Google Scholar] [CrossRef]
- Escudero, N.L.; De Arellano, M.L.; Fernández, S.; Albarracín, G.; Mucciarelli, S. Taraxacum officinale as a food source. Plant Foods Hum. Nutr. 2003, 58, 1–10. [Google Scholar] [CrossRef]
- Souci, S.W.; Fachmann, W.; Kraut, H. Food Composition and Nutrition Tables, 7th ed.; Med Pharm Scientific: Stuttgart, Germany, 2008. [Google Scholar]
- European Commission Scientific Committee on Food. Opinion of the Scientific Committee on Food on the Revision of Reference Values for Nutrition Labeling; European Commission: Brussels, Belgium, 2003.
- Shi, S.; Zhao, Y.; Zhou, H.; Zhang, Y.; Jiang, X.; Huang, K. Identification of antioxidants from Taraxacum mongolicum by high-performance liquid chromatography–diode array detection–radical-scavenging detection–electrospray ionization mass spectrometry and nuclear magnetic resonance experiments. J. Chromatogr. A 2008, 1209, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.Y.; Foster, S. Encyclopedia of Common Natural Ingredients Used in Food, Drugs and Cosmetics, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Olas, B. New perspectives on the effect of dandelion, its food products and other preparations on the cardiovascular system and its diseases. Nutrients 2022, 14, 1350. [Google Scholar] [CrossRef] [PubMed]
- Bisset, N.G.; Wichtl, M. Herbal Drugs and Phytopharmaceuticals: A Handbook for Practice on a Scientific Basis; CRC Press: Boca Raton, FL, USA, 1994; pp. 486–489. [Google Scholar]
- Wang, R.; Li, W.; Fang, C.; Zheng, X.; Liu, C.; Huang, Q. Extraction and identification of new flavonoid compounds in dandelion Taraxacum mongolicum Hand.-Mazz. with evaluation of antioxidant activities. Sci. Rep. 2023, 13, 2166. [Google Scholar] [CrossRef] [PubMed]
- Grauso, L.; Emrick, S.; de Falco, B.; Lanzotti, V.; Bonanomi, G. Common dandelion: A review of its botanical, phytochemical and pharmacological profiles. Phytochem. Rev. 2019, 18, 1115–1132. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.B.; Hwang, S.H.; Wang, Z.; Yu, J.M.; Lim, S.S. Rapid identification and isolation of inhibitors of rat lens aldose reductase and antioxidant in Maackia amurensis. BioMed Res. Int. 2017, 2017, 4941825. [Google Scholar] [CrossRef]
- Liu, M.; Li, X.; Liu, Q.; Xie, S.; Zhu, F.; Chen, X. Preparative isolation and purification of 12 main antioxidants from the roots of Polygonum multiflorum Thunb. using high-speed countercurrent chromatography and preparative HPLC guided by 1, 1′-diphenyl-2-picrylhydrazyl-HPLC. J. Sep. Sci. 2020, 43, 1415–1422. [Google Scholar] [CrossRef]
- Burnaz, N.A.; Küçük, M.; Akar, Z. An on-line HPLC system for detection of antioxidant compounds in some plant extracts by comparing three different methods. J. Chromatogr. B 2017, 1052, 66–72. [Google Scholar] [CrossRef]
- Liu, C.; Lei, Y.; Dang, J.; Wang, W.; Zhang, J.; Mei, L.; Liu, Z.; Tao, Y.; Shao, Y. Preparative isolation of 1, 1-diphenyl-2-picrylhydrazyl inhibitors from Ribes himalense using medium-pressure and two-dimensional reversed-phase/reversed-phase liquid chromatography guided by an online HPLC-1, 1-diphenyl-2-picrylhydrazyl assay. J. Sep. Sci. 2021, 44, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Yu, Y.; Liu, Q.; Guo, H.; Yu, J.; Wang, X.; Zhao, H. An integrated strategy for the geographical origin traceability of Goji berries by antioxidants characteristic fingerprint based online ultra-performance liquid chromatography-2, 2-diphenyl-1-picrylhydrazyl-photodiode array detector-mass spectrometry combined with multivariate statistics analysis. J. Sep. Sci. 2023, 46, 2200826. [Google Scholar]
- Qian, Z.M.; Fang, B.W.; Chen, H.M.; Li, C.H.; Huang, Q.; Chen, L.; Li, W.J.; Li, D.Q. Online liquid microextraction coupled with HPLC-ABTS for rapid screening of natural antioxidants: Case study of three different teas. J. Chromatogr. Sci. 2020, 58, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.Q.; Huang, Q.; Wu, M.Q.; Mei, Q.X.; Zou, Y.S.; Qian, Z.M.; Tang, D. Rapid screening and evaluation of natural antioxidants from leaf, stem, and root of Artemisia argyi by online liquid microextraction combined with HPLC-based antioxidant assay system coupled with calibration quantitative analysis. J. Sep. Sci. 2024, 47, 2300616. [Google Scholar] [CrossRef] [PubMed]
- Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in Drug Discovery. Int. J. Mol. Sci. 2019, 20, 4331. [Google Scholar] [CrossRef] [PubMed]
- Tajammal, A.; Siddiqa, A.; Irfan, A.; Azam, M.; Hafeez, H.; Munawar, M.A.; Basra, M.A.R. Antioxidant, molecular docking and computational investigation of new flavonoid. J. Mol. Struct. 2022, 1254, 132189. [Google Scholar] [CrossRef]
- Singh, R.; Poke, A.V.; Ghosh, P.; Ganeshpurkar, A.; Swetha, R.; Singh, S.K.; Kumar, A. Pharmacophore-based virtual screening, molecular docking and molecular dynamics simulations study for the identification of LIM kinase-1 inhibitors. J. Biomol. Struct. Dyn. 2023, 41, 6089–6103. [Google Scholar] [CrossRef] [PubMed]
- Crampon, K.; Giorkallos, A.; Deldossi, M.; Baud, S.; Steffenel, L.A. Machine-learning methods for ligand–protein molecular docking. Drug Discov. Today 2022, 27, 151–164. [Google Scholar] [CrossRef] [PubMed]
- MassBank of North America. Available online: https://mona.fiehnlab.ucdavis.edu/ (accessed on 22 February 2024).
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 22 February 2024).
- Khoza, B.S.; Gbashi, S.; Steenkamp, P.A.; Njobeh, P.B.; Madala, N.E. Identification of hydroxylcinnamoyl tartaric acid esters in Bidens pilosa by UPLC-tandem mass spectrometry. S. Afr. J. Bot. 2016, 103, 95–100. [Google Scholar] [CrossRef]
- Schütz, K.; Kammerer, D.R.; Carle, R.; Schieber, A. Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale WEB. ex WIGG.) root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. Int. J. Devoted Rapid Dissem. Up Minute Res. Mass Spectrom. 2005, 19, 179–186. [Google Scholar] [CrossRef]
- The Human Metabolome Database. Available online: https://hmdb.ca/ (accessed on 22 February 2024).
- Qian, Z.M.; Guan, J.; Yang, F.Q.; Li, S.P. Identification and quantification of free radical scavengers in Pu-erh tea by HPLC-DAD-MS coupled online with 2,2’-azinobis (3-ethylbenzthiazolinesulfonic acid) diammonium salt assay. J. Agric. Food Chem. 2008, 56, 11187–11191. [Google Scholar] [CrossRef] [PubMed]
- Galmarini, M.V.; Maury, C.; Mehinagic, E.; Sanchez, V.; Baeza, R.I.; Mignot, S.; Zamora, M.C.; Chirife, J. Stability of individual phenolic compounds and antioxidant activity during storage of a red wine powder. Food Bioprocess Technol. 2013, 6, 3585–3595. [Google Scholar] [CrossRef]
- Wills, R.B.H.; Stuart, D.L. Effect of handling and storage on alkylamides and cichoric acid in Echinacea purpurea. J. Sci. Food Agric. 2000, 80, 1402–1406. [Google Scholar] [CrossRef]
- Bergeron, C.; Gafner, S.; Batcha, L.L.; Angerhofer, C.K. Stabilization of caffeic acid derivatives in Echinacea purpurea L. glycerin extract. J. Agric. Food Chem. 2002, 50, 3967–3970. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Zhang, C.; Zhao, Y.; Chang, Y.; Guo, L. Comparison of bioactive phenolic compounds and antioxidant activities of different parts of Taraxacum mongolicum. Molecules 2020, 25, 3260. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lei, Y.; Liu, Y.; Guo, J.; Chen, X.; Tang, Y.; Dang, J.; Wu, M. An Integrated Strategy for Investigating Antioxidants from Ribes himalense Royle Ex Decne and Their Potential Target Proteins. Antioxidants 2023, 12, 835. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Huang, Q.; He, Z.; Tan, G.; Zou, Y.; Xie, J.; Qian, Z. Screening of Tyrosinase, Xanthine Oxidase, and α-Glucosidase Inhibitors from Polygoni Cuspidati Rhizoma et Radix by Ultrafiltration and HPLC Analysis. Molecules 2023, 28, 4170. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Song, H.P.; Li, P.; Zhou, P.; Dong, X.; Chen, J. Screening of direct thrombin inhibitors from Radix Salviae miltiorrhizae by a peak fractionation approach. J. Pharm. Biomed. Anal. 2015, 109, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Margis, R.; Dunand, C.; Teixeira, F.K.; Margis-Pinheiro, M. Glutathione peroxidase family—An evolutionary overview. FEBS J. 2008, 275, 3959–3970. [Google Scholar] [CrossRef]
- Hemmrich, K.; Suschek, C.V.; Lerzynski, G.; Kolb-Bachofen, V. iNOS activity is essential for endothelial stress gene expression protecting against oxidative damage. J. Appl. Physiol. 2003, 95, 1937–1946. [Google Scholar] [CrossRef]
- Bafana, A.; Dutt, S.; Kumar, A.; Kumar, S.; Ahuja, P.S. The basic and applied aspects of superoxide dismutase. J. Mol. Catal. B Enzym. 2011, 68, 129–138. [Google Scholar] [CrossRef]
- Ardan, T.; Kovačeva, J.; Čejková, J. Comparative histochemical and immunohistochemical study on xanthine oxidoreductase/xanthine oxidase in mammalian corneal epithelium. Acta Histochem. 2004, 106, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.M.; Cheng, X.J.; Wang, Q.; Huang, Q.; Jin, L.L.; Ma, Y.F.; Xie, J.S.; Li, D.Q. On-line pre-column FRAP-based antioxidant reaction coupled with HPLC-DAD-TOF/MS for rapid screening of natural antioxidants from different parts of Polygonum viviparum. RSC Adv. 2023, 13, 9585–9594. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des. 2010, 24, 417–422. [Google Scholar] [CrossRef]
- RCSB Protein Data Bank. Available online: https://www.rcsb.org/ (accessed on 22 February 2024).
- Protein Ligand Interaction Profiler. Available online: https://plip-tool.biotec.tu-dresden.de/plip-web/plip/index (accessed on 22 February 2024).
Peak No. | Compound | RT | Molecular Formula | Exact Mass | Adduct Ion | Precursor Ion | Product Ion | Reference |
---|---|---|---|---|---|---|---|---|
1 | Uric acid | 6.453 | C5H4N4O3 | 168.0283 | [M-H]− | 167.0200 | 124.0141, 96.0190 | [23] |
2 | Adenosine | 9.593 | C10H13O4N5 | 267.0968 | [M+H]+ | 268.1042 | 136.0620 | [24] |
3 | Caftaric acid | 16.606 | C13H12O9 | 312.0481 | [M-H]− | 311.0411 | 179.0343, 149.0083, 135.0442 | [25] |
4 | Aesculetin | 23.506 | C9H6O4 | 178.0266 | [M-H]− | 177.0183 | 149.0236, 133.0284, 105.0334 | [23] |
5 | Neochlorogenic acid | 24.173 | C16H18O9 | 354.0951 | [M-H]− | 353.0879 | 191.0555 | [24] |
6 | Caffeic acid | 24.693 | C9H8O4 | 180.0423 | [M-H]− | 179.0340 | 135.0441, 133.0283 | [26] |
7 | Caffeoylmalic acid | 28.419 | C13H12O8 | 296.0532 | [M-H]− | 295.0460 | 179.0343, 135.0441, 133.0132, 115.0025 | [27] |
8 | Cichoric acid | 33.006 | C22H18O12 | 474.0798 | [M-H]− | 473.0728 | 311.0412, 293.0306, 179.0342, 149.0082, 135.0040 | [26] |
9 | Luteolin 7-O-glucoside | 36.132 | C21H20O11 | 448.1006 | [M-H]− | 447.0940 | 285.0407 | [26] |
10 | 3,5-Di-caffeoylquinic acid | 38.519 | C25H24O12 | 516.1268 | [M-H]− | 515.1201 | 353.0886, 191.0556, 179.0343 | [26] |
11 | Phlorizin | 40.179 | C21H24O10 | 436.1370 | [M-H]− | 435.1303 | 273.0775, 167.0342 | [24] |
12 | Luteolin | 43.425 | C15H10O6 | 286.0477 | [M-H]− | 285.0405 | 175.0395, 151.0028, 133.0285 | [23] |
13 | Unknown | 45.279 | - | - | [M-H]− | 329.2335 | 229.1445, 211.1338, 199.4364, 171.1018 | - |
Receptor | Number of Points | Center Grid Box | Spacing | Ligand | Affinity (kcal/mol) |
---|---|---|---|---|---|
GSH-Px | X-dimension = 104 Y-dimension = 96 Z-dimension = 126 | X center = 12.253 Y center = 8.525 Z center = 14.137 | 0.375 | Caftaric acid | −5.3 |
Aesculetin | −5.4 | ||||
Neochlorogenic acid | −6.9 | ||||
Caffeic acid | −5.4 | ||||
Caffeoylmalic acid | −6.3 | ||||
Cichoric acid | −6.2 | ||||
3,5-Di-caffeoylquinic acid | −7.3 | ||||
Phlorizin | −5.9 | ||||
Luteolin | −6.8 | ||||
iNOS | X-dimension = 82 Y-dimension = 102 Z-dimension = 126 | X center = 124.075 Y center = 110.548 Z center = 61.561 | 0.914 | Caftaric acid | −6.8 |
Aesculetin | −7.5 | ||||
Neochlorogenic acid | −7.9 | ||||
Caffeic acid | −6.8 | ||||
Caffeoylmalic acid | −7.3 | ||||
Cichoric acid | −9.4 | ||||
3,5-Di-caffeoylquinic acid | −8.3 | ||||
Phlorizin | −9.1 | ||||
Luteolin | −9.5 | ||||
SOD | X-dimension = 56 Y-dimension = 126 Z-dimension = 110 | X center = 11.495 Y center = 36.951 Z center = 32.456 | 1.000 | Caftaric acid | −7.1 |
Aesculetin | −6.3 | ||||
Neochlorogenic acid | −8.1 | ||||
Caffeic acid | −6.2 | ||||
Caffeoylmalic acid | −7.0 | ||||
Cichoric acid | −7.5 | ||||
3,5-Di-caffeoylquinic acid | −7.9 | ||||
Phlorizin | −8.5 | ||||
Luteolin | −8.5 | ||||
XOD | X-dimension = 88 Y-dimension = 92 Z-dimension = 72 | X center = 23.556 Y center = 32.646 Z center = 101.417 | 1.000 | Caftaric acid | −8.5 |
Aesculetin | −7.3 | ||||
Neochlorogenic acid | −8.3 | ||||
Caffeic acid | −7.0 | ||||
Caffeoylmalic acid | −7.7 | ||||
Cichoric acid | −8.8 | ||||
3,5-Di-caffeoylquinic acid | −9.8 | ||||
Phlorizin | −9.2 | ||||
Luteolin | −9.8 |
Receptor | Ligand | Binding Site Interactions | Key Residues in Interaction |
---|---|---|---|
GSH-Px | Caftaric acid | Hydrophobic interactions | TRP8A |
Hydrogen bonds | SER7A, TRP8A, LYS116A, SER120A, ARG121A | ||
π-stacking | TRP8A | ||
Caffeic acid | Hydrophobic interactions | TRP8A, LYS116A | |
Hydrogen bonds | SER7A, TRP8A, LYS116A | ||
Cichoric acid | Hydrophobic interactions | TRP8A, LYS116A, SER120A | |
Hydrogen bonds | SER7A, TRP8A, LYS119A, SER120A, HIS123A | ||
iNOS | Caftaric acid | Hydrophobic interactions | ASP125B, LYS248B, ILE494B |
Hydrogen bonds | ILE494B | ||
Salt bridges | HIS493B | ||
Caffeic acid | Hydrophobic interactions | HIS493A | |
Hydrogen bonds | ARG252A, THR492A, ILE494A | ||
Salt bridges | HIS493A | ||
Cichoric acid | Hydrophobic interactions | PRO344A, VAL346A | |
Hydrogen bonds | GLN257A, ASN348A, GLY365A, TYR485A | ||
π-Stacking | PHE363A | ||
SOD | Caftaric acid | Hydrophobic interactions | LEU150B |
Hydrogen bonds | ASN-1A, LEU105A, GLY107B, SER110A, SER110B, ILE112B, ARG114A, ARG114B | ||
Caffeic acid | Hydrophobic interactions | ILE112A, ILE112B | |
Hydrogen bonds | ASN-1B, SER110A, SER110B, ILE112A, ARG114B | ||
Cichoric acid | Hydrophobic interactions | ILE112C, ILE112D | |
Hydrogen bonds | GLY-3C, GLY-3D, ASN-1C, ASN-1D, ASN106D, SER110D, ILE112D | ||
Salt bridges | ARG114C | ||
XOD | Caftaric acid | Hydrophobic interactions | ARG1222C |
Hydrogen bonds | ASN272B, ASP429B, ARG606C, ASN830C, ARG1222C | ||
Salt bridges | ARG606C | ||
Caffeic acid | Hydrophobic interactions | PHE604C | |
Hydrogen bonds | ARG32A, ASP594C, LEU605C, ARG824C | ||
Cichoric acid | Hydrophobic interactions | LEU257B, GLU263B, ILE264B, ILE353B | |
Hydrogen bonds | LYS256B, VAL259B, GLY260B, ASN261B, SER347B, GLY350B, ILE353B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, X.; Li, G.; Xie, J.; Wu, M.; Wang, W.; Xiao, L.; Qian, Z. Screening Antioxidant Components in Different Parts of Dandelion Using Online Gradient Pressure Liquid Extraction Coupled with High-Performance Liquid Chromatography Antioxidant Analysis System and Molecular Simulations. Molecules 2024, 29, 2315. https://doi.org/10.3390/molecules29102315
Cao X, Li G, Xie J, Wu M, Wang W, Xiao L, Qian Z. Screening Antioxidant Components in Different Parts of Dandelion Using Online Gradient Pressure Liquid Extraction Coupled with High-Performance Liquid Chromatography Antioxidant Analysis System and Molecular Simulations. Molecules. 2024; 29(10):2315. https://doi.org/10.3390/molecules29102315
Chicago/Turabian StyleCao, Xia, Gaoquan Li, Juying Xie, Mengqi Wu, Wenhao Wang, Li Xiao, and Zhengming Qian. 2024. "Screening Antioxidant Components in Different Parts of Dandelion Using Online Gradient Pressure Liquid Extraction Coupled with High-Performance Liquid Chromatography Antioxidant Analysis System and Molecular Simulations" Molecules 29, no. 10: 2315. https://doi.org/10.3390/molecules29102315
APA StyleCao, X., Li, G., Xie, J., Wu, M., Wang, W., Xiao, L., & Qian, Z. (2024). Screening Antioxidant Components in Different Parts of Dandelion Using Online Gradient Pressure Liquid Extraction Coupled with High-Performance Liquid Chromatography Antioxidant Analysis System and Molecular Simulations. Molecules, 29(10), 2315. https://doi.org/10.3390/molecules29102315