Challenges and Advances in the Bioproduction of L-Cysteine
Abstract
:1. Introduction
2. Metabolic Engineering Strategies
- Enhancing the biosynthesis of L-cysteine by expressing genes encoding feedback inhibition-insensitive phosphoglycerate dehydrogenase (PGDH) L-serine O-acetyltransferase (SAT);
- Weakening the degradation of L-cysteine by knocking out genes encoding L-cysteine desulfhydrase (CD);
- Enhancing and strengthening the efflux system while weakening and deleting the genes responsible for the import of L-cysteine.
2.1. Biosynthesis of L-Cysteine
2.2. Weakening the Degradation of L-Cysteine
2.3. Regulation of L-Cysteine Transport
Source | Organism | Method | Scale | L-Cysteine Concentration |
---|---|---|---|---|
Enhancing biosynthesis of L-cysteine | ||||
[28] | E. coli JM39-8 | Feedback inhibition-insensitive SAT from site-directed mutagenesis | Shake flasks, 72 h | 0.79 g L−1 |
[30] | E. coli JM39-8 | Insensitive SAT from Arabidopsis thaliana | Shake flasks, 96 h | 1.66 g L−1 |
[31] | E. coli MW1 | Insensitive SAT from Nicotiana tabacum | Shake flasks, 72 h | 0.30 g L−1 |
[6] | P. ananatis | Insensitive SAT with L-cysteine efflux pump | Test tubes, 24 h | 0.90 g L−1 |
[36] | C. glutamicum | Overexpression of native SAT, OAS, and transcription regulator | Shake flasks, 15 h | 0.06 g L−1 |
[7] | C. glutamicum | Insensitive SAT, deletion of CD, and increased transport | Shake flasks, 48 h | 0.95 g L−1 |
[37] | C. glutamicum | Overexpression of SAT and PGDH with disruption of CD and L-cysteine import | Shake flasks, 12 h | 0.20 g L−1 |
[13] | E. coli | Overexpression of PGDH, PSERT, and PSL | Shake flasks, 48 h | 0.49 g L−1 |
Weakening degradation of L-cysteine | ||||
[41] | C. glutamicum | Disruption of aecD gene (CD) | Shake flasks, 72 h | 0.29 g L−1 |
[44] | E. coli | Disruption of TNase, CBL, OASS-A, OASS-B, and MalY | Shake flasks, 72 h | 1.36 g L−1 (per OD562) |
[46] | E. coli | Disruption of the yciW gene | Shake flasks, 72 h | 0.31 g L−1 (per OD562) |
[6] | P. ananatis | Deletion of CD ccdA | Test tubes, 28 h | 0.52 g L−1 |
[7] | C. glutamicum | Disruption of aecD (CD) and overexpression of insensitive SAT | Shake flasks, 48 h | 0.35 g L−1 |
Enhancing efflux of L-cysteine | ||||
[51] | E. coli | Overexpression of exporter YdeD | Shake flasks, 48 h | 0.07 g L−1 |
[52] | E. coli | Overexpression of exporter YfiK | Shake flasks, 20 h | 0.15 g L−1 |
[54] | E. coli | Overexpression of exporter bcr and deletion of TNase | Shake flasks, 48 h | 0.50 g L−1 |
[55] | E. coli | Overexpression of exporters YdeD and TolC | Shake flasks, 24 h | 0.12 g L−1 |
[6] | P. ananatis | Overexpression of transporter cefB | Test tubes, 28 h | 2.30 g L−1 |
[56] | C. glutamicum | Overexpression of transport genes NCgl0580 and NCgl2566 | Shake flasks, 20 h | 0.28 g L−1 |
[7] | C. glutamicum | Overexpression of exporter bcr | Shake flasks, 48 h | 0.63 g L−1 |
[57] | E. coli | Deletion of importer yeaN | Shake flasks, 20 h | 1.20 g L−1 |
[58] | C. glutamicum | Deletion of importer NCgl2463, overexpression of exporter eamA and G6PDH | 5 L stirred tank, 72 h | 5.92 g L−1 |
2.4. Limitations of the Metabolic Engineering Approaches
3. Process Engineering Aspects
3.1. Sulfur Assimilation Pathways in Bacteria
3.2. Glycerol as Carbon Source
3.3. Fed-Batch Processes in Stirred-Tank Bioreactors
3.4. Purification of L-Cysteine from the Fermentation Broth
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paul, B.D.; Sbodio, J.I.; Snyder, S.H. Cysteine metabolism in neuronal redox homeostasis. Trends Pharmacol. Sci. 2018, 39, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Kredich, N.M. Regulation of l-Cysteine Biosynthesis in Salmonella typhimurium: I. Effects of growth on varying sulfur sources and O-acetyl-L-serine on gene expression. J. Biol. Chem. 1971, 246, 3474–3484. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, M.A.; Pedersen, S. Cysteine, even in low concentrations, induces transient amino acid starvation in Escherichia coli. J. Bacteriol. 1991, 173, 5244–5246. [Google Scholar] [CrossRef]
- Takumi, K.; Nonaka, G. Bacterial Cysteine-Inducible Cysteine Resistance Systems. J. Bacteriol. 2016, 198, 1384–1392. [Google Scholar] [CrossRef]
- Yin, J.; Ren, W.; Yang, G.; Duan, J.; Huang, X.; Fang, R.; Li, C.; Li, T.; Yin, Y.; Hou, Y.; et al. L-Cysteine metabolism and its nutritional implications. Mol. Nutr. Food Res. 2016, 60, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Takumi, K.; Ziyatdinov, M.K.; Samsonov, V.; Nonaka, G. Fermentative production of cysteine by Pantoea ananatis. Appl. Environ. Microbiol. 2017, 83, e02502-16. [Google Scholar] [CrossRef]
- Wei, L.; Wang, H.; Xu, N.; Zhou, W.; Ju, J.; Liu, J.; Ma, Y. Metabolic engineering of Corynebacterium glutamicum for l-cysteine production. Appl. Microbiol. Biotechnol. 2019, 103, 1325–1338. [Google Scholar] [CrossRef]
- Wendisch, V.F. Metabolic engineering advances and prospects for amino acid production. Metab. Eng. 2020, 58, 17–34. [Google Scholar] [CrossRef]
- Clemente Plaza, N.; Reig García-Galbis, M.; Martínez-Espinosa, R.M. Effects of the Usage of l-Cysteine (l-Cys) on Human Health. Molecules 2018, 23, 3. [Google Scholar] [CrossRef]
- Ismail, N.I.; Yumi Zuhanis Has-Yun, H.; Parveen, J. Production of Cysteine: Approaches, Challenges and Potential Solution. Int. J. Biotechnol. Wellness Ind. 2014, 3, 95–101. [Google Scholar]
- Bichon, E.; Sitthisack, P.; Sérée-Vattier, L.; Prévost, S.; Schiphorst, A.-M.; Pouponneau, K.; Monteau, F.; Le Bizec, B. Determination of l-cysteine origin on the basis of its δ15N values. Food Chem. 2018, 260, 283–288. [Google Scholar] [CrossRef]
- Takagi, H.; Ohtsu, I. L-Cysteine Metabolism and Fermentation in Microorganisms. In Amino Acid Fermentation; Yokota, A., Ikeda, M., Eds.; Springer: Tokyo, Japan, 2017; pp. 129–151. [Google Scholar] [CrossRef]
- Liu, H.; Fang, G.; Wu, H.; Li, Z.; Ye, Q. L-Cysteine Production in Escherichia coli Based on Rational Metabolic Engineering and Modular Strategy. Biotechnol. J. 2018, 13, 1700695. [Google Scholar] [CrossRef] [PubMed]
- Sano, K.; Yokozeki, K.; Tamura, F.; Yasuda, N.; Noda, I.; Mitsugi, K. Microbial conversion of DL-2-amino-delta2-thiazoline-4-carboxylic acid to L-cysteine and L-cystine: Screening of microorganisms and identification of products. Appl. Environ. Microbiol. 1977, 34, 806–810. [Google Scholar] [CrossRef] [PubMed]
- Sano, K.; Mitsugi, K. Enzymatic Production of l-Cysteine from dl-2-Amino-Δ2-thiazoline-4-carboxylic Acid by Pseudomonas thiazolinophilum: Optimal Conditions for the Enzyme Formation and Enzymatic Reaction. Agric. Biol. Chem. 1978, 42, 2315–2321. [Google Scholar] [CrossRef]
- Tamura, Y.; Nishino, M.; Ohmachi, T.; Asada, Y. N-Carbamoyl-L-Cysteine as an Intermediate in the Bioconversion from D,L-2-Amino-Δ2-Thiazoline-4-Carboxylic Acid to L-Cysteine by Pseudomonas sp. ON-4a. Biosci. Biotechnol. Biochem. 1998, 62, 2226–2229. [Google Scholar] [CrossRef] [PubMed]
- Shiba, T.; Takeda, K.; Yajima, M.; Tadano, M. Genes from Pseudomonas sp. Strain BS Involved in the Conversion of l-2-Amino-Δ2-Thiazolin-4-Carbonic Acid to l-Cysteine. Appl. Environ. Microbiol. 2002, 68, 2179–2187. [Google Scholar] [CrossRef]
- Huai, L.; Chen, N.; Yang, W.; Bai, G. Metabolic control analysis of L-cysteine producing strain TS1138 of Pseudomonas sp. Biochemistry 2009, 74, 288–292. [Google Scholar] [CrossRef]
- Wendisch, V.F. Microbial production of amino acids and derived chemicals: Synthetic biology approaches to strain development. Curr. Opin. Biotechnol. 2014, 30, 51–58. [Google Scholar] [CrossRef]
- Pizer, L.I. The pathway and control of serine biosynthesis in Escherichia coli. J. Biol. Chem. 1963, 238, 3934–3944. [Google Scholar] [CrossRef]
- Vermeij, P.; Kertesz, M.A. Pathways of assimilative sulfur metabolism in Pseudomonas putida. J. Bacteriol. 1999, 181, 5833–5837. [Google Scholar] [CrossRef]
- Ono, B.-I.; Hazu, T.; Yoshida, S.; Kawato, T.; Shinoda, S.; Brzvwczy, J.; Paszewski, A. Cysteine biosynthesis in Saccharomyces cerevisiae: A new outlook on pathway and regulation. Yeast 1999, 15, 1365–1375. [Google Scholar] [CrossRef]
- Sperandio, B.; Polard, P.; Ehrlich, D.S.; Renault, P.; Guédon, E. Sulfur amino acid metabolism and its control in Lactococcus lactis IL1403. J. Bacteriol. 2005, 187, 3762–3778. [Google Scholar] [CrossRef] [PubMed]
- Byrne, C.R.; Monroe, R.S.; Ward, K.A.; Kredich, N.M. DNA sequences of the cysK regions of Salmonella typhimurium and Escherichia coli and linkage of the cysK regions to ptsH. J. Bacteriol. 1988, 170, 3150–3157. [Google Scholar] [CrossRef] [PubMed]
- Phue, J.-N.; Shiloach, J. Transcription levels of key metabolic genes are the cause for different glucose utilization pathways in E. coli B (BL21) and E. coli K (JM109). J. Biotechnol. 2004, 109, 21–30. [Google Scholar] [CrossRef]
- Tanaka, N.; Hatano, T.; Saito, S.; Wakabayashi, Y.; Abe, T.; Kawano, Y.; Ohtsu, I. Generation of hydrogen sulfide from sulfur assimilation in Escherichia coli. J. Gen. Appl. Microbiol. 2019, 65, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Hou, Y.; Wang, Y.; Li, Z. Enhancement of Sulfur Conversion Rate in the Production of l-Cysteine by Engineered Escherichia coli. J. Agric. Food Chem. 2020, 68, 250–257. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Hou, Y.; Li, Z. Fitness of Chassis Cells and Metabolic Pathways for l -Cysteine Overproduction in Escherichia coli. J. Agric. Food Chem. 2020, 68, 14928–14937. [Google Scholar] [CrossRef]
- Nakamori, S.; Kobayashi, S.I.; Kobayashi, C.; Takagi, H. Overproduction of L-cysteine and L-cystine by Escherichia coli strains with a genetically altered serine acetyltransferase. Appl. Environ. Microbiol. 1998, 64, 1607–1611. [Google Scholar] [CrossRef]
- Takagi, H.; Kobayashi, C.; Kobayashi, S.; Nakamori, S. PCR random mutagenesis into Escherichia coli serine acetyltransferase: Isolation of the mutant enzymes that cause overproduction of L-cysteine and L-cystine due to the desensitization to feedback inhibition. FEBS Lett. 1999, 452, 323–327. [Google Scholar] [CrossRef]
- Takagi, H.; Awano, N.; Kobayashi, S.; Noji, M.; Saito, K.; Nakamori, S. Overproduction of l-cysteine and l-cystine by expression of genes for feedback inhibition-insensitive serine acetyltransferase from Arabidopsis thaliana in Escherichia coli. FEMS Microbiol. Lett. 1999, 179, 453–459. [Google Scholar] [CrossRef]
- Wirtz, M.; Hell, R. Production of cysteine for bacterial and plant biotechnology: Application of cysteine feedback-insensitive isoforms of serine acetyltransferase. Amino Acids 2003, 24, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Noji, M.; Inoue, K.; Kimura, N.; Gouda, A.; Saito, K. Isoform-dependent Differences in Feedback Regulation and Subcellular Localization of Serine Acetyltransferase Involved in Cysteine Biosynthesis from Arabidopsis thaliana. J. Biol. Chem. 1998, 273, 32739–32745. [Google Scholar] [CrossRef] [PubMed]
- Kai, Y.; Kashiwagi, T.; Ishikawa, K.; Ziyatdinov, M.K.; Redkina, E.I.; Kiriukhin, M.Y.; Gusyatiner, M.M.; Kobayashi, S.; Takagi, H.; Suzuki, E. Engineering of Escherichia coli L-serine O-acetyltransferase on the basis of crystal structure: Desensitization to feedback inhibition by l-cysteine. Protein Eng. Des. Sel. 2006, 19, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, T.; Shimizu, H. Glutamic Acid Fermentation: Discovery of Glutamic Acid-Producing Microorganisms, Analysis of the Production Mechanism, Metabolic Engineering, and Industrial Production Process. In Industrial Biotechnology; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 339–360. [Google Scholar] [CrossRef]
- Kinoshita, S.; Udaka, S.; Shimono, M. Studies on the Amino Acid Fermentation. J. Gen. Appl. Microbiol. 1957, 3, 193–205. [Google Scholar] [CrossRef]
- Joo, Y.-C.; Hyeon, J.E.; Han, S.O. Metabolic Design of Corynebacterium glutamicum for Production of l-Cysteine with Consideration of Sulfur-Supplemented Animal Feed. J. Agric. Food Chem. 2017, 65, 4698–4707. [Google Scholar] [CrossRef]
- Kondoh, M.; Hirasawa, T. L-Cysteine production by metabolically engineered Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 2019, 103, 2609–2619. [Google Scholar] [CrossRef]
- Mundhada, H.; Schneider, K.; Christensen, H.B.; Nielsen, A.T. Engineering of high yield production of L-serine in Escherichia coli. Biotechnol. Bioeng. 2016, 113, 807–816. [Google Scholar] [CrossRef]
- Becker, J.; Wittmann, C. Bio-based production of chemicals, materials and fuels—Corynebacterium glutamicum as versatile cell factory. Curr. Opin. Biotechnol. 2012, 23, 631–640. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, S.Y. Towards systems metabolic engineering of microorganisms for amino acid production. Curr. Opin. Biotechnol. 2008, 19, 454–460. [Google Scholar] [CrossRef]
- Wada, M.; Awano, N.; Haisa, K.; Takagi, H.; Nakamori, S. Purification, characterization and identification of cysteine desulfhydrase of Corynebacterium glutamicum, and its relationship to cysteine production. FEMS Microbiol. Lett. 2002, 217, 103–107. [Google Scholar] [CrossRef]
- Rossol, I.; Pühler, A. The Corynebacterium glutamicum aecD gene encodes a C-S lyase with alpha, beta-elimination activity that degrades aminoethylcysteine. J. Bacteriol. 1992, 174, 2968–2977. [Google Scholar] [CrossRef] [PubMed]
- Awano, N.; Wada, M.; Kohdoh, A.; Oikawa, T.; Takagi, H.; Nakamori, S. Effect of cysteine desulfhydrase gene disruption on l-cysteine overproduction in Escherichia coli. Appl. Microbiol. Biotechnol. 2003, 62, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Awano, N.; Wada, M.; Mori, H.; Nakamori, S.; Takagi, H. Identification and functional analysis of Escherichia coli cysteine desulfhydrases. Appl. Environ. Microbiol. 2005, 71, 4149–4152. [Google Scholar] [CrossRef]
- Kawano, Y.; Ohtsu, I.; Takumi, K.; Tamakoshi, A.; Nonaka, G.; Funahashi, E.; Ihara, M.; Takagi, H. Enhancement of l-cysteine production by disruption of yciW in Escherichia coli. J. Biosci. Bioeng. 2015, 119, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Tchong, S.-I.; Xu, H.; White, R.H. l-Cysteine Desulfidase: An [4Fe-4S] Enzyme Isolated from Methanocaldococcus jannaschii That Catalyzes the Breakdown of l-Cysteine into Pyruvate, Ammonia, and Sulfide. Biochemistry 2005, 44, 1659–1670. [Google Scholar] [CrossRef]
- Nonaka, G.; Takumi, K. Cysteine degradation gene yhaM, encoding cysteine desulfidase, serves as a genetic engineering target to improve cysteine production in Escherichia coli. AMB Express 2017, 7, 90. [Google Scholar] [CrossRef] [PubMed]
- Loddeke, M.; Schneider, B.; Oguri, T.; Mehta, I.; Xuan, Z.; Reitzer, L. Anaerobic cysteine degradation and potential metabolic coordination in Salmonella enterica and Escherichia coli. J. Bacteriol. 2017, 199, e00117-17. [Google Scholar] [CrossRef]
- Haitani, Y.; Awano, N.; Yamazaki, M.; Wada, M.; Nakamori, S.; Takagi, H. Functional analysis of l-serine O-acetyltransferase from Corynebacterium glutamicum. FEMS Microbiol. Lett. 2006, 255, 156–163. [Google Scholar] [CrossRef]
- Daßler, T.; Maier, T.; Winterhalter, C.; Böck, A. Identification of a major facilitator protein from Escherichia coli involved in efflux of metabolites of the cysteine pathway. Mol. Microbiol. 2000, 36, 1101–1112. [Google Scholar] [CrossRef]
- Franke, I.; Resch, A.; Dassler, T.; Maier, T.; Böck, A. YfiK from Escherichia coli promotes export of O-acetylserine and cysteine. J. Bacteriol. 2003, 185, 1161–1166. [Google Scholar] [CrossRef]
- Pittman, M.S.; Corker, H.; Wu, G.; Binet, M.B.; Moir, A.J.G.; Poole, R.K. Cysteine Is Exported from the Escherichia coli Cytoplasm by CydDC, an ATP-binding Cassette-type Transporter Required for Cytochrome Assembly *. J. Biol. Chem. 2002, 277, 49841–49849. [Google Scholar] [CrossRef]
- Yamada, S.; Awano, N.; Inubushi, K.; Maeda, E.; Nakamori, S.; Nishino, K.; Yamaguchi, A.; Takagi, H. Effect of Drug Transporter Genes on Cysteine Export and Overproduction in Escherichia coli. Appl. Environ. Microbiol. 2006, 72, 4735–4742. [Google Scholar] [CrossRef]
- Wiriyathanawudhiwong, N.; Ohtsu, I.; Li, Z.-D.; Mori, H.; Takagi, H. The outer membrane TolC is involved in cysteine tolerance and overproduction in Escherichia coli. Appl. Microbiol. Biotechnol. 2009, 81, 903–913. [Google Scholar] [CrossRef]
- Kishino, M.; Kondoh, M.; Hirasawa, T. Enhanced L-cysteine production by overexpressing potential L-cysteine exporter genes in an L-cysteine-producing recombinant strain of Corynebacterium glutamicum. Biosci. Biotechnol. Biochem. 2019, 83, 2390–2393. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, S.; Ziyatdinov, M.K.; Nonaka, G. Fermentative production of sulfur-containing amino acid with engineering putative l-cystathionine and l-cysteine uptake systems in Escherichia coli. J. Biosci. Bioeng. 2020, 130, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Qiao, J.; Qi, Y.; Li, L.; Xu, N.; Shao, L.; Wei, L.; Liu, J. Reprogramming the sulfur recycling network to improve L-cysteine production in Corynebacterium glutamicum. Green Chem. 2023, 25, 3152–3165. [Google Scholar] [CrossRef]
- Caballero Cerbon, D.A.; Widmann, J.; Weuster-Botz, D. Metabolic control analysis enabled the improvement of the L-cysteine production process with Escherichia coli. Appl. Microbiol. Biotechnol. 2024, 108, 1–13. [Google Scholar] [CrossRef]
- Kawano, Y.; Suzuki, K.; Ohtsu, I. Current understanding of sulfur assimilation metabolism to biosynthesize l-cysteine and recent progress of its fermentative overproduction in microorganisms. Appl. Microbiol. Biotechnol. 2018, 102, 19. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, Z.; Bian, J.; Gao, Y.; Zhang, D.; Xu, G.; Zhang, X.; Li, H.; Shi, J.; Xu, Z. Rational Metabolic Engineering Combined with Biosensor-Mediated Adaptive Laboratory Evolution for l-Cysteine Overproduction from Glycerol in Escherichia coli. Fermentation 2022, 8, 7. [Google Scholar] [CrossRef]
- Boehm, A. Process for Purifying L-Cysteine. U.S. Patent US8088949B2, 3 January 2012. Available online: https://patents.google.com/patent/US8088949B2/en (accessed on 22 September 2023).
- Nakatani, T.; Ohtsu, I.; Nonaka, G.; Wiriyathanawudhiwong, N.; Morigasaki, S.; Takagi, H. Enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from S-sulfocysteine increases L-cysteine production in Escherichia coli. Microb. Cell Factories 2012, 11, 62. [Google Scholar] [CrossRef]
- Kawano, Y.; Onishi, F.; Shiroyama, M.; Miura, M.; Tanaka, N.; Oshiro, S.; Nonaka, G.; Nakanishi, T.; Ohtsu, I. Improved fermentative l-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli. Appl. Microbiol. Biotechnol. 2017, 101, 6879–6889. [Google Scholar] [CrossRef] [PubMed]
- Kredich, N.M.; Tomkins, G.M. The enzymic synthesis of L-cysteine in Escherichia coli and Salmonella typhimurium. J. Biol. Chem. 1966, 241, 4955–4965. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, J.; Ji, X.; Fang, Z.; Wu, Z.; Chen, J.; Du, G. Evolutionary engineering of industrial microorganisms-strategies and applications. Appl. Microbiol. Biotechnol. 2018, 102, 4615–4627. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, D.; Zhu, J.; Liu, W.; Xu, G.; Zhang, X.; Shi, J.; Xu, Z. High-yield production of l-serine from glycerol by engineered Escherichia coli. J. Ind. Microbiol. Biotechnol. 2019, 46, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Link, H.; Anselment, B.; Weuster-Botz, D. Rapid media transition: An experimental approach for steady state analysis of metabolic pathways. Biotechnol. Prog. 2010, 26, 1–10. [Google Scholar] [CrossRef]
- Weiner, M.; Albermann, C.; Gottlieb, K.; Sprenger, G.A.; Weuster-Botz, D. Fed-batch production of l-phenylalanine from glycerol and ammonia with recombinant Escherichia coli. Biochem. Eng. J. 2014, 83, 62–69. [Google Scholar] [CrossRef]
- Schoppel, K.; Trachtmann, N.; Korzin, E.J.; Tzanavari, A.; Sprenger, G.A.; Weuster-Botz, D. Metabolic control analysis enables rational improvement of E. coli L-tryptophan producers but methylglyoxal formation limits glycerol-based production. Microb. Cell Factories 2022, 21, 201. [Google Scholar] [CrossRef]
- Doering, W. Verfahren zur Isolierung von Cystin. German Patent DE10040176A1, 8 September 2002. Available online: https://patents.google.com/patent/DE10040176A1/en/en17 (accessed on 13 September 2023).
- Miyahara, S.; Kamiguchi, T.; Hashimukai, T.; Nitta, K. Method of Separating Monohydrate of l-Cysteine Hydrochloride. European. Union Patent EP0250987B1, 27 December 1990. Available online: https://patents.google.com/patent/EP0250987B1/en (accessed on 17 August 2023).
Pathway | Steps | Enzymes | ATP/NADPH Demand |
---|---|---|---|
Thiosulfate |
| CysM | - |
| NrdH, Grx1 | 1 NADPH | |
Thiosulfate (postulated) |
| GlpE | - |
| CysIJ, CysG | 3 NADPH | |
| CysK | - | |
Sulfate |
| CysDN | 1 ATP |
| CysC | 1 ATP | |
| CysH | 1 NADPH | |
| CysIJ, CysG | 3 NADPH | |
| CysK | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caballero Cerbon, D.A.; Gebhard, L.; Dokuyucu, R.; Ertl, T.; Härtl, S.; Mazhar, A.; Weuster-Botz, D. Challenges and Advances in the Bioproduction of L-Cysteine. Molecules 2024, 29, 486. https://doi.org/10.3390/molecules29020486
Caballero Cerbon DA, Gebhard L, Dokuyucu R, Ertl T, Härtl S, Mazhar A, Weuster-Botz D. Challenges and Advances in the Bioproduction of L-Cysteine. Molecules. 2024; 29(2):486. https://doi.org/10.3390/molecules29020486
Chicago/Turabian StyleCaballero Cerbon, Daniel Alejandro, Leon Gebhard, Ruveyda Dokuyucu, Theresa Ertl, Sophia Härtl, Ayesha Mazhar, and Dirk Weuster-Botz. 2024. "Challenges and Advances in the Bioproduction of L-Cysteine" Molecules 29, no. 2: 486. https://doi.org/10.3390/molecules29020486
APA StyleCaballero Cerbon, D. A., Gebhard, L., Dokuyucu, R., Ertl, T., Härtl, S., Mazhar, A., & Weuster-Botz, D. (2024). Challenges and Advances in the Bioproduction of L-Cysteine. Molecules, 29(2), 486. https://doi.org/10.3390/molecules29020486