The Influence of Quercus alba Geographical Location and Aging Time on the Chemical and Sensory Quality of Tempranillo Wines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Common Oenological Parameters
2.2. Volatile Composition and Odor Activity Values of Wines after 12 and 24 Months of Aging
2.3. Phenolic Composition of Wines after 12 and 24 Months of Aging
2.4. Sensory Evaluation of the Wines after 12 and 24 Months of Aging
3. Materials and Methods
3.1. Barrels
3.2. Barrel Aging and Sample Collection
3.3. Analysis of General Oenological Parameters
3.4. Analysis of Monomeric Phenolic Compounds
3.5. Analysis of Ellagitannins
3.6. Determination of Volatile Compounds and Odor Activity Values
3.7. Sensory Analysis
3.8. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jordão, A.M.; Cosme, F. The Application of Wood Species in Enology: Chemical Wood Composition and Effect on Wine Quality. Appl. Sci. 2022, 12, 3179. [Google Scholar] [CrossRef]
- Michel, J.; Jourdes, M.; Silva, M.A.; Giordanengo, T.; Mourey, N.; Teissedre, P.L. Impact of concentration of ellagitannins in oak wood on their levels and organoleptic influence in red wine. J. Agric. Food Chem. 2011, 59, 5677–5683. [Google Scholar] [CrossRef]
- Zhang, B.; Cai, J.; Duan, C.Q.; Reeves, M.J.; He, F. A review of polyphenolics in oak woods. Int. J. Mol. Sci. 2015, 16, 6978–7014. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.K.; He, F.; Zhang, B.; Reeves, M.J.; Liu, Y.; Zhao, X.; Duan, C.Q. The effect of prefermentative addition of gallic acid and ellagic acid on the red wine color, copigmentation and phenolic profiles during wine aging. Food Res. Int. 2018, 106, 568–579. [Google Scholar] [CrossRef] [PubMed]
- Carpena, M.; Pereira, A.G.; Prieto, M.A.; Simal-Gandara, J. Wine aging technology: Fundamental role of wood barrels. Foods 2020, 9, 1160. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Aging Red Wines in Vat and Barrel: Phenomena Occurring during Aging. In Handbook of Enology; Ribéreau-Gayon, P., Glories, Y., Maujean, A., Dubourdieu, D., Eds.; Wiley: Hoboken, NJ, USA, 2006; Volumn 2, pp. 387–428. [Google Scholar] [CrossRef]
- Sanz, M.; De Simón, B.F.; Cadahía, E.; Esteruelas, E.; Muñoz, Á.M.; Hernández, M.T.; Estrella, I. Polyphenolic profile as a useful tool to identify the wood used in wine aging. Anal. Chim. Acta 2012, 732, 33–45. [Google Scholar] [CrossRef]
- Laqui-Estaña, J.; López-Solís, R.; Peña-Neira, Á.; Medel-Marabolí, M.; Obreque-Slier, E. Wines in contact with oak wood: The impact of the variety (Carménère and Cabernet Sauvignon), format (barrels, chips and staves), and aging time on the phenolic composition. J. Sci. Food Agric. 2019, 99, 240–250. [Google Scholar] [CrossRef]
- De Rosso, M.; Cancian, D.; Panighel, A.; Dalla Vedova, A.; Flamini, R. Chemical Compounds Released from Five Different Woods Used to Make Barrels for Aging Wines and Spirits: Volatile Compounds and Polyphenols. Wood Sci. Technol. 2009, 43, 375–385. [Google Scholar] [CrossRef]
- De Rosso, M.; Panighel, A.; Vedova, A.D.; Stella, L.; Flamini, R. Changes in chemical composition of a red wine aged in acacia, cherry, chestnut, mulberry, and oak wood barrels. J. Agric. Food Chem. 2009, 57, 1915–1920. [Google Scholar] [CrossRef]
- Tavares, M.; Jordão, A.M.; Ricardo-Da-Silva, J.M. Impact of cherry, acacia and oak chips on red wine phenolic parameters and sensory profile. Oeno One 2017, 51, 329–342. [Google Scholar] [CrossRef]
- Rubio-Bretón, P.; Garde-Cerdán, T.; Martínez, J. Use of Oak Fragments During the Aging of Red Wines. Effect on the Phenolic, Aromatic, and Sensory Composition of Wines as a Function of the Contact Time with the Wood. Beverages 2018, 4, 102. [Google Scholar] [CrossRef]
- Martínez-Gil, A.M.; del Alamo-Sanza, M.; Gutiérrez-Gamboa, G.; Moreno-Simunovic, Y.; Nevares, I. Volatile composition and sensory characteristics of Carménère wines macerating with Colombian (Quercus humboldtii) oak chips compared to wines macerated with American (Q. alba) and European (Q. petraea) oak chips. Food Chem. 2018, 266, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Gallego, L.; Del Alamo, M.; Nevares, I.; Fernández, J.A.; De Simón, B.F.; Cadahía, E. Phenolic Compounds and Sensorial Characterization of Wines Aged with Alternative to Barrel Products Made of Spanish Oak Wood (Quercus pyrenaica Willd.). Food Sci. Technol. Int. 2012, 18, 151–165. [Google Scholar] [CrossRef] [PubMed]
- González-Centeno, M.R.; Teissedre, P.L.; Chira, K. Impact of oak wood ageing modalities on the (non)-volatile composition and sensory attributes of red wines. Oeno One 2021, 55, 4673. [Google Scholar] [CrossRef]
- Fernández De Simón, B.; Cadahía, E.; Sanz, M.; Poveda, P.; Perez-Magariño, S.; Ortega-Heras, M.; González-Huerta, C. Volatile compounds and sensorial characterization of wines from four spanish denominations of origin, aged in Spanish Rebollo (Quercus pyrenaica Willd.) oak wood barrels. J. Agric. Food Chem. 2008, 56, 9046–9055. [Google Scholar] [CrossRef]
- Gombau, J.; Cabanillas, P.; Mena, A.; Pérez-Navarro, J.; Ramos, J.; Torner, A.; Fort, F.; Gómez-Alonso, S.; García-Romero, E.; Canals, J.M.; et al. Comparative study of volatile substances and ellagitannins released into wine by Quercus pyrenaica, Quercus petraea and Quercus alba barrels. Oeno One 2022, 56, 243–255. [Google Scholar] [CrossRef]
- Navarro, M.; Kontoudakis, N.; Gómez-Alonso, S.; García-Romero, E.; Canals, J.M.; Hermosín-Gutíerrez, I.; Zamora, F. Influence of the botanical origin and toasting level on the ellagitannin content of wines aged in new and used oak barrels. Food Res. Int. 2016, 87, 101–109. [Google Scholar] [CrossRef]
- Martínez-Gil, A.M.; del Alamo-Sanza, M.; Nevares, I.; Sánchez-Gómez, R.; Gallego, L. Effect of size, seasoning and toasting level of Quercus pyrenaica Willd. wood on wine phenolic composition during maturation process with micro-oxygenation. Food Res. Int. 2020, 128, 108703. [Google Scholar] [CrossRef]
- Martínez, J.; Cadahía, E.; Fernández de Simón, B.; Ojeda, S.; Rubio, P. Effect of the Seasoning Method on the Chemical Composition of Oak Heartwood to Cooperage. J. Agric. Food Chem. 2008, 56, 3089–3096. [Google Scholar] [CrossRef]
- Michel, J.; Jourdes, M.; Le Floch, A.; Giordanengo, T.; Mourey, N.; Teissedre, P.L. Influence of wood barrels classified by NIRS on the ellagitannin content/composition and on the organoleptic properties of wine. J. Agric. Food Chem. 2013, 61, 11109–11118. [Google Scholar] [CrossRef]
- Jourdes, M.; Michel, J.; Saucier, C.; Quideau, S.; Teissedre, P.-L. Identification, amounts, and kinetics of extraction of C-glucosidic ellagitannins during wine aging in oak barrels or in stainless steel tanks with oak chips. Anal. Bioanal. Chem. 2011, 401, 1531–1539. [Google Scholar] [CrossRef] [PubMed]
- Fernández de Simón, B.; Cadahía, E.; Jalocha, J. Volatile compounds in a Spanish red wine aged in barrels made of Spanish, French, and American oak wood. J. Agric. Food Chem. 2003, 51, 7671–7678. [Google Scholar] [CrossRef] [PubMed]
- Fernández de Simón, B.; Hernández, T.; Cadahía, E.; Dueñas, M.; Estrella, I. Phenolic compounds in a Spanish red wine aged in barrels made of Spanish, French and American oak wood. Eur. Food Res. Technol. 2003, 216, 150–156. [Google Scholar] [CrossRef]
- Garde-Cerdán, T.; Goñi, D.T.; Azpilicueta, C.A. Accumulation of volatile compounds during ageing of two red wines with different composition. J. Food Eng. 2004, 65, 349–356. [Google Scholar] [CrossRef]
- Guld, Z.S.; Rácz, A.; Tima, H.; Kállay, M.; Nyitrainé Sárdy, D. Effects of aging in oak barrels on the trans-resveratrol and anthocyanin concentration of red wines from Hungary. Acta Aliment. 2019, 48, 349–357. [Google Scholar] [CrossRef]
- Castro-Vázquez, L.; Alañón, M.E.; Calvo, E.; Cejudo, M.J.; Díaz-Maroto, M.C.; Pérez-Coello, M.S. Volatile compounds as markers of ageing in Tempranillo red wines from La Mancha D.O. stored in oak wood barrels. J. Chromatogr. A 2011, 1218, 4910–4917. [Google Scholar] [CrossRef]
- Martínez, J. Incidencia del Origen de la Madera de Roble en la Calidad de los Vinos de Tempranillo de la D.O.Ca. Rioja Durante la Crianza en Barrica. Ph.D. Thesis, Universidad de La Rioja, La Rioja, Spain, 2004. [Google Scholar]
- Feng, Z.; Martínez-Lapuente, L.; Ayestarán, B.; Guadalupe, Z. Volatile and sensory characterization of Tempranillo wines aged in Quercus alba oak barrels of different geographical origins in USA. LWT-Food Sci. Technol. 2023, 173, 114328. [Google Scholar] [CrossRef]
- Feng, Z.; Martínez-Lapuente, L.; Palacios, A.; Ayestarán, B.; Guadalupe, Z. Influence of Quercus alba oak geographical origin on the colour characteristics and phenolic composition of Tempranillo wines. Eur. Food Res. Technol. 2024, 250, 1587–1609. [Google Scholar] [CrossRef]
- García, S.O. Nuevos Orígenes de la Madera de Roble Para la Crianza de Vinos Tintos de la D.O.Ca Rioja. Ph.D. Thesis, Universidad de La Rioja, La Rioja, Spain, 2012. [Google Scholar]
- Mislata, A.M.; Puxeu, M.; Nart, E.; de Lamo, S.; Ferrer-Gallego, R. Preliminary study of the effect of cation-exchange resin treatment on the aging of Tempranillo red wines. LWT-Food Sci. Technol. 2021, 138, 110669. [Google Scholar] [CrossRef]
- Cadahía, E.; Fernández de Simón, B.; Sanz, M.; Poveda, P.; Colio, J. Chemical and Chromatic Characteristics of Tempranillo, Cabernet Sauvignon and Merlot Wines from DO Navarra Aged in Spanish and French Oak Barrels. Food Chem. 2009, 115, 639–649. [Google Scholar] [CrossRef]
- Kyraleou, M.; Kallithraka, S.; Chira, K.; Tzanakouli, E.; Ligas, I.; Kotseridis, Y. Differentiation of wines treated with wood chips based on their phenolic content, volatile composition, and sensory parameters. J. Food Sci. 2015, 80, C2701–C2710. [Google Scholar] [CrossRef]
- Li, S.Y.; Duan, C.Q. Astringency, Bitterness and Color Changes in Dry Red Wines before and during Oak Barrel Aging: An Updated Phenolic Perspective Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1840–1867. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Etiévant, P.X. Wine. In Volatile Compounds in Foods and Beverages; Maarse, H., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1991; pp. 438–546. [Google Scholar]
- Cutzach, I.; Chatonnet, P.; Henry, R.; Pons, M.; Dubourdieu, D. Study in aroma of sweet natural non-muscat wines 2nd part: Quantitative analysis of volatil compounds taking part in aroma of sweet natural wines during ageing. J. Int. Sci. Vigne Vin. 1998, 32, 211–221. [Google Scholar] [CrossRef]
- Wilkinson, K.L.; Elsey, G.M.; Prager, R.H.; Tanaka, T.; Sefton, M.A. Precursors to oak lactone. Part 2: Synthesis, separation, and cleavage of several β-D-glucopyranosides of 3-methyl-4-hydroxyoctanoic acid. Tetrahedron 2004, 60, 6091–6100. [Google Scholar] [CrossRef]
- Brown, R.C.; Sefton, M.A.; Taylor, D.K.; Elsey, G.M. An odour detection threshold determination of all four possible stereoisomers of oak lactone in a white and a red wine. Aust. J. Grape Wine Res. 2006, 12, 115–118. [Google Scholar] [CrossRef]
- Chatonnet, P.; Dubourdie, D.; Boidron, J.N.; Pons, M. The origin of ethylphenols in wines. J. Sci. Food Agric. 1992, 60, 165–178. [Google Scholar] [CrossRef]
- Guth, H. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Chira, K.; Teissedre, P.L. Extraction of oak volatiles and ellagitannin compounds and sensory profile of wine aged with French winewoods subjected to different toasting methods: Behaviour during storage. Food Chem. 2013, 140, 168–177. [Google Scholar] [CrossRef]
- Lu, H.; Cheng, B.; Lan, Y.; Duan, C.; He, F. Modifications in aroma characteristics of ‘Merlot’ dry red wines aged in American, French, and Slovakian oak barrels with different toasting degrees. Food Sci. Hum. Wellness 2024, 13, 381–391. [Google Scholar] [CrossRef]
- Quijada-Morín, N.; Dangles, O.; Rivas-Gonzalo, J.C.; Escribano-Bailón, M.T. Physico-chemical and chromatic characterization of malvidin 3-glucoside-vinylcatechol and malvidin 3-glucoside-vinylguaiacol wine pigments. J. Agric. Food Chem. 2010, 58, 9744–9752. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.L.; Towey, J.P. Oak Lactone Isomer Ratio Distinguishes between Wine Fermented in American and French Oak Barrels. J. Agric. Food Chem. 1994, 42, 1971–1974. [Google Scholar] [CrossRef]
- Atanasova, V.; Fulcrand, H.; Cheynier, V.; Moutounet, M. Effect of oxygenation on polyphenol changes occurring in the course of wine-making. Anal. Chim. Acta 2002, 458, 15–27. [Google Scholar] [CrossRef]
- Es-Safi, N.E.; Cheynier, V.; Moutounet, M. Role of aldehydic derivatives in the condensation of phenolic compounds with emphasis on the sensorial properties of fruit-derived foods. J. Agric. Food Chem. 2002, 50, 5571–5585. [Google Scholar] [CrossRef]
- Fernandes, A.; Oliveira, J.; Teixeira, N.; Mateus, N.; de Freitas, V. A review of the current knowledge of red wine colour. Oeno One 2017, 51, 1–15. [Google Scholar] [CrossRef]
- Alañón, M.E.; Marchante, L.; Alarcón, M.; Díaz-Maroto, I.J.; Pérez-Coello, S.; Díaz-Maroto, M.C. Fingerprints of acacia aging treatments by barrels or chips based on volatile profile, sensorial properties, and multivariate analysis. J. Sci. Food Agric. 2018, 98, 5795–5806. [Google Scholar] [CrossRef]
- Del Alamo Sanza, M.; Nevares Domínguez, I.; Cárcel Cárcel, L.M.; Navas Gracia, L. Analysis for Low Molecular Weight Phenolic Compounds in a Red Wine Aged in Oak Chips. Anal. Chim. Acta 2004, 513, 229–237. [Google Scholar] [CrossRef]
- Cadahía, E.; Muñoz, L.; De Simón, B.F.; García-Vallejo, M.C. Changes in Low Molecular Weight Phenolic Compounds in Spanish, French, and American Oak Woods During Natural Seasoning and Toasting. J. Agric. Food Chem. 2001, 49, 1790–1798. [Google Scholar] [CrossRef]
- Ginjom, I.; D’Arcy, B.; Caffin, N.; Gidley, M. Phenolic Compound Profiles in Selected Queensland Red Wines at All Stages of the Wine-Making Process. Food Chem. 2011, 125, 823–834. [Google Scholar] [CrossRef]
- Matějíček, D.; Mikeš, O.; Klejdus, B.; Štěrbová, D.; Kubáň, V. Changes in Contents of Phenolic Compounds during Maturing of Barrique Red Wines. Food Chem. 2005, 90, 791–800. [Google Scholar] [CrossRef]
- Sanz, M.; Fernández de Simón, B.; Esteruelas, E.; Muñoz, Á.M.; Cadahía, E.; Hernández, M.T.; Estrella, I.; Martinez, J. Polyphenols in Red Wine Aged in Acacia (Robinia pseudoacacia) and Oak (Quercus petraea) Wood Barrels. Anal. Chim. Acta 2012, 732, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Chinnici, F.; Natali, N.; Bellachioma, A.; Versari, A.; Riponi, C. Changes in Phenolic Composition of Red Wines Aged in Cherry Wood. LWT-Food Sci. Technol. 2015, 60, 977–984. [Google Scholar] [CrossRef]
- Martínez-Gil, A.; Del Alamo-Sanza, M.; Nevares, I. Evolution of Red Wine in Oak Barrels with Different Oxygen Transmission Rates. Phenolic Compounds and Colour. LWT-Food Sci. Technol. 2022, 158, 113133. [Google Scholar] [CrossRef]
- Zhang, Q.A.; Wang, T.T. Effect of Ultrasound Irradiation on the Evolution of Color Properties and Major Phenolic Compounds in Wine during Storage. Food Chem. 2017, 234, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, I.H.; Lorenzo, E.S.P.; Espinosa, A.V. Phenolic Composition and Magnitude of Copigmentation in Young and Shortly Aged Red Wines Made from the Cultivars, Cabernet Sauvignon, Cencibel, and Syrah. Food Chem. 2005, 92, 269–283. [Google Scholar] [CrossRef]
- Barrera-García, V.D.; Gougeon, R.D.; Di Majo, D.; De Aguirre, C.; Voilley, A.; Chassagne, D. Different Sorption Behaviors for Wine Polyphenols in Contact with Oak Wood. J. Agric. Food Chem. 2007, 55, 7021–7027. [Google Scholar] [CrossRef]
- Espitia-López, J.; Escalona-Buendía, H.B.; Luna, H.; Verde-Calvo, J.R. Multivariate Study of the Evolution of Phenolic Composition and Sensory Profile on Mouth of Mexican Red Merlot Wine Aged in Barrels vs Wood Chips. CyTA-J. Food 2015, 13, 26–31. [Google Scholar] [CrossRef]
- Chira, K.; Teissedre, P.L. Chemical and Sensory Evaluation of Wine Matured in Oak Barrel: Effect of Oak Species Involved and Toasting Process. Eur. Food Res. Technol. 2015, 240, 533–547. [Google Scholar] [CrossRef]
- Jordão, A.M.; Ricardo-Da-Silva, J.M.; Laureano, O. Ellagitannins from Portuguese Oak Wood (Quercus pyrenaica Willd.) Used in Cooperage: Influence of Geographical Origin Coarseness of the Grain and Toasting Level. Holzforschung 2007, 61, 155–160. [Google Scholar] [CrossRef]
- Chinnici, F.; Natali, N.; Sonni, F.; Bellachioma, A.; Riponi, C. Comparative Changes in Color Features and Pigment Composition of Red Wines Aged in Oak and Cherry Wood Casks. J. Agric. Food Chem. 2011, 59, 6575–6582. [Google Scholar] [CrossRef]
- Gambuti, A.; Capuano, R.; Lisanti, M.T.; Strollo, D.; Moio, L. Effect of Aging in New Oak, One-Year-Used Oak, Chestnut Barrels and Bottle on Color, Phenolics and Gustative Profile of Three Monovarietal Red Wines. Eur. Food Res. Technol. 2010, 231, 455–465. [Google Scholar] [CrossRef]
- ISO 11035:1994; Sensory Analysis. Identification and Selection of Descriptors for Establishing a Sensory Profile. ISO—International Organization for Standardization: Geneva, Switzerland, 1994.
- OIV. Compendium of Internationals Methods of Wine and Must Analysis; OIV: France, Paris, 2003. [Google Scholar]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. The chemistry of wines, stabilization and treatments. In Handbook of Enology; John Wiley & Sons, Ltd.: Chichester, UK, 2000. [Google Scholar]
- Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. J. Food Compos. Anal. 2007, 20, 618–626. [Google Scholar] [CrossRef]
- Peng, S.; Scalbert, A.; Monties, B. Insoluble ellagitannins in Castanea sativa and Quercus petraea woods. Phytochemistry 1991, 30, 775–778. [Google Scholar] [CrossRef]
- Oliveira, J.M.; Faria, M.; Sá, F.; Barros, F.; Araújo, I.M. C6-alcohols as varietal markers for assessment of wine origin. Anal. Chim. Acta 2006, 563, 300–309. [Google Scholar] [CrossRef]
- Coelho, E.; Lemos, M.; Genisheva, Z.; Domingues, L.; Vilanova, M.; Oliveira, J.M.; Vilanova, M.; Oliveira, J.M. Validation of a LLME/GC-MS methodology for quantification of volatile compounds in fermented beverages. Molecules 2020, 25, 621. [Google Scholar] [CrossRef]
- ISO 8589:2010; Sensory Analysis—General Guidance for the Design of Test Rooms. ISO—International Organization for Standardization: Geneva, Switzerland, 2010.
12 Months of Aging | 24 Months of Aging | |||||||
---|---|---|---|---|---|---|---|---|
Kt | Mo | Oh | Py | Kt | Mo | Oh | Py | |
pH | 3.63 | 3.62 | 3.63 | 3.63 | 3.72 | 3.71 | 3.73 | 3.73 |
TA | 4.97 | 5.10 | 5.06 | 4.98 | 4.76 | 4.76 | 4.81 | 4.73 |
VA | 0.51 b | 0.50 b | 0.52 b | 0.47 a | 0.63 b | 0.62 ab | 0.63 b | 0.59 a |
Ethanol | 14.00 b | 13.82 a | 13.79 a | 13.92 ab | 14.12 | 13.98 | 13.93 | 14.11 |
CI | 14.09 | 14.16 | 14.23 | 14.01 | 12.22 b | 12.16 ab | 12.65 c | 12.01 a |
TPI | 73.72 a | 77.76 b | 74.63 a | 74.19 a | 63.24 b | 63.30 b | 61.90 a | 63.11 b |
T | 0.72 | 0.73 | 0.72 | 0.71 | 0.84 | 0.84 | 0.83 | 0.83 |
420 nm | 0.51 | 0.51 | 0.51 | 0.50 | 0.49 a | 0.49 a | 0.51 b | 0.48 a |
520 nm | 0.71 | 0.71 | 0.72 | 0.71 | 0.59 a | 0.58 a | 0.61 b | 0.58 a |
620 nm | 0.20 | 0.20 | 0.20 | 0.19 | 0.14 | 0.14 | 0.15 | 0.14 |
Kt | Mo | Oh | Py | |
---|---|---|---|---|
Hydroxybenzoic acids | ||||
Gallic acid | 88.40 b | 89.94 b | 86.97 b | 81.59 a |
Syringic acid | 4.22 c | 3.51 b | 2.76 a | 3.57 b |
Ellagic acid | 1.92 ab | 1.97 b | 2.33 c | 1.84 a |
Total | 94.54 b | 95.42 b | 92.06 b | 87.00 a |
Hydroxycinnamic acids | ||||
Caftaric acid | 33.22 b | 33.52 b | 34.17 b | 31.66 a |
Fertaric acid | 5.31 | 5.14 | 5.08 | 5.35 |
Coutaric acid | 28.71 b | 27.75 ab | 28.49 b | 26.90 a |
Caffeic acid | 7.81 bc | 7.17 a | 8.07 c | 7.61 b |
Coumaric acid | 2.83 ab | 2.94 b | 2.96 b | 2.72 a |
Total | 77.88 b | 76.53 ab | 78.78 b | 74.25 a |
Flavonols | ||||
Myricetin-3-gal | 1.84 b | 2.03 c | 1.54 a | 1.88 b |
Myricetin-3-glc | 12.88 b | 13.02 b | 13.21 b | 11.93 a |
Quercetin-3-gal | 3.52 b | 3.22 a | 3.64 b | 3.32 a |
Quercetin-3-glc | 3.55 | 3.54 | 3.51 | 3.39 |
Quercetin-3-glcU | 2.68 ab | 2.56 a | 2.82 c | 2.78 bc |
Isorhamnetin-3-glc | 1.57 ab | 1.58 ab | 1.62 b | 1.53 a |
Myricetin | 9.54 ab | 9.70 b | 9.68 b | 9.19 a |
Quercetin | 4.79 ab | 4.67 ab | 4.86 b | 4.61 a |
Kaempferol | 0.77 c | 0.70 a | 0.75 bc | 0.73 ab |
Isorhamnetin | 0.36 c | 0.35 b | 0.38 d | 0.33 a |
Total | 41.52 ab | 41.37 ab | 42.01 b | 39.70 a |
Flavan-3-ol | ||||
Catechin | 29.93 | 29.29 | 29.32 | 28.77 |
Stilbenes | ||||
trans-Piceid | 1.38 | 1.40 | 1.40 | 1.36 |
trans-Resveratrol | 1.05 c | 0.98 b | 1.10 c | 0.91 a |
Total | 2.43 b | 2.39 ab | 2.49 b | 2.27 a |
Ellagitannins | 10.95 c | 10.10 b | 10.34 b | 9.08 a |
Anthocyanins | ||||
Delphinidin-3-glc | 49.82 bc | 51.82 c | 48.53 ab | 46.49 a |
Cyanidin-3-glc | 3.38 b | 3.82 c | 4.16 d | 3.05 a |
Petunidin-3-glc | 42.05 a | 44.38 b | 42.46 ab | 40.95 a |
Peonidin-3-glc | 9.80 a | 10.42 b | 10.19 ab | 9.92 a |
Malvidin-3-glc | 130.87 a | 137.18 b | 130.60 a | 126.79 a |
Delphinidin-3-acglc | 1.64 b | 1.73 c | 1.84 d | 1.56 a |
Cyanidin-3-acglc | 1.34 | 1.33 | 1.29 | 1.32 |
Petunidin-3-acglc | 1.79 b | 1.67 a | 2.03 c | 1.70 a |
Peonidin-3-acglc | 0.65 b | 0.60 a | 0.61 a | 0.84 c |
Malvidin-3-acglc | 7.39 ab | 7.52 b | 7.07 a | 7.22 ab |
Delphinidin-3-cmglc | 4.30 a | 4.61 b | 4.37 a | 4.17 a |
Cyanidin-3-cmglc | 0.88 b | 0.80 a | 0.87 b | 0.91 b |
Petunidin-3-cmglc | 4.22 ab | 4.39 b | 4.08 a | 4.32 b |
Peonidin-3-cmglc | 1.73 b | 2.03 c | 1.61 a | 1.75 b |
Malvidin-3-cmglc | 15.38 a | 16.41 b | 15.43 a | 14.80 a |
Total | 275.25 a | 288.70 b | 275.16 a | 265.79 a |
Kt | Mo | Oh | Py | |
---|---|---|---|---|
Hydroxybenzoic acids | ||||
Gallic acid | 37.06 | 36.86 | 36.09 | 35.88 |
Syringic acid | 3.14 | 3.12 | 3.12 | 3.16 |
Ellagic acid | 4.47 b | 4.38 b | 3.68 a | 4.40 b |
Total | 44.67 | 44.36 | 42.90 | 43.44 |
Hydroxycinnamic acids | ||||
Caftaric acid | 47.13 b | 46.64 ab | 47.92 b | 44.50 a |
Fertaric acid | 3.51 b | 3.51 b | 3.80 c | 3.27 a |
Coutaric acid | 16.67 | 16.88 | 17.52 | 16.80 |
Caffeic acid | 3.13 a | 3.54 b | 3.58 b | 3.51 b |
Ferulic acid | 0.33 ab | 0.36 c | 0.34 bc | 0.32 a |
Coumaric acid | 9.80 d | 8.60 c | 6.73 b | 5.56 a |
Total | 80.57 b | 79.52 b | 79.90 b | 73.96 a |
Flavonols | ||||
Myricetin-3-gal | 0.48 b | 0.42 a | 0.56 c | 0.43 a |
Myricetin-3-glc | 4.23 | 4.21 | 4.29 | 4.02 |
Quercetin-3-gal | 0.73 b | 0.73 b | 0.64 a | 0.72 b |
Quercetin-3-glc | 0.87 b | 0.86 b | 0.88 b | 0.81 a |
Quercetin-3-glcU | 13.49 b | 13.30 b | 13.45 b | 12.59 a |
Isorhamnetin-3-glc | 0.67 b | 0.67 b | 0.71 c | 0.62 a |
Myricetin | 15.15 a | 14.98 a | 16.48 b | 14.86 a |
Quercetin | 7.29 b | 7.96 c | 8.25 c | 6.65 a |
Kaempferol | 0.44 a | 0.64 b | 0.83 c | 0.62 b |
Isorhamnetin | 0.30 a | 0.33 b | 0.36 c | 0.31 a |
Total | 43.65 ab | 44.11 b | 46.44 c | 41.62 a |
Flavan-3-ols | ||||
Catechin | 12.12 b | 12.33 b | 12.12 b | 11.30 a |
Epicatechin | 3.75 b | 3.67 b | 3.70 b | 3.40 a |
Total | 15.87 b | 16.00 b | 15.82 b | 14.71 a |
Stilbenes | ||||
trans-Piceid | 1.55 b | 0.81 a | 0.78 a | 0.80 a |
trans-Resveratrol | 0.20 d | 0.19 c | 0.18 b | 0.15 a |
Total | 1.75 b | 1.00 a | 0.96 a | 0.94 a |
Ellagitannins | 11.03 ab | 11.39 b | 12.32 c | 10.40 a |
Anthocyanins | ||||
Delphinidin-3-glc | 6.78 b | 7.03 b | 7.03 b | 5.07 a |
Cyanidin-3-glc | 0.33 c | 0.33 c | 0.31 b | 0.25 a |
Petunidin-3-glc | 4.80 b | 4.82 b | 5.14 c | 3.57 a |
Peonidin-3-glc | 1.22 b | 1.19 b | 1.19 b | 0.89 a |
Malvidin-3-glc | 20.75 b | 20.78 b | 21.83 b | 15.58 a |
Delphinidin-3-acglc | 0.38 b | 0.39 b | 0.45 c | 0.28 a |
Cyanidin-3-acglc | 0.03 b | 0.03 c | 0.04 d | 0.03 a |
Petunidin-3-acglc | 0.16 b | 0.16 bc | 0.17 c | 0.12 a |
Peonidin-3-acglc | 0.10 b | 0.10 b | 0.12 c | 0.06 a |
Malvidin-3-acglc | 1.29 b | 1.32 b | 1.49 c | 0.96 a |
Delphinidin-3-cmglc | 0.74 b | 0.78 b | 0.91 c | 0.53 a |
Cyanidin-3-cmglc | 0.15 b | 0.15 b | 0.15 b | 0.10 a |
Petunidin-3-cmglc | 0.21 b | 0.21 b | 0.23 c | 0.14 a |
Peonidin-3-cmglc | 0.13 c | 0.12 b | 0.14 d | 0.08 a |
Malvidin-3-cmglc | 1.04 b | 1.03 b | 1.13 c | 0.73 a |
Total | 38.11 b | 38.46 bc | 40.34 c | 28.39 a |
Compounds | Kt | Mo | Oh | Py |
---|---|---|---|---|
Furanic compounds | 1416.97 c | 1164.89 b | 1186.99 b | 811.51 a |
Furfural | 892.75 c | 738.11 b | 751.96 b | 496.27 a |
5-methylfurfural | 401.98 c | 327.51 b | 325.81 b | 211.15 a |
Furfuryl alcohol | 122.24 b | 99.28 a | 109.22 a | 104.09 a |
β-methyl-γ-octalactones | 838.93 a | 1124.06 b | 1158.12 b | 776.13 a |
trans-β-methyl-γ-octalactone | 80.21 a | 80.40 a | 81.77 a | 94.45 b |
cis-β-methyl-γ-octalactone | 758.71 b | 1043.67 c | 1076.34 c | 681.69 a |
Volatile phenols | 369.63 a | 419.36 b | 450.49 b | 423.16 b |
Eugenol | 146.68 c | 138.53 c | 111.60 b | 90.98 a |
Guaiacol | 40.09 a | 39.58 a | 63.47 b | 45.79 a |
4-ethylguaiacol | 35.35 b | 23.65 a | 42.31 c | 54.26 d |
4-ethylphenol | 147.51 a | 217.61 b | 233.11 b | 232.13 b |
Phenolic aldehydes | 251.32 | 249.93 | 254.37 | 281.27 |
Vanillin | 251.32 | 249.93 | 254.37 | 281.27 |
Compound | Odor Threshold (μg/L) | Descriptor | Ref. | 12 Months | |||
---|---|---|---|---|---|---|---|
Kt | Mo | Oh | Py | ||||
Furanic Compounds | |||||||
Furfural | 14,100 | Burned almonds, incense | [36] | 0.06 c | 0.05 b | 0.05 b | 0.04 a |
5-methylfurfural | 20,000 | Bitter almond, spice | [37] | 0.02 c | 0.02 b | 0.02 b | 0.01 a |
Furfuryl alcohol | 15,000 | Hay | [38] | 0.01 b | 0.01 a | 0.01 a | 0.01 a |
β-methyl-γ-octalactones | |||||||
cis-β-methyl-γ-octalactone | 46 | Woody, coconut, vanilla | [39] | 16.49 b | 22.69 c | 23.40 c | 14.82 a |
trans-β-methyl-γ-octalactone | 370 | Woody, coconut, vanilla | [40] | 0.22 a | 0.22 a | 0.22 a | 0.26 b |
Volatile phenols | |||||||
Eugenol | 6 | Clove, honey, spicy | [36] | 24.45 c | 23.09 c | 18.60 b | 15.16 a |
Guaiacol | 9.5 | Smoke, toasted, spicy | [36] | 4.22 a | 4.17 a | 6.68 b | 4.82 a |
4-Ethylguaiacol | 140 | Toasted, smoky, spicy | [41] | 0.25 b | 0.17 a | 0.30 c | 0.39 d |
4-Ethylphenol | 620 | Leather, animal | [41] | 0.24 a | 0.35 b | 0.38 b | 0.37 b |
Phenolic aldehydes | |||||||
Vanillin | 200 | Vanilla | [42] | 1.26 | 1.25 | 1.27 | 1.41 |
Total OAV of wood-related aromas | 47.21 b | 52.00 c | 50.93 c | 37.28 a |
Compounds | Kt | Mo | Oh | Py |
---|---|---|---|---|
Furanic compounds | 448.33 c | 400.22 b | 396.39 b | 362.47 a |
Furfural | 132.24 b | 134.24 b | 107.79 a | 96.99 a |
5-methylfurfural | 56.40 b | 89.78 c | 39.04 a | 31.66 a |
Furfuryl alcohol | 259.26 c | 176.20 a | 249.55 c | 233.82 b |
β-methyl-γ-octalactones | 1128.14 b | 966.54 a | 1083.36 b | 904.78 a |
trans-β-methyl-γ-octalactone | 113.33 c | 93.05 b | 125.39 d | 83.28 a |
cis-β-methyl-γ-octalactone | 1014.81 b | 873.49 a | 957.98 b | 821.51 a |
Volatile phenols | 712.40 b | 373.63 a | 855.99 c | 884.59 c |
Eugenol | 202.79 c | 157.78 b | 137.10 a | 134.69 a |
Guaiacol | 29.77 | 35.25 | 34.26 | 34.60 |
4-ethylguaiacol | 127.90 b | 46.63 a | 129.64 b | 124.67 b |
4-ethylphenol | 351.94 b | 133.98 a | 554.99 c | 590.63 d |
Phenolic aldehydes | 280.63 a | 310.34 b | 323.73 b | 307.39 ab |
Vanillin | 280.63 a | 310.34 b | 323.73 b | 307.39 ab |
Compound | Odor Threshold (μg/L) | Descriptor | Ref. | Kt | Mo | Oh | Py |
---|---|---|---|---|---|---|---|
Furanic compounds | |||||||
Furfural | 14,100 | Burned almonds, incense | [36] | 0.01 b | 0.01 b | 0.01 a | 0.01 a |
5-methylfurfural | 20,000 | Bitter almond, spice | [37] | 0.00 b | 0.00 c | 0.00 a | 0.00 a |
Furfuryl alcohol | 15,000 | Hay | [38] | 0.02 c | 0.01 a | 0.02 c | 0.02 b |
β-methyl-γ-octalactones | |||||||
cis-β-methyl-γ-octalactone | 46 | Woody, coconut, vanilla | [39] | 22.06 b | 18.99 a | 20.83 b | 17.86 a |
trans- β-methyl-γ-octalactone | 370 | Woody, coconut, vanilla | [40] | 0.31 c | 0.25 b | 0.34 d | 0.23 a |
Volatile phenols | |||||||
Eugenol | 6 | Clove, honey, spicy | [36] | 33.80 c | 26.30 b | 22.85 a | 22.45 a |
Guaiacol | 9.5 | Smoke, toasted, spicy | [36] | 3.13 | 3.71 | 3.61 | 3.64 |
4-Ethylguaiacol | 140 | Toasted, smoky, spicy | [41] | 0.91 b | 0.33 a | 0.93 b | 0.89 b |
4-Ethylphenol | 620 | Leather, animal | [41] | 0.57 b | 0.22 a | 0.89 c | 0.95 d |
Phenolic aldehydes | |||||||
Vanillin | 200 | Vanilla | [42] | 1.40 a | 1.55 b | 1.62 b | 1.54 ab |
Total OAV of wood-related aromas | 62.21 c | 51.37 b | 51.08 b | 47.58 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Z.; Martínez-Lapuente, L.; Landín Ross-Magahy, M.; Higueras, M.; Ayestarán, B.; Guadalupe, Z. The Influence of Quercus alba Geographical Location and Aging Time on the Chemical and Sensory Quality of Tempranillo Wines. Molecules 2024, 29, 4432. https://doi.org/10.3390/molecules29184432
Feng Z, Martínez-Lapuente L, Landín Ross-Magahy M, Higueras M, Ayestarán B, Guadalupe Z. The Influence of Quercus alba Geographical Location and Aging Time on the Chemical and Sensory Quality of Tempranillo Wines. Molecules. 2024; 29(18):4432. https://doi.org/10.3390/molecules29184432
Chicago/Turabian StyleFeng, Zhao, Leticia Martínez-Lapuente, Mikel Landín Ross-Magahy, Manuel Higueras, Belén Ayestarán, and Zenaida Guadalupe. 2024. "The Influence of Quercus alba Geographical Location and Aging Time on the Chemical and Sensory Quality of Tempranillo Wines" Molecules 29, no. 18: 4432. https://doi.org/10.3390/molecules29184432
APA StyleFeng, Z., Martínez-Lapuente, L., Landín Ross-Magahy, M., Higueras, M., Ayestarán, B., & Guadalupe, Z. (2024). The Influence of Quercus alba Geographical Location and Aging Time on the Chemical and Sensory Quality of Tempranillo Wines. Molecules, 29(18), 4432. https://doi.org/10.3390/molecules29184432