Increasing Fertilization Efficiency of Biomass Ash by the Synergistically Acting Digestate and Extract from Water Plants Sequestering CO2 in Sorghum Crops
Abstract
:1. Introduction
2. Results
2.1. Elemental Composition of Soil and the Applied Bio-Fertilizers
2.2. Effect of the Applied Bio-Fertilizers on Sorghum Growth and Biomass Yield
2.3. Influence of Bio-Fertilizers on the Infection of Plants with Pathogenic Fungi
2.4. Effect of Bio-Fertilizers on Plant Physiological Activity
2.5. Effect of Bio-Fertilizers on Element Content in Leaves and Biomass Energy Properties
3. Discussion
4. Material and Methods
4.1. Plants, Ash, Digestate and Soil
4.2. Treatment of Soil and Plants with Ash, Digestate and Spirodela Polyrhiza Extract
- Sorghum ash (48 q ha−1) to soil;
- Sorghum ash (48 q ha−1) and digestate 30 m3 ha−1 to soil;
- Sorghum ash (48 q ha−1) to soil and two-time foliar application of Spirodela polyrhiza extract (7 L ha−1);
- Sorghum ash (48 q ha−1) and digestate 30 m3 ha−1 to soil and two-time foliar application of Spirodela polyrhiza extract (7 L ha−1);
- Jerusalem artichoke ash (48 q ha−1) to soil;
- Jerusalem artichoke ash (48 q ha−1) and digestate 30 m3 ha−1 to soil;
- Jerusalem artichoke ash (48 q ha−1) to soil and two-time foliar application of Spirodela polyrhiza extract (7 L ha−1);
- Jerusalem artichoke ash (48 q ha−1) and digestate 30 m3 ha−1 to soil and two-time foliar application of Spirodela polyrhiza extract (7 L ha−1).
4.3. Assessments of Soil and the Development, Health and Physiological Activity of Plants
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- López, R.; Díaz, M.J. Extra CO2 sequestration following reutilization of biomass ash. Sci. Total Environ. 2018, 625, 1013–1020. [Google Scholar] [CrossRef]
- Nazir, M.J.; Li, G.; Nazir, M.M.; Zulfiqar, F.; Siddique, K.H.M.; Iqbal, B.; Du, D. Harnessing soil carbon sequestration to address climate change challenges in agriculture. Soil Tillage Res. 2024, 237, 105959. [Google Scholar] [CrossRef]
- Santalla, M.; Omi, I.B.; Rodrigues-Soalleiro, R.; Merino, A. Efectiveness of wood ash containing charcoat as a fertilizer for a forest plantation in a temperate region. Plant Soil 2011, 346, 63–78. [Google Scholar] [CrossRef]
- World Bioenergy Association. Global Bioenergy Statistic Report. 10th Edytion. 2023. Available online: https://www.worldbioenergy.org/uploads/231219%20GBS%20Report.pdf (accessed on 21 December 2023).
- Vassiliev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash. Fuel 2013, 105, 19–39. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G.; Baxter, D. Trace element concentrations and associations in some biomass ashes. Fuel 2014, 129, 292–313. [Google Scholar] [CrossRef]
- Romanowska-Duda, Z.; Janas, R.; Grzesik, M.; Van Duijn, B. Valorization of sorghum ash with digestate and biopreparations in the development biomass of plants in a closed production system of energy. Sci. Rep. 2023, 13, 18604. [Google Scholar] [CrossRef] [PubMed]
- Zając, G.; Szyszlak-Bargłowicz, J.; Gołębiowski, W.; Szczepanik, M. Chemical characteristics of biomass ashes. Energies 2018, 11, 2885. [Google Scholar] [CrossRef]
- Schiemenz, K.; Eichler-Löbermann, B. Biomass ashes and their phosphorus fertilizing effect on different crops. Nutr. Cycl. Agroecosys. 2010, 87, 471–482. [Google Scholar] [CrossRef]
- Meller, E.; Bilenda, E. Effects of biomass ash on the physicochemical properties of light soil. Polityka Energetyczna 2012, 15, 287–292. ISSN 1429-6675. (In Polish) [Google Scholar]
- Smołka-Danielowska, D.; Jabłońska, M. Chemical and mineral composition of ashes from wood biomass combustion in domestic wood-fired furnaces. Int. J. Environ. Sci. Technol. 2022, 19, 5359–5372. [Google Scholar] [CrossRef]
- Titus, B.D.; Brown, K.; Helmisaari, H.S.; Vanguelova, E.; Stupak, I.; Evans, A.; Clarke, N.; Guidi, C.; Bruckman, V.J.; Varnagiryte-Kabasinskiene, I.; et al. Sustainable forest biomass: A review of current residue harvesting guidelines. Energ. Sustain. Soc. 2021, 11, 10. [Google Scholar] [CrossRef]
- Jagodzinski, S.; O’Donoghue, M.T.; Heffernan, L.B.; van Pelt, F.N.A.M.; O’Halloran, J.; Jansen, M.A.K. Wood ash residue causes a mixture of growth promotion and toxicity in Lemna minor. Sci. Total Environ. 2017, 625, 667–676. [Google Scholar] [CrossRef] [PubMed]
- Buss, W.; Jansson, S.; Masek, O. Unexplored potential of novel biochar-ash composities for use as organo-mineral fertilizers. J. Clean. Prod. 2019, 208, 960–967. [Google Scholar] [CrossRef]
- Piekarczyk, M.; Kotwica, K.; Jaskulski, J. The elemental composition of ash from straw and hay in the context of their agricultural utilization. Acta Sci. Pol. Agric. 2011, 10, 97–104. [Google Scholar]
- Ciesielczuk, T.; Kusza, G.; Nemś, A. Fertilization with biomass ashes as a source of trace elements for soils. Ochr. Sr. I Zasobów Nat. 2011, 49, 219–227. (In Polish) [Google Scholar]
- Hills, C.D.; Tripathi, N.; Singh, R.S.; Carey, P.J.; Lowry, F. Valorisation of agricultural biomass-ash with CO2. Sci. Rep. 2020, 10, 13801. [Google Scholar] [CrossRef]
- Qin, Z.; Dunn, J.B.; Kwon, H.; Mueller, S.; Wander, M.M. Soil carbon sequestration and land use change associated with biofuel production: Empirical evidence. GCB Bioenergy 2016, 8, 66–80. [Google Scholar] [CrossRef]
- Mehmood, M.A.; Ibrahim, M.; Rashid, U.; Nawaz, M.; Ali, S.; Hussain, A.; Gull, M. Biomass production for bioenergy using marginal lands. Sustain. Product. Consumpt. 2017, 9, 3–21. [Google Scholar] [CrossRef]
- Żurek, G.; Martyniak, D.; Kasprzycka, A.; Nowak, H.; Rachwalska, A.; Prokopiuk, K.; Pogrzeba, M. Acquisition of biogas from cultivation of perennial grasses on soils with low agricultural value. Bull. Plant Breed. Acclim. Institute 2019, 285, 355–356. PL ISSN 0373-7837 Nr ind. 352993: 355(In Polish) [Google Scholar]
- Wang, C.; Jiang, H.; Miao, E.; Wang, Y.; Zhang, T.; Xiao, Y.; Liu, Z.; Ma, J.; Xiong, Z.; Zhao, Y.; et al. Accelerated CO2 mineralization technology using fly ash as raw material: Recent research advances. Chem. Engineer. J. 2024, 488, 150676. [Google Scholar] [CrossRef]
- Romanowska-Duda, Z.; Grzesik, M.; Janas, R. Maximal efficiency of PSII as a marker of sorghum development fertilized with waste from a biomass biodigestion to methane. Front. Plant Sci. 2019, 9, 1920. [Google Scholar] [CrossRef] [PubMed]
- Chojnacka, K.; Moustakas, K. Anaerobic digestate management for carbon neutrality and fertilizer use: A review of current practices and future opportunities. Biomass Bioen. 2024, 180, 106991. [Google Scholar] [CrossRef]
- Quan, C.; Zhou, Y.; Gao, N.; Yang, T.; Wang, J.; Wu, C. Direct CO2 capture from air using char from pyrolysis of digestate solid. Biomass Bioen. 2023, 175, 106891. [Google Scholar] [CrossRef]
- Kreider, A.N.; Pulido, C.R.F.; Bruns, M.A.; Brennan, R.A. Duckweed as an agricultural amendment: Nitrogen mineralization, leaching, and sorghum uptake. J. Environ. Qual. 2019, 48, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Dziugan, P.; Romanowska-Duda, Z.; Piotrowski, K.; Cieciura-Wloch, W.; Antolak, H.; Smigielski, K.; Binczarski, M.; Witonska, I.; Domański, J. Improving biorefinery sustainability and profitability by cultivating aquatic plants on ozonized distillery effluents. BioResources 2023, 18, 317–336. [Google Scholar] [CrossRef]
- López-Pozo, M.; Adams, W.W.A.; Demmig-Adams, B. Lemnaceae as novel crop candidates for CO2 sequestration and additional applications. Plants 2023, 12, 3090. [Google Scholar] [CrossRef] [PubMed]
- Ochal, P. Current state and changes of soil fertility in Poland. Stud. I Rap. IUNG-PIB 2015, 45, 9–25. (In Polish) [Google Scholar]
- Buono, D.D.; Bartucca, M.L.; Ballerini, E.; Senizza, B.; Lucini, L.; Trevisan, M. Physiological and biochemical effects of an aqueous extract of Lemna minor L. as a potential biostimulant for maize. J. Plant Growth Regul. 2022, 41, 3009–3018. [Google Scholar] [CrossRef]
- Insam, H.; Knapp, B.A. Recycling of Biomass Ashes; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Silva, F.C.; Cruz, N.C.; Tarelho, L.A.C.; Rodrigues, S.M. Use of biomass ash-based materials as soil fertilisers: Critical review of the existing regulatory framework. J. Clean. Product. 2019, 214, 112–124. [Google Scholar] [CrossRef]
- Römbke, J.; Moser, T. Ecotoxicological characterization of 12 incineration ashes using 6 laboratory tests. Waste Managem. 2009, 29, 2475–2482. [Google Scholar] [CrossRef]
- Barbosa, R.; Dias, D.; Lapa, N.; Lopes, H.; Mendes, B. Chemical and ecotoxicological properties of size fractionated biomass ashes. Fuel Process Technol. 2013, 109, 124–132. [Google Scholar] [CrossRef]
- Sanchez, P.A. Properties and Management of Soils in the Tropics; Cambridge University Press: Cambridge, UK, 2019; pp. 210–235. [Google Scholar] [CrossRef]
- Che, J.; Zhao, X.Q.; Shen, R.F. Molecular mechanisms of plant adaptation to acid soils: A review. Pedosphere 2023, 33, 14–22. [Google Scholar] [CrossRef]
- Naghipour, A.S.; Bashari, A.; Khajeddin, S.J.; Tahmasebi, P.; Iravani, M. Effects of smoke, ash and heat shock on seed germination of seven species from Central Zagros rangelands in the semi-arid region of Iran. Afr. J. Range For. Sci. 2016, 33, 67–71. [Google Scholar] [CrossRef]
- Johansen, J.L.; Nielsen, M.L.; Vestergård, M.; Mortensen, L.M.; Cruz-Paredes, C.; Rønn, R.; Kjøller, R.; Hovmand, M.; Christensen, S.; Ekelund, F. The complexity of wood ash fertilization disentangled: Effects on soil pH, nutrient status, plant growth and cadmium accumulation. Environ. Exp. Bot. 2021, 185, 104424. [Google Scholar] [CrossRef]
- Puchalski, C.; Zapałowska, A.; Hury, G. The impact of sewage sludge and biomass ash fertilization on the yield, including biometric features and physiological parameters of plants of two Jerusalem artichoke (Helianthus tuberosus L.) cultivars. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment. Pisc. Zootech. 2017, 332, 37–52. [Google Scholar] [CrossRef]
- Wolny-Koładka, K.; Malinowski, M.; Żukowski, W. Impact of calcium oxide on hygienization and self-heating prevention of biologically contaminated polymer materials. Materials 2020, 13, 4012. [Google Scholar] [CrossRef]
- Cruz, N.; Avellan, A.; Ruivo, L.; Silva, F.C.; Römkens, P.F.A.M.; Tarelho, L.A.C.; Rodrigues, S.M. Biomass ash-based soil improvers: Impact of formulation and stabilization conditions on materials’ properties. J. Clean. Product. 2023, 391, 136049. [Google Scholar] [CrossRef]
- Malinowski, M.; Famielec, S.; Wolny-Koładka, K.; Sikora, J.; Gliniak, M.; Baran, D.; Sobol, Z.; Salamon, J. Impact of digestate addition on the biostabilization of undersized fraction from municipal solid waste. Sci. Total Environ. 2021, 77, 145375. [Google Scholar] [CrossRef]
- Day, S.; Aasim, M. Role of boron in growth and development of plant: Deficiency and toxicity perspective. In Plant Micronutrients; Aftab, T., Hakeem, K.R., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Nagireddi, S.; Agarwal, J.R.; Vedapuri, D. Carbon dioxide capture, utilization, and sequestration: Current status, challenges, and future prospects for global decarbonization. ACS Eng. Au 2024, 4, 22–48. [Google Scholar] [CrossRef]
- Fernandez Pulido, C.R.; Femeena, P.V.; Brennan, R.A. Nutrient cycling with duckweed for the fertilization of root, fruit, leaf, and grain crops: Impacts on plant–soil–leachate systems. Agriculture 2024, 14, 188. [Google Scholar] [CrossRef]
- Rafiqi, M.; Kosawang, C.; Peers, J.A.; Jelonek, L.; Yvanne, H.; McMullan, M.; Nielsen, L.R. Endophytic fungi related to the ash dieback causal agent encode signatures of pathogenicity on European ash. IMA Fungus 2023, 14, 10. [Google Scholar] [CrossRef]
- Oguntade, T.O.; Adedotun, A.A. Preservation of seeds against fungi using wood-ash of some tropical forest trees in Nigeria. African J. Microbiol. Res. 2010, 4, 279–288. [Google Scholar]
- Wan, J.; Min He, M.; Hou, Q.; Zou, L.; Yang, Y.; Wei, Y.; Chen, X. Cell wall associated immunity in plants. Stress. Biol. 2021, 1, 3. [Google Scholar] [CrossRef] [PubMed]
- Badek, B.; Romanowska-Duda, Z.; Grzesik, M.; Kuras, A. Physiological markers for assessing germinability of Lycopersicon esculentum seeds primed by environment-friendly methods. Pol. J. Environ. Stud. 2016, 25, 1831–1838. [Google Scholar] [CrossRef]
- Kalaji, M.H.; Schansker, G.; Ladle, R.J.; Golt-Sev, V.; Boska, K.; Allakhverdiev, S.; Brestic, M.; Bussotti, F.; Calatayud, A.; Dąbrowski, P.; et al. Frequently asked questions about chlorophyll fluorescence: Practical issues. Photosynth. Res. 2014, 122, 121–158. [Google Scholar] [CrossRef]
- Romanowska-Duda, Z.; Piotrowski, K.; Dziugan, P. Utilization of waste from methane fermentation in Lemnaceae plant breeding intended for energy purposes. In Renewable Energy Sources: Engineering, Technology, Innovation; Mudryk, K., Werle, S., Eds.; Springer Proceedings in Energy; Springer: Cham, Switzerland, 2018; pp. 253–260. [Google Scholar] [CrossRef]
- Zapałowska, A.; Puchalski, C.; Hury, G.; Makarewicz, A. Influence of fertilization with the use of biomass ash and sewage sludge on the chemical composition of Jerusalem artichoke used for energy-related purposes. J. Ecol. Eng. 2017, 18, 235–245. [Google Scholar] [CrossRef]
- Romanowska-Duda, Z.; Piotrowski, K.; Szufa, S.; Sklodowska, M.; Naliwajski, M.; Emmanouil, C.; Kungolos, A.; Zorpas, A.A. Valorization of Spirodela polyrrhiza biomass for the production of biofuels for distributed energy. Sci. Rep. 2023, 13, 16533. [Google Scholar] [CrossRef]
- Oláh, V.; Appenroth, K.J.; Sree, K.S. Duckweed: Research meets applications. Plants 2023, 12, 3307. [Google Scholar] [CrossRef]
- Ozuah, Z. The technical and regulatory issues of using biomass ashes for land application/improvement. In CEGEG015 Collaborative Environmental Systems Project; University College London: London, UK, 2015; pp. 1–14. [Google Scholar] [CrossRef]
- Najafi, E.; Pal, I.; Khanbilvardi, R. Climate drives variability and join variability of global crop yield. Sci. Total Environ. 2019, 662, 361–372. [Google Scholar] [CrossRef]
- Steglińska, A.; Sulyok, M.; Janas, R.; Grzesik, M.; Liszkowska, W.; Kręgiel, D.; Gutarowska, B. Metabolite formation by fungal pathogens of potatoes (Solanum tuberosum L.) in the presence of bioprotective agents. Int. J. Environ. Res. Public. Health 2023, 20, 5221. [Google Scholar] [CrossRef] [PubMed]
- Gams, W.; Donnell, K.O.; Schroers, H.J.; Christensen, M. Generic classification of some more hyphomycetes with solitary conidia borne on phialides. Canadian J. Bot. 2011, 76, 1570–1583. [Google Scholar] [CrossRef]
- Waller, J.M.; Ritchie, B.J.; Holderness, M. Plant clinic handbook. In IMI technical handbooks No.3, CAB International, UK; Oxford University Press: Oxford, UK, 1998; p. 94. ISBN 978-0851989181. [Google Scholar]
- Tesso, T.; Perumal, R.; Little, C.R.; Adeyanju, A.; Radwan, G.L.; Prom, L.K.; Magill, C.W. Sorghum pathology and biotechnology—A fungal disease perspective: Part II. Anthracnose, stalk rot and downy mildew. Eur. J. Plant Sci. Biotechnol. 2012, 6, 31–44, Corpus ID: 87449153. [Google Scholar]
- Mehta, C.M.; Palni, U.; Franke-Whittle, I.H. Compost its role mechanism and impact on reducing soil-borne plant diseases. Waste Managem. 2014, 34, 607–622. [Google Scholar] [CrossRef] [PubMed]
- Norvell, L.L. Fungal nomenclature. Melbourne approves a new Code. Mycotaxon 2011, 116, 481–490. [Google Scholar] [CrossRef]
- Knypl, J.S.; Kabzińska, E. Growth, phosphatase and ribonuclease activity in phosphate deficient Spirodela oligorrhiza cultures. Biochem. Physiol. Pfl. 1977, 171, 279–287. [Google Scholar] [CrossRef]
- Antweiler, R.C.; Patton, C.J.; Taylor, E. Automated colorimetric methods for determination nitrate plus nitrite, nitrite, ammonium and orthophosphate ions un natural water samples. In Open-File Report No. 93-638; United States Geological Survey: Denver, CO, USA, 1996; pp. 1–28. [Google Scholar] [CrossRef]
- PN ISO 1928: 2002; Solid Mineral Fuels—Determination of Gross Calorific Value by the Bomb Calorimetric Method, and Calculation of Net Calorific Value. Polish Committee for Standardization: Warsaw, Poland, 2013. Available online: https://www.intertekinform.com/en-gb/standards/pn-iso-1928-2002-927188_saig_pkn_pkn_2187373/ (accessed on 12 January 2013).
- PN ISO 1171: 2024; Coal and Coke—Determination of Ash. Edition 5. Polish Committee for Standardization: Warsaw, Poland, 2024. Available online: https://www.iso.org/standard/86977.html#lifecycle (accessed on 13 June 2024).
- PN 80/G-04511: 1980; Solid Fuels—Determination of Moisture Contents. Polish Committee for Standardization: Warsaw, Poland, 2013. Available online: https://www.intertekinform.com/en-gb/standards/PN-80-G-04511-1980-940955_SAIG_PKN_PKN_2214907/ (accessed on 1 December 2013).
Assessed Materials | N | Ca | P | K | Ca | Mg | Fe | Mn | Cu | Zn | B | Dry Mass |
---|---|---|---|---|---|---|---|---|---|---|---|---|
% | [mg kg−1 dry weight] | [%] | ||||||||||
aJ | 0.40 b* | 34,021 a | 13,461 b | 155,202 b | 138,436 b | 10,099 b | 2452 a | 155 a | 29.1 b | 856 b | 72 b | 92.9 a |
aS | 0.50 a | 34,204 a | 13,990 a | 162,897 a | 43,800 a | 11,690 a | 2229 a | 158 a | 30.7 b | 1040 a | 92 b | 91.6 b |
Soil not fertilized | 0.09 d | - | 951 f | 3831 f | 2945 f | 1602 f | 659 c | 46.1 e | 23.9 c | 29.8 e | 62.8 c | 50.0 c |
Soil fertilized aJ + D | 0.10 c | - | 1053 e | 4928 e | 32,878 d | 2245 e | 988 b | 70.1 d | 24.9 c | 35.8 de | 65.3 c | 50.2 c |
Soil fertilized aS + D | 0.12 b | - | 1220 d | 5129 d | 30,562 c | 2573 d | 995 b | 72.5 c | 25.9 c | 36.2 d | 63.9 c | 50.3 c |
Spirodela polyrhiza | - | - | 7288 c | 45,232 c | 17,936 e | 3468 c | 496 d | 153 b | 55.4 a | 143 c | 448 a | - - |
LSD0.05 | 0.009 | 350.6 | 102.8 | 201.9 | 450.3 | 230.2 | 125 | 13.1 | 2.3 | 5.9 | 10.4 | 0.3 |
[mg L−1] | ||||||||||||
Digestate | 2455 a | - | 269 a | 992 a | 298 a | 117 a | 9.0 a | 0.330 a | 0.182 a | 0.982 a | 3.371 a | 1.4 a |
LSD0.05 | 1.2 | 1.1 | 1.0 | 1.4 | 1.5 | 1.1 | 0.1 | 0.05 | 0.2 | 0.2 | 0.3 |
Soil Fertilization | pH in H2O | Salinity g NaCl L−1 | Ca | N.NO3 | P | K | Mg | Ca |
---|---|---|---|---|---|---|---|---|
% | mg L−1 Soil | |||||||
Soil not fertilized | 5.0 b* | 0.25 a | 1.20 b | 118 b | 135 b | 227 c | 91.0 c | 1030 c |
Soil + aJ + D | 6.0 a | 0.25 a | 1.21 a | 139 a | 156 a | 254 b | 102 b | 2204 a |
Soil + aS + D | 5.8 a | 0.25 a | 1.22 a | 144 a | 160 a | 261 a | 110 a | 2099 b |
LSD0.05 | 0.3 | 0.02 | 0.03 | 6.9 | 5.1 | 6.2 | 7.0 | 104.2 |
Plant Fertilization | Pathogenic Fungi | Percentage of Infected Plants | ||||||
---|---|---|---|---|---|---|---|---|
Colleto-trichum ssp. | Cercospora sorghi | Fusarium spp. | Puccinia sorghi | Sclerospora sorghi | Pythium spp. | Rhizoctonia spp. | ||
Control | 7.5 a* | 3.9 a | 3.0 a | 3.0 a | 4.9 a | 1.6 a | 1.5 a | 17.8 a |
D | 6.0 c | 3.5 c | 1.5 c | 2.3 c | 3.0 c | 0.9 c | 1.2 c | 11.2 c |
Sp | 6.5 b | 3.7 b | 1.8 b | 2.5 b | 3.5 b | 1.2 b | 1.3 b | 12.6 b |
Fertilization with sorghum ash, digestate and Spirodela polyrhiza | ||||||||
aS 48 | 5.5 d | 3.3 d | 1.2 d | 2.0 d | 2.7 d | 0.7 d | 1.0 d | 10.5 d |
aS48 + D | 4.2 g | 2.1 h | 0.5 f | 1.3 f | 2.1 f | 0.3 f | 0.8 e | 5.6 h |
aS48 + Sp | 4.2 g | 2.3 g | 0.0 g | 0.5 g | 2.4 e | 0.0 g | 0.7 f | 7.0 g |
aS48 + D + Sp | 4.0 h | 1.1 i | 0.0 g | 0.0 h | 1.7 g | 0.0 g | 0.0 g | 4.8 i |
Fertilization with Jerusalem artichoke ash, digestate and Spirodela polyrhiza | ||||||||
aJ48 | 5.5 d | 3.3 d | 1.2 d | 2.0 d | 2.7 d | 0.7 d | 1.0 d | 10.5 d |
aJ48 + D | 4.4 f | 2.5 f | 0.5 f | 1.3 f | 2.1 f | 0.3 f | 1.0 d | 7.3 f |
aJ48 + Sp | 4.6 e | 3.0 e | 0.9 e | 1.8 e | 2.1 f | 0.5 e | 1.0 d | 7.5 e |
aJ48 + D + Sp | 4.0 h | 1.2 i | 0.0 g | 0.0 h | 1.7 g | 0.0 g | 0.0 g | 4.9 i |
LSD0.05 | 0.15 | 0.15 | 0.20 | 0.18 | 0.25 | 0.10 | 0.10 | 0.5 |
Plant Fertilization | Net Photosynthesis [µm CO2 m−2 s−1] | Transpiration [mmol H2O m−2 s−1] | Stomatal Conductance [mmol H2O−1 M−2 s−1] | Intercellular CO2 Concentration [µmol CO2 Air mol−1] | Index of Chlorophyll Content [SPAD] |
---|---|---|---|---|---|
Control | 4.80 j* | 0.85 i | 153.0 j | 309.0 a | 20.4 f |
D | 5.11 h | 1.08 g | 206.0 h | 280.0 c | 22.1 d |
Sp | 4.89 i | 0.96 h | 187.0 i | 291.0 b | 21.2 e |
Fertilization with sorghum ash, digestate and Spirodela polyrhiza | |||||
aS 48 | 5.70 f | 1.36 f | 252.0 f | 271.0 d | 23.1 f |
aS 48 + D | 7.40 c | 1.72 c | 311.0 c | 241.0 g | 26.9 c |
aS 48 + Sp | 7.20 d | 1.48 e | 274.0 e | 260.0 e | 24.2 e |
aS 48 + D + Sp | 7.80 a | 1.98 a | 358.0 a | 212.0 i | 28.7 a |
Fertilization with Jerusalem artichoke ash, digestate and Spirodela polyrhiza | |||||
aJ 48 | 5.30 g | 1.34 f | 234.0 g | 269.0 d | 23.0 f |
aJ 48 + D | 7.40 c | 1.71 c | 312.0 c | 231.0 h | 26.3 c |
aJ 48 + Sp | 7.00 e | 1.60 d | 289.0 d | 252.0 f | 27.7 b |
aJ 48 + D + Sp | 7.60 b | 1.83 b | 331.0 b | 213.0 i | 28.6 a |
LSD0.05 | 0.18 | 0.10 | 16.2 | 7.4 | 0.7 |
Plant Fertilization | Phosphatase (pH = 6.0) [U g−1 f.w.] | Phosphatase (pH = 7.5) [U g−1 f.w.] | RNase [U g−1 f.w.] | Total Dehydrogenases [mg Formazan g Leaf −1] |
---|---|---|---|---|
Control | 0.51 j* | 0.22 j | 2.5 j | 0.46 j |
D | 0.55 h | 0.27 h | 2.9 h | 0.53 h |
Sp | 0.54 i | 0.25 i | 2.7 i | 0.50 i |
Fertilization with sorghum ash, digestate and Spirodela polyrhiza | ||||
aS 48 | 0.64 f | 0.31 f | 3.3 f | 0.60 f |
aS 48 + D | 0.76 b | 0.38 c | 3.9 c | 0.69 c |
aS 48 + Sp | 0.73 c | 0.36 d | 3.7 d | 0.66 d |
aS 48 + D + Sp | 0.79 a | 0.42 a | 4.3 a | 0.74 a |
Fertilization with Jerusalem artichoke ash, digestate and Spirodela polyrhiza | ||||
aJ 48 | 0.61 g | 0.29 g | 3.1 g | 0.57 g |
aJ 48 + D | 0.71 d | 0.38 c | 3.9 c | 0.69 c |
aJ 48 + Sp | 0.69 e | 0.34 e | 3.5 e | 0.63 e |
aJ 48 + D + Sp | 0.76 b | 0.40 b | 4.1 b | 0.71 b |
LSD0.05 | 0.02 | 0.015 | 0.10 | 0.02 |
Fertilizer | N | C | P | K | Ca | Mg | Na | S.SO4 | Fe | Mn | Cu | Zn | B |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | [mg kg−1 d.w.] | ||||||||||||
Control | 2.14 b* | 471,040 a | 4655 b | 21,284 b | 7508 b | 2569 b | 128 a | 1490 a | 285 b | 20.0 b | 13.0 a | 32.0 a | 18.3 a |
aS48 + D + Sp | 2.24 a | 471,250 a | 4708 a | 21,500 a | 8177 a | 2624 a | 129 a | 1493 a | 309 a | 21.8 a | 13.5 a | 32.7 a | 18.8 a |
aJ48 + D + Sp | 2.20 a | 471,232 a | 4701 a | 21,509 a | 8170 a | 2620 a | 127 a | 1489 a | 300 a | 21.4 a | 13.1 a | 32.0 a | 18.5 a |
LSD0.05 | 0.05 | 310.5 | 30.2 | 201.6 | 488 | 36.2 | 5.1 | 6.3 | 12.4 | 1.0 | 0.7 | 0.9 | 0.4 |
Evaluated Properties | Unit of Measure | Plants Not Fertilized Control | Plants Fertilized with: | LSD0.05 | |
---|---|---|---|---|---|
aS 48 + D + Sp | aJ 48 + D + Sp | ||||
Analytical state | |||||
Analytical humidity | [%] | 5.11 a* | 5.30 a | 5.28 a | 0.25 |
Ash | [%] | 10.09 a | 7.55 b | 7.54 b | 0.90 |
Heat of combustion | [kJ kg−1] | 16,599 a | 16,391 a | 16,385 a | 210 |
Working state | |||||
Transient humidity | [%] | 50.08 a | 49.46 a | 49.40 a | 0.68 |
Total humidity | [%] | 52.44 a | 52.69 a | 52.62 a | 0.31 |
Ash | [%] | 4.93 a | 3.88 b | 3.85 b | 0.90 |
Calorific value | [kJ kg−1] | 6369 b | 6389 a | 6390 a | 18,10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romanowska-Duda, Z.; Janas, R.; Grzesik, M. Increasing Fertilization Efficiency of Biomass Ash by the Synergistically Acting Digestate and Extract from Water Plants Sequestering CO2 in Sorghum Crops. Molecules 2024, 29, 4397. https://doi.org/10.3390/molecules29184397
Romanowska-Duda Z, Janas R, Grzesik M. Increasing Fertilization Efficiency of Biomass Ash by the Synergistically Acting Digestate and Extract from Water Plants Sequestering CO2 in Sorghum Crops. Molecules. 2024; 29(18):4397. https://doi.org/10.3390/molecules29184397
Chicago/Turabian StyleRomanowska-Duda, Zdzisława, Regina Janas, and Mieczysław Grzesik. 2024. "Increasing Fertilization Efficiency of Biomass Ash by the Synergistically Acting Digestate and Extract from Water Plants Sequestering CO2 in Sorghum Crops" Molecules 29, no. 18: 4397. https://doi.org/10.3390/molecules29184397
APA StyleRomanowska-Duda, Z., Janas, R., & Grzesik, M. (2024). Increasing Fertilization Efficiency of Biomass Ash by the Synergistically Acting Digestate and Extract from Water Plants Sequestering CO2 in Sorghum Crops. Molecules, 29(18), 4397. https://doi.org/10.3390/molecules29184397