Fabrication of Active Z-Scheme Sr2MgSi2O7: Eu2+, Dy3+/COF Photocatalyst for Round-the-Clock Efficient Removal of Total Cr
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Morphology Analysis
2.2. Surface Chemical State Analysis
2.3. Energy Band Structure and Photoelectrochemical Analysis
2.4. Cr(T) Removal Performance Analysis
2.5. Effects of pH Value on Cr(T) Removal
2.6. Effects of Co-Existing Ions on Cr(T) Removal
2.7. Possible Photocatalytic Mechanisms
2.8. Active Stability and Reusability Analysis
3. Materials and Methods
3.1. Materials and Reagents
3.2. Preparation of Samples
3.2.1. Preparation of SMSOED Sample
3.2.2. Preparation of SMSOED/COFTP-TTA Composites
3.3. Characterization of Prepared Samples
3.4. Removal Experiments of Cr(T)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, Z.; Shu, Y.; Huang, R.; Liu, J.; Liu, L. Enhanced reactivity of nZVI embedded into supermacroporous cryogels for highly efficient Cr (VI) and total Cr removal from aqueous solution. Chemosphere 2018, 199, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Gaberell, M.; Chin, Y.P.; Hug, S.J.; Sulzberger, B. Role of dissolved organic matter composition on the photoreduction of Cr (VI) to Cr (III) in the presence of iron. Environ. Sci. Technol. 2003, 37, 4403–4409. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Xu, X.; Wang, M.; Lu, T.; Sun, C.Q.; Pan, L. Synergistic conversion and removal of total Cr from aqueous solution by photocatalysis and capacitive deionization. Chem. Eng. J. 2018, 337, 398–404. [Google Scholar] [CrossRef]
- Xu, M.; Wu, J.; Wang, J.; Liu, W.; Sun, L.; Zhou, W.; Li, H. Covalent organic framework modified vermiculite for total Cr removal and subsequent recycling for efficient ciprofloxacin and NO photooxidation. J. Colloid Interf. Sci. 2023, 652, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Yang, Y.; Wang, L.; Chai, S.; Zhang, R.; Wu, J.; Liu, X. Facile integration of FeS and titanate nanotubes for efficient removal of total Cr from aqueous solution: Synergy in simultaneous reduction of Cr (VI) and adsorption of Cr (III). J. Hazard. Mater. 2020, 398, 122834. [Google Scholar]
- Liu, W.; Li, J.; Zheng, J.; Song, Y.; Shi, Z.; Lin, Z.; Chai, L. Different pathways for Cr(III) oxidation: Implications for Cr(VI) reoccurrence in reduced chromite ore processing residue. Environ. Sci. Technol. 2020, 54, 11971–11979. [Google Scholar] [CrossRef]
- Barrera-Díaz, C.E.; Lugo-Lugo, V.; Bilyeu, B. A review of chemical, electrochemical and biological methods for aqueous Cr (VI) reduction. J. Hazard. Mater. 2012, 223, 1–12. [Google Scholar] [CrossRef]
- Nguyen, H.L. Reticular materials for artificial photoreduction of CO2. Adv. Energy Mater. 2020, 10, 2002091. [Google Scholar] [CrossRef]
- Wang, H.N.; Zou, Y.H.; Sun, H.X.; Chen, Y.; Li, S.L.; Lan, Y.Q. Recent progress and perspectives in heterogeneous photocatalytic CO2 reduction through a solid–gas mode. Coordin. Chem. Rev. 2021, 438, 213906. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.; Du, Y.; Li, H.; Yang, Y.; Jia, X. Chemically controlled growth of porous CeO2 nanotubes for Cr (VI) photoreduction. Appl. Catal. B-Environ. 2015, 174, 435–444. [Google Scholar] [CrossRef]
- Luo, W.; Li, Y.; Wang, J.; Liu, J.; Zhang, N.; Zhao, M.; Wang, L. Asymmetric structure engineering of polymeric carbon nitride for visible-light-driven reduction reactions. Nano Energy 2021, 87, 106168. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Shi, Z.; Lu, T.; Wang, Q.; Li, B. Multifunctional Zr-MOF based on bisimidazole tetracarboxylic acid for pH sensing and photoreduction of Cr (VI). ACS Appl. Mater. Interfaces 2021, 13, 54217–54226. [Google Scholar] [CrossRef] [PubMed]
- Loh, J.Y.; Sharma, G.; Kherani, N.P.; Ozin, G.A. Post-illumination photoconductivity enables extension of photo-catalysis after sunset. Adv. Energy Mater. 2021, 11, 2101566. [Google Scholar] [CrossRef]
- Schulz, M.; Hagmeyer, N.; Wehmeyer, F.; Lowe, G.; Rosenkranz, M.; Seidler, B.; Dietzek, B. Photoinduced charge accumulation and prolonged multielectron storage for the separation of light and dark reaction. J. Am. Chem. Soc. 2020, 142, 15722–15728. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, Q.; Liu, S.; Ya, W.; Qi, P.; Ni, Z.; Zhang, Q. A brief review: The application of long afterglow luminescent materials in environmental remediation. RSC Adv. 2023, 13, 16145–16153. [Google Scholar] [CrossRef]
- Chen, M.L.; Li, S.S.; Wen, L.; Xu, Z.; Li, H.H.; Ding, L.; Cheng, Y.H. Exploration of double Z-type ternary composite long-afterglow/graphitic carbon nitride@metal–organic framework for photocatalytic degradation of methylene blue. J. Colloid Interf. Sci. 2023, 629, 409–421. [Google Scholar] [CrossRef]
- Ding, Y.; Ye, Y.; Wang, C.; Pei, L.; Mao, Q.; Liu, M.; Zhong, J. “Light battery” role of long afterglow phosphor for round-the-clock environmental photocatalysis. J. Clean. Prod. 2024, 450, 142041. [Google Scholar] [CrossRef]
- Yang, M.; Guo, X.; Mou, F.; Guan, J. Lighting up micro-/nanorobots with fluorescence. Chem. Rev. 2022, 123, 3944–3975. [Google Scholar] [CrossRef]
- Cui, G.; Yang, X.; Zhang, Y.; Fan, Y.; Chen, P.; Cui, H.; Tang, B. Round-the-clock photocatalytic hydrogen production with high efficiency by a long-afterglow material. Angew. Chem. Int. Edit. 2019, 58, 1340–1344. [Google Scholar] [CrossRef]
- Tang, J.; Liu, X.; Liu, Y.; Zhang, X.; Lin, Y.; Chen, L.; Wang, J. Novel Z-scheme Sr2MgSi2O7: Eu2+, Dy3+/Ag3PO4 photocatalyst for round-the-clock efficient degradation of organic pollutants and hydrogen production. Chem. Eng. J. 2022, 435, 134773. [Google Scholar] [CrossRef]
- Tang, J.; Liu, Y.; Zhang, X.; Tian, Y.; Jin, T.; Fang, D.; Wang, J. Fabrication of loaded Ag sensitized round-the-clock highly active Z-scheme BiFeO3/Ag/Sr2MgSi2O7: Eu2+, Dy3+/Ag photocatalyst for metronidazole degradation and hydrogen production. J. Power Sources 2023, 580, 233433. [Google Scholar] [CrossRef]
- He, L.; Jia, B.; Che, L.; Li, W.; Sun, W. Preparation and optical properties of afterglow Sr2MgSi2O7: Eu2+, Dy3+ electrospun nanofibers. J. Lumin. 2016, 172, 317–322. [Google Scholar] [CrossRef]
- Wu, H.; Wang, Z.M.; Koike, K.; Negishi, N.; Jin, Y. Hybridization of silver orthophosphate with a melilite-type phosphor for enhanced energy-harvesting photocatalysis. Catal. Sci. Technol. 2017, 7, 3736–3746. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, S.; Li, D.; Lei, W.; Shen, Y.; Li, F. Reusable cubic porous light-storing assisted photodegradation composite Sr2MgSi2O7: Eu2+, Dy3+/Ag3PO4 device with adsorption-photocatalysis effects for dark degradation. J. Mater. Sci. 2022, 57, 14877–14889. [Google Scholar] [CrossRef]
- Liu, M.; Ke, X.; Yan, Z.; Liu, W.; Song, J.; Gu, Q. Sr2MgSi2O7:(Eu2+, Dy3+) decorated ultrathin g-C3N4: Improvement of spectrum conversion efficiency and realization of all-day-active photocatalysis. Mater. Lett. 2023, 333, 133617. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, Z.; Liu, X.; Zhou, G.; Tang, J.; Liu, J. Non-Silver Agent Zps for Sustainable Photocatalytic and Antibacterial Efficacy. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4861324 (accessed on 12 July 2024).
- Xia, G.; Qiu, J.; Dai, D.; Zhang, L.; Tang, Y.; Yao, J. Electron-deficient covalent organic frameworks anchored on melamine sponges for visible-light-driven H2O2 evolution. AIChE J. 2023, 69, e18192. [Google Scholar] [CrossRef]
- Xia, G.; Qiu, J.; Zhang, L.; Dai, D.; Yao, J. Heterojunction construction on covalent organic frameworks for visible-light-driven H2O2 evolution in ambient air. Colloids Surf. A 2023, 664, 131124. [Google Scholar] [CrossRef]
- Xia, G.; Qiu, J.; Dai, D.; Tang, Y.; Wu, Z.; Yao, J. Photocatalytic production of H2O2 from wastewater under visible light by chlorine and ZnIn2S4 co-decorated TpPa-1. Catalysis Sci. Technol. 2024, 14, 590–597. [Google Scholar] [CrossRef]
- Sun, L.; Wang, W.; Kong, T.; Jiang, H.; Tang, H.; Liu, Q. Fast charge transfer kinetics in an inorganic–organic S-scheme heterojunction photocatalyst for cooperative hydrogen evolution and furfuryl alcohol upgrading. J. Mater. Chem. A 2022, 10, 22531–22539. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, A.; Ma, Y.; Du, H. Single−atom Co anchored on covalent organic framework for remarkable photocatalytic hydrogen evolution efficiency. Int. J. Hydrogen Energy 2024, 72, 1298–1307. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, H.; Chen, D.; Li, N.; Xu, Q.; Li, H.; Lu, J. In situ assembly of a covalent organic framework composite membrane for dye separation. J. Membrane Sci. 2021, 628, 119216. [Google Scholar] [CrossRef]
- Yang, X.; Tang, B.; Cao, X. Association study between the optical-photocatalysis behaviors and the carrier transfer characteristics of g-C3N4/Sr2MgSi2O7:(Eu, Dy). J. Environ. Chem. Eng. 2022, 10, 108820. [Google Scholar] [CrossRef]
- Hussain, M.; Saddique, A.; Devarayapalli, K.C.; Kim, B.; Cheong, I.W.; Lee, D.S. Constructing bifunctional and robust covalent organic frameworks via three-component one-pot Doebner reaction for Cr (VI) removal. Appl. Catal. B Environ. 2024, 344, 123672. [Google Scholar] [CrossRef]
- Komai, S.; Hirano, M.; Ohtsu, N. Spectral analysis of Sr 3d XPS spectrum in Sr-containing hydroxyapatite. Surf. Interface Anal. 2020, 52, 823–828. [Google Scholar] [CrossRef]
- Gao, X.; Fang, G.; Wang, Y.; Zhu, Z.; You, Z.; Li, J.; Tu, C. Visible and mid-infrared spectral performances of Dy3+: CaF2 and Dy3+/Y3+: CaF2 crystals. J. Alloys Compd. 2021, 856, 158083. [Google Scholar] [CrossRef]
- Li, S.; Dong, K.; Cai, M.; Li, X.; Chen, X. A plasmonic S-scheme Au/MIL-101 (Fe)/BiOBr photocatalyst for efficient synchronous decontamination of Cr (VI) and norfloxacin antibiotic. eScience 2024, 4, 100208. [Google Scholar] [CrossRef]
- Quan, Y.; Wang, G.; Jin, Z. Tactfully assembled CuMOF/CdS S-scheme heterojunction for high-performance photocatalytic H2 evolution under visible light. ACS Appl. Energy Mater. 2021, 4, 8550–8562. [Google Scholar] [CrossRef]
- He, H.; Li, Y.; Wang, J.; Wu, J.; Sun, L.; Cai, Y.; Wang, X. Tunable Fe-deficiency modified sodium ferric silicate for improving photo-Fenton-like activity. Chem. Eng. J. 2022, 450, 138141. [Google Scholar] [CrossRef]
- Luo, X.; Ahn, J.Y.; Kim, S.H. Aerosol synthesis and luminescent properties of CaAl2O4: Eu2+, Nd3+ down-conversion phosphor particles for enhanced light harvesting of dye-sensitized solar cells. Sol. Energy 2019, 178, 173–180. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Xu, X.; Gong, Y. Effects of non-stoichiometry on crystallinity, photoluminescence and afterglow properties of Sr2MgSi2O7:Eu2+, Dy3+ phosphors. J. Lumin. 2009, 129, 1230–1234. [Google Scholar] [CrossRef]
- Wang, S.L.; Chen, C.C.; Tzou, Y.M.; Hsu, C.L.; Chen, J.H.; Lin, C.F. A mechanism study of light-induced Cr (VI) reduction in an acidic solution. J. Hazard. Mater. 2009, 164, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Mourad, W.E.; Rophael, M.W.; Khalil, L.B. Preparation and characterization of doped manganese dioxides. J. Appl. Electrochem. 1980, 10, 309–313. [Google Scholar] [CrossRef]
- Schrank, S.G.; José, H.J.; Moreira, R.F.P.M. Simultaneous photocatalytic Cr (VI) reduction and dye oxidation in a TiO2 slurry reactor. J. Photochem. Photobiol. A 2002, 147, 71–76. [Google Scholar] [CrossRef]
- Neto, J.D.O.M.; Bellato, C.R.; Silva, L.A. Removal of chromium from aqueous solution by CLCh/Fe/MWCNT/TiO2-Ag magnetic composite film: Simultaneous Cr (VI) reduction and Cr (III) adsorption. J. Photochem. Photobiol. A 2024, 448, 115326. [Google Scholar]
- Lin, Z.; Wu, Y.; Jin, X.; Liang, D.; Jin, Y.; Huang, S.; Liu, G. Facile synthesis of direct Z-scheme UiO-66-NH2/PhC2Cu heterojunction with ultrahigh redox potential for enhanced photocatalytic Cr (VI) reduction and NOR degradation. J. Hazard. Mater. 2023, 443, 130195. [Google Scholar] [CrossRef] [PubMed]
- Sepehrmansourie, H.; Alamgholiloo, H.; Pesyan, N.N.; Zolfigol, M.A. A MOF-on-MOF strategy to construct double Z-scheme heterojunction for high-performance photocatalytic degradation. Appl. Catal. B Environ. 2023, 321, 122082. [Google Scholar] [CrossRef]
- Zhang, H.; He, J.; Wu, P.; Jiang, W. Facile synthesis of Z-scheme KBiO3/g-C3N4 Z-scheme heterojunction photocatalysts: Structure, performance, and mechanism. J. Environ. Chem. Eng. 2022, 10, 107804. [Google Scholar] [CrossRef]
- Wang, P.; Xu, X.; Zhou, D.; Yu, X.; Qiu, J. Sunlight activated long-lasting luminescence from Ba5Si8O21: Eu2+, Dy3+ phosphor. Inorg. Chem. 2015, 54, 1690–1697. [Google Scholar] [CrossRef]
- Zapata, P.M.C.; Nazzarro, M.S.; Parentis, M.L.; Gonzo, E.E.; Bonini, N.A. Effect of hydrothermal treatment on Cr-SiO2 mesoporous materials. Chem. Eng. Sci. 2013, 101, 374–381. [Google Scholar] [CrossRef]
- Shrivastava, R.; Kaur, J.; Dubey, V.; Jaykumar, B.; Loreti, S. Photoluminescence and thermoluminescence investigation of europium-and dysprosium-doped dibarium magnesium silicate phosphor. Spectrosc. Lett. 2015, 48, 179–183. [Google Scholar] [CrossRef]
- Wang, J.; Yu, Y.; Cui, J.; Li, X.; Zhang, Y.; Wang, C.; Ye, J. Defective g-C3N4/covalent organic framework van der Waals heterojunction toward highly efficient S-scheme CO2 photoreduction. Appl. Catal. B Environ. 2022, 301, 120814. [Google Scholar] [CrossRef]
- Arslan, H.; Eskikaya, O.; Bilici, Z.; Dizge, N.; Balakrishnan, D. Comparison of Cr (VI) adsorption and photocatalytic reduction efficiency using leonardite powder. Chemosphere 2022, 300, 134492. [Google Scholar] [CrossRef] [PubMed]
- Jamaluddin, N.S.; Alias, N.H.; Samitsu, S.; Othman, N.H.; Jaafar, J.; Marpani, F.; Tan, Y.Z. Efficient chromium (VI) removal from wastewater by adsorption-assisted photocatalysis using MXene. J. Environ. Chem. Eng. 2022, 10, 108665. [Google Scholar] [CrossRef]
- Song, Y.; Lu, X.; Liu, Z.; Liu, W.; Gai, L.; Gao, X.; Ma, H. Efficient removal of Cr (VI) by TiO2 based micro-nano reactor via the synergy of adsorption and photocatalysis. Nanomaterials 2022, 12, 291. [Google Scholar] [CrossRef]
- Sun, H.; Wang, L.; Liu, Y.; Cheng, Z.; Zhao, Y.; Guo, H.; Yin, X. Photocatalytic reduction of Cr (VI) via surface modified g-C3N4 by acid-base regulation. J. Environ. Manag. 2022, 324, 116431. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Wu, J.; Zheng, M.; Wang, J. Fabrication of Active Z-Scheme Sr2MgSi2O7: Eu2+, Dy3+/COF Photocatalyst for Round-the-Clock Efficient Removal of Total Cr. Molecules 2024, 29, 4327. https://doi.org/10.3390/molecules29184327
Xu M, Wu J, Zheng M, Wang J. Fabrication of Active Z-Scheme Sr2MgSi2O7: Eu2+, Dy3+/COF Photocatalyst for Round-the-Clock Efficient Removal of Total Cr. Molecules. 2024; 29(18):4327. https://doi.org/10.3390/molecules29184327
Chicago/Turabian StyleXu, Meng, Junshu Wu, Mupeng Zheng, and Jinshu Wang. 2024. "Fabrication of Active Z-Scheme Sr2MgSi2O7: Eu2+, Dy3+/COF Photocatalyst for Round-the-Clock Efficient Removal of Total Cr" Molecules 29, no. 18: 4327. https://doi.org/10.3390/molecules29184327
APA StyleXu, M., Wu, J., Zheng, M., & Wang, J. (2024). Fabrication of Active Z-Scheme Sr2MgSi2O7: Eu2+, Dy3+/COF Photocatalyst for Round-the-Clock Efficient Removal of Total Cr. Molecules, 29(18), 4327. https://doi.org/10.3390/molecules29184327