The Role of Indigenous Yeasts in Shaping the Chemical and Sensory Profiles of Wine: Effects of Different Strains and Varieties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fermentation Ability and Influences on the Main Chemical Composition of Wine
2.2. Aroma Compound Production of Each Strain in Small-Scale Fermentation
2.3. Olfactory Characteristics of Each Strain in Small-Scale Fermentation
2.4. The Performance of Selected Yeast Strains in Pilot Trials
2.5. RATA Profiling of Pilot Experiment Wine
3. Materials and Methods
3.1. Grape Sample
3.2. Yeast Strain
3.3. Yeast Growing and Fermentation
3.4. HS-SPME Condition and GC-MS Analysis
3.5. HPLC Analysis
3.6. Analysis of Basic Enology Parameters of Wines
3.7. Sensory Analysis
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Leeuwen, C.; Seguin, G. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Lappa, I.K.; Kachrimanidou, V.; Pateraki, C.; Koulougliotis, D.; Eriotou, E.; Kopsahelis, N. Indigenous yeasts: Emerging trends and challenges in winemaking. Curr. Opin. Food Sci. 2020, 32, 133–143. [Google Scholar] [CrossRef]
- Pretorius, I.S. Tasting the terroir of wine yeast innovation. FEMS Yeast Res. 2020, 20, foz084. [Google Scholar] [CrossRef]
- Comitini, F.; Capece, A.; Ciani, M.; Romano, P. New insights on the use of wine yeasts. Curr. Opin. Food Sci. 2017, 13, 44–49. [Google Scholar] [CrossRef]
- Aplin, J.J.; White, K.P.; Edwards, C.G. Growth and metabolism of non-Saccharomyces yeasts isolated from Washington state vineyards in media and high sugar grape musts. Food Microbiol. 2019, 77, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Hranilovic, A.; Albertin, W.; Capone, D.L.; Gallo, A.; Grbin, P.R.; Danner, L.; Bastian, S.E.; Masneuf-Pomarede, I.; Coulon, J.; Bely, M. Impact of Lachancea thermotolerans on chemical composition and sensory profiles of Merlot wines. Food Chem. 2021, 349, 129015. [Google Scholar] [CrossRef]
- Chen, K.; Escott, C.; Loira, I.; del Fresno, J.M.; Morata, A.; Tesfaye, W.; Calderon, F.; Suárez-Lepe, J.A.; Han, S.; Benito, S. Use of non-Saccharomyces yeasts and oenological tannin in red winemaking: Influence on colour, aroma and sensorial properties of young wines. Food Microbiol. 2018, 69, 51–63. [Google Scholar] [CrossRef]
- Belda, I.; Ruiz, J.; Alastruey-Izquierdo, A.; Navascués, E.; Marquina, D.; Santos, A. Unraveling the enzymatic basis of wine “flavorome”: A phylo-functional study of wine related yeast species. Front. Microbiol. 2016, 7, 12. [Google Scholar] [CrossRef]
- Padilla, B.; Gil, J.V.; Manzanares, P. Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Front. Microbiol. 2016, 7, 411. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Collins, T.S.; Masarweh, C.; Allen, G.; Heymann, H.; Ebeler, S.E.; Mills, D.A. Associations among wine grape microbiome, metabolome, and fermentation behavior suggest microbial contribution to regional wine characteristics. MBio 2016, 7, e00631-16. [Google Scholar] [CrossRef]
- Knight, S.; Klaere, S.; Fedrizzi, B.; Goddard, M.R. Regional microbial signatures positively correlate with differential wine phenotypes: Evidence for a microbial aspect to terroir. Sci. Rep. 2015, 5, 14233. [Google Scholar] [CrossRef] [PubMed]
- Koulougliotis, D.; Eriotou, E. Isolation and identification of endogenous yeast strains in grapes and must solids of Mavrodafni kefalonias and antioxidant activity of the produced red wine. Ferment. Technol. 2016, 5, 125. [Google Scholar] [CrossRef]
- Ilieva, F.; Kostadinovic Velickovska, S.; Dimovska, V.; Mirhosseini, H.; Spasov, H. Isolation of Saccharomyces cerevisiae yeast strains from Macedonian “Tikveš” wine-growing region and their impact on the organoleptic characteristics of Vranec and Cabernet Sauvignon wines. Res. J. Biotechnol. 2019, 14, 100–110. [Google Scholar]
- Çelik, Z.D.; Erten, H.; Cabaroglu, T. The influence of selected autochthonous Saccharomyces cerevisiae strains on the physicochemical and sensory properties of narince wines. Fermentation 2019, 5, 70. [Google Scholar] [CrossRef]
- Parapouli, M.; Sfakianaki, A.; Monokrousos, N.; Perisynakis, A.; Hatziloukas, E. Comparative transcriptional analysis of flavour-biosynthetic genes of a native Saccharomyces cerevisiae strain fermenting in its natural must environment, vs. a commercial strain and correlation of the genes’ activities with the produced flavour compounds. J. Biol. Res.-Thessalon. 2019, 26, 5. [Google Scholar] [CrossRef]
- Li, R.; Lin, M.; Guo, S.; Yang, S.; Han, X.; Ren, M.; Song, Y.; Du, L.; You, Y.; Zhan, J.; et al. A fundamental landscape of fungal biogeographical patterns across the main Chinese wine-producing regions and the dominating shaping factors. Food Res. Int. 2021, 150, 110736. [Google Scholar] [CrossRef]
- Li, E.; Liu, A.; Xue, B.; Liu, Y. Yeast species associated with spontaneous wine fermentation of Cabernet Sauvignon from Ningxia, China. World J. Microbiol. Biotechnol. 2011, 27, 2475–2482. [Google Scholar] [CrossRef]
- Liu, N.; Qin, Y.; Song, Y.; Ye, D.; Yuan, W.; Pei, Y.; Xue, B.; Liu, Y. Selection of indigenous Saccharomyces cerevisiae strains in Shanshan County (Xinjiang, China) for winemaking and their aroma-producing characteristics. World J. Microbiol. Biotechnol. 2015, 31, 1781–1792. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.-X.; Wang, G.-q.; Aihaiti, A. Combined indigenous yeast strains produced local wine from over ripen Cabernet Sauvignon grape in Xinjiang. World J. Microbiol. Biotechnol. 2020, 36, 122. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, J.; Liu, F.; Liu, Y. Identification of indigenous yeast flora isolated from the five winegrape varieties harvested in Xiangning, China. Antonie Van Leeuwenhoek 2014, 105, 533–540. [Google Scholar] [CrossRef]
- Yan, H.; Ge, C.; Zhou, J.; Li, J. Diversity of soil fungi in the vineyards of Changli region in China. Can. J. Microbiol. 2022, 68, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kang, W.; Xu, Y.; Li, J. Effect of Different Indigenous Yeast β-Glucosidases on the Liberation of Bound Aroma Compounds. J. Inst. Brew. 2011, 117, 230–237. [Google Scholar] [CrossRef]
- Xi, X.; Xin, A.; You, Y.; Huang, W.; Zhan, J. Increased Varietal Aroma Diversity of Marselan Wine by Mixed Fermentation with Indigenous Non-Saccharomyces Yeasts. Fermentation 2021, 7, 133. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Bartowsky, E.J.; Henschke, P.A.; Pretorius, I.S. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Sumby, K.M.; Grbin, P.R.; Jiranek, V. Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chem. 2010, 121, 1–16. [Google Scholar] [CrossRef]
- Torija, M.J.; Beltran, G.; Novo, M.; Poblet, M.; Guillamón, J.M.; Mas, A.; Rozes, N. Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. Int. J. Food Microbiol. 2003, 85, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Saerens, S.M.G.; Verstrepen, K.J.; Van Laere, S.D.M.; Voet, A.R.D.; Van Dijck, P.; Delvaux, F.R.; Thevelein, J.M. The Saccharomyces cerevisiae EHT1 and EEB1 Genes Encode Novel Enzymes with Medium-chain Fatty Acid Ethyl Ester Synthesis and Hydrolysis Capacity*. J. Biol. Chem. 2006, 281, 4446–4456. [Google Scholar] [CrossRef]
- Belda, I.; Ruiz, J.; Esteban-Fernández, A.; Navascués, E.; Marquina, D.; Santos, A.; Moreno-Arribas, M.V. Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules 2017, 22, 189. [Google Scholar] [CrossRef]
- Martínez-Avila, O.; Sánchez, A.; Font, X.; Barrena, R. Bioprocesses for 2-phenylethanol and 2-phenylethyl acetate production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2018, 102, 9991–10004. [Google Scholar] [CrossRef] [PubMed]
- Si, T.; Luo, Y.; Xiao, H.; Zhao, H. Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae. Metab. Eng. 2014, 22, 60–68. [Google Scholar] [CrossRef]
- Cai, J.; Zhu, B.-Q.; Wang, Y.-H.; Lu, L.; Lan, Y.-B.; Reeves, M.J.; Duan, C.-Q. Influence of pre-fermentation cold maceration treatment on aroma compounds of Cabernet Sauvignon wines fermented in different industrial scale fermenters. Food Chem. 2014, 154, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Kassambara, A. Practical Guide to Principal Component Methods in R: PCA, M (CA), FAMD, MFA, HCPC, Factoextra; STHDA; CreateSpace Independent Publishing Platform: North Charleston, SC, USA, 2017; Volume 2. [Google Scholar]
- Danner, L.; Crump, A.M.; Croker, A.; Gambetta, J.M.; Johnson, T.E.; Bastian, S.E. Comparison of rate-all-that-apply and descriptive analysis for the sensory profiling of wine. Am. J. Enol. Vitic. 2018, 69, 12–21. [Google Scholar] [CrossRef]
- Lan, Y.-B.; Qian, X.; Yang, Z.-J.; Xiang, X.-F.; Yang, W.-X.; Liu, T.; Zhu, B.-Q.; Pan, Q.-H.; Duan, C.-Q. Striking changes in volatile profiles at sub-zero temperatures during over-ripening of ‘Beibinghong’grapes in Northeastern China. Food Chem. 2016, 212, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Q.; Ye, D.-Q.; Liu, P.-T.; Duan, L.-L.; Duan, C.-Q.; Yan, G.-L. Synergistic effects of branched-chain amino acids and phenylalanine addition on major volatile compounds in wine during alcoholic fermentation. South Afr. J. Enol. Vitic. 2016, 37, 169–175. [Google Scholar] [CrossRef]
- Escudero, A.; Gogorza, B.; Melus, M.; Ortin, N.; Cacho, J.; Ferreira, V. Characterization of the aroma of a wine from Maccabeo. Key role played by compounds with low odor activity values. J. Agric. Food Chem. 2004, 52, 3516–3524. [Google Scholar] [CrossRef]
- Guth, H. Quantitation and sensory studies of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Synos, K.; Reynolds, A.G.; Bowen, A.J. Effect of yeast strain on aroma compounds in Cabernet franc icewines. LWT Food Sci. Technol. 2015, 64, 227–235. [Google Scholar] [CrossRef]
Strain | CO2 Loss | Ethanol | OD600 | Glucose | Fructose | Tartaric Acid | Malic Acid | Citric Acid | Glycerol | Succinic Acid | Lactic Acid | Acetic Acid |
---|---|---|---|---|---|---|---|---|---|---|---|---|
60,669 | 19.52 ± 0.81 a | 92.25 ± 3.97 a | 10.38 ± 0.04 ab | 0 | 0.51 ± 0.72 a | 1.75 ± 0.17 a | 2.18 ± 0.1 b | 0.67 ± 0 b | 6.94 ± 0.18 ab | 1.54 ± 0.02 a | 0.12 ± 0.01 cd | 0.14 ± 0.01 scd |
60,673 | 18.76 ± 0.28 a | 93.49 ± 2.43 a | 8.54 ± 0.73 cd | 0 | 1.41 ± 0.73 a | 1.76 ± 0.13 a | 2.21 ± 0.05 b | 0.59 ± 0.01 c | 6.23 ± 0.11 cd | 1.28 ± 0.06 c | 0.22 ± 0.01 a | 0.22 ± 0.01 ab |
60,682 | 18.63 ± 1.39 a | 89.95 ± 6.09 a | 11.19 ± 0.03 a | 0 | 1.1 ± 0.05 a | 1.76 ± 0.32 a | 2.48 ± 0.17 a | 0.85 ± 0.06 a | 7.38 ± 0.51 a | 1.58 ± 0.12 a | 0.11 ± 0.01 d | 0.16 ± 0 c |
60,685 | 19.09 ± 0.02 a | 93.87 ± 1.72 a | 8.36 ± 0.33 d | 0 | 1.25 ± 0.57 a | 1.82 ± 0.09 a | 2.16 ± 0.07 b | 0.58 ± 0.01 c | 6.1 ± 0.13 d | 1.19 ± 0.13 c | 0.21 ± 0.01 a | 0.24 ± 0.01 a |
60,690 | 19.56 ± 0.08 a | 94.91 ± 0.06 a | 9.5 ± 0.49 abcd | 0 | 0.74 ± 0.16 a | 1.84 ± 0 a | 2.13 ± 0.01 b | 0.66 ± 0 b | 6.84 ± 0.04 abc | 1.58 ± 0.01 a | 0.14 ± 0.01 b | 0.15 ± 0 cd |
60,717 | 19.13 ± 0.95 a | 91.22 ± 4.87 a | 10.18 ± 0.42 abc | 0 | 0.89 ± 0.41 a | 1.69 ± 0.24 a | 2.15 ± 0.12 b | 0.67 ± 0.01 b | 6.73 ± 0.44 abcd | 1.35 ± 0.11 bc | 0.13 ± 0.02 bcd | 0.15 ± 0.01 cd |
60,722 | 19.16 ± 0.66 a | 92.45 ± 3.32 a | 8.95 ± 1.8b cd | 0 | 1.27 ± 0.17 a | 1.76 ± 0.12 a | 2.1 ± 0.05 b | 0.68 ± 0.02 b | 6.56 ± 0.3 bcd | 1.29 ± 0.04 c | 0.14 ± 0.01 bc | 0.21 ± 0.03 b |
60,728 | 19.09 ± 0.83 a | 91.89 ± 3.98 a | 9.32 ± 0.71b cd | 0 | 1.05 ± 0.25 a | 1.7 ± 0.21 a | 2.2 ± 0.1 b | 0.67 ± 0.01 b | 6.77 ± 0.28 abcd | 1.49 ± 0.05 ab | 0.12 ± 0.01 cd | 0.14 ± 0 cd |
EC1118 | 19.64 ± 0.02 a | 93.73 ± 0.55 a | 9.73 ± 0.09 abcd | 0 | 0.78 ± 0.01 a | 1.74 ± 0.04 a | 2.18 ± 0.02 b | 0.66 ± 0 b | 6.73 ± 0.1 abcd | 1.55 ± 0.02 a | 0.1 ± 0.01 d | 0.13 ± 0 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.-K.; Liu, P.-T.; Zheng, X.-W.; Li, Z.-F.; Sun, J.-P.; Fan, J.-S.; Ye, D.-Q.; Li, D.-M.; Wang, H.-Q.; Yu, Q.-Q.; et al. The Role of Indigenous Yeasts in Shaping the Chemical and Sensory Profiles of Wine: Effects of Different Strains and Varieties. Molecules 2024, 29, 4279. https://doi.org/10.3390/molecules29174279
Zhang X-K, Liu P-T, Zheng X-W, Li Z-F, Sun J-P, Fan J-S, Ye D-Q, Li D-M, Wang H-Q, Yu Q-Q, et al. The Role of Indigenous Yeasts in Shaping the Chemical and Sensory Profiles of Wine: Effects of Different Strains and Varieties. Molecules. 2024; 29(17):4279. https://doi.org/10.3390/molecules29174279
Chicago/Turabian StyleZhang, Xin-Ke, Pei-Tong Liu, Xiao-Wei Zheng, Ze-Fu Li, Jian-Ping Sun, Jia-Shuo Fan, Dong-Qing Ye, De-Mei Li, Hai-Qi Wang, Qing-Quan Yu, and et al. 2024. "The Role of Indigenous Yeasts in Shaping the Chemical and Sensory Profiles of Wine: Effects of Different Strains and Varieties" Molecules 29, no. 17: 4279. https://doi.org/10.3390/molecules29174279
APA StyleZhang, X. -K., Liu, P. -T., Zheng, X. -W., Li, Z. -F., Sun, J. -P., Fan, J. -S., Ye, D. -Q., Li, D. -M., Wang, H. -Q., Yu, Q. -Q., & Ding, Z. -Y. (2024). The Role of Indigenous Yeasts in Shaping the Chemical and Sensory Profiles of Wine: Effects of Different Strains and Varieties. Molecules, 29(17), 4279. https://doi.org/10.3390/molecules29174279