Turmeric Essential Oil Constituents as Potential Drug Candidates: A Comprehensive Overview of Their Individual Bioactivities
Abstract
:1. Introduction
2. Bioactivities of Turmeric Essential Oil Constituents
2.1. Anticancer Activity
2.2. Anti-Inflammatory Properties
2.3. Antioxidant Action
2.4. Cardiovascular Activity
2.5. Hypoglycemic Action
2.6. Dermatological Application
2.7. Hepatoprotection
2.8. Neurological Action
2.9. Antiparasitic Properties
2.10. Antiviral Activity
2.11. Insecticidal Action
2.12. Antifungal Properties
2.13. Antivenom Activity
3. Safety of the Bioactive Constituents of Turmeric Essential Oil
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsuda, T. Curcumin as a Functional Food-Derived Factor: Degradation Products, Metabolites, Bioactivity, and Future Perspectives. Food Funct. 2018, 9, 705–714. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; El-Saadony, M.T.; Swelum, A.A.; Arif, M.; Abo Ghanima, M.M.; Shukry, M.; Noreldin, A.; Taha, A.E.; El-Tarabily, K.A. Curcumin, the Active Substance of Turmeric: Its Effects on Health and Ways to Improve Its Bioavailability. J. Sci. Food Agric. 2021, 101, 5747–5762. [Google Scholar] [CrossRef] [PubMed]
- Kotha, R.R.; Luthria, D.L. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules 2019, 24, 2930. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, J.; El Rayess, Y.; Rizk, A.A.; Sadaka, C.; Zgheib, R.; Zam, W.; Sestito, S.; Rapposelli, S.; Neffe-Skocińska, K.; Zielińska, D.; et al. Turmeric and Its Major Compound Curcumin on Health: Bioactive Effects and Safety Profiles for Food, Pharmaceutical, Biotechnological and Medicinal Applications. Front. Pharmacol. 2020, 11, 1021. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.; Amalraj, A.; Jacob, J.; Kunnumakkara, A.B.; Gopi, S. Non-Curcuminoids from Turmeric and Their Potential in Cancer Therapy and Anticancer Drug Delivery Formulations. Biomolecules 2019, 9, 13. [Google Scholar] [CrossRef]
- Orellana-Paucar, A.M.; Machado-Orellana, M.G. Pharmacological Profile, Bioactivities, and Safety of Turmeric Oil. Molecules 2022, 27, 5055. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP); Bampidis, V.; Azimonti, G.; Bastos, M.L.; Christensen, H.; Durjava, K.; Kouba, M.; López-Alonso, M.; López Puente, S.; Marcon, F.; et al. Safety and Efficacy of Turmeric Extract, Turmeric Oil, Turmeric Oleoresin and Turmeric Tincture from Curcuma Longa L. Rhizome When Used as Sensory Additives in Feed for All Animal Species. EFSA J. 2020, 18, e06146. [Google Scholar] [CrossRef]
- Hwang, K.W.; Son, D.; Jo, H.W.; Kim, C.H.; Seong, K.C.; Moon, J.K. Levels of Curcuminoid and Essential Oil Compositions in Turmerics (Curcuma Longa L.) Grown in Korea. Appl. Biol. Chem. 2016, 59, 209–215. [Google Scholar] [CrossRef]
- Sharma, R.K.; Misra, B.P.; Sarma, T.C.; Bordoloi, A.K.; Pathak, M.G.; Leclercq, P.A. Essential Oils of Curcuma Longa L. from Bhutan. J. Essent. Oil Res. 1997, 9, 589–592. [Google Scholar] [CrossRef]
- Sacchetti, G.; Maietti, S.; Muzzoli, M.; Scaglianti, M.; Manfredini, S.; Radice, M.; Bruni, R. Comparative Evaluation of 11 Essential Oils of Different Origin as Functional Antioxidants, Antiradicals and Antimicrobials in Foods. Food Chem. 2005, 91, 621–632. [Google Scholar] [CrossRef]
- Pino, J.A.; Fon-Fay, F.M.; Pérez, J.C.; Falco, A.S.; Hernández, I.; Rodeiro, I.; Fernández, M.D. Chemical Composition and Biological Activities of Essential Oil from Turmeric (Curcuma Longa L.) Rhizomes Grown in Amazonian Ecuador. Cienc. Químicas 2018, 49, 1–8. [Google Scholar]
- Aggarwal, B.B.; Yuan, W.; Li, S.; Gupta, S.C. Curcumin-Free Turmeric Exhibits Anti-Inflammatory and Anticancer Activities: Identification of Novel Components of Turmeric. Mol. Nutr. Food Res. 2013, 57, 1529–1542. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.A.; Kitts, D.D. Turmeric and Its Bioactive Constituents Trigger Cell Signaling Mechanisms That Protect against Diabetes and Cardiovascular Diseases. Mol. Cell. Biochem. 2021, 476, 3785–3814. [Google Scholar] [CrossRef] [PubMed]
- Hausman, D.M. What Is Cancer? Perspect. Biol. Med. 2019, 62, 778–784. [Google Scholar] [CrossRef]
- Lee, Y. Activation of Apoptotic Protein in U937 Cells by a Component of Turmeric Oil. BMB Rep. 2009, 42, 96–100. [Google Scholar] [CrossRef]
- Kim, D.; Suh, Y.; Lee, H.; Lee, Y. Immune Activation and Antitumor Response of Ar-Turmerone on P388D1 Lymphoblast Cell Implanted Tumors. Int. J. Mol. Med. 2013, 31, 386–392. [Google Scholar] [CrossRef]
- Sun, M.; Ma, W.N.; Guo, Y.; Hu, Z.G.; He, L.C. Simultaneous Screening of Four Epidermal Growth Factor Receptor Antagonists from Curcuma Longa via Cell Membrane Chromatography Online Coupled with HPLC-MS. J. Sep. Sci. 2013, 36, 2096–2103. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, Y.H.; Kim, Y.; Lee, S.J. Aromatic-Turmerone Attenuates Invasion and Expression of MMP-9 and COX-2 through Inhibition of NF-ΚB Activation in TPA-Induced Breast Cancer Cells. J. Cell Biochem. 2012, 113, 3653–3662. [Google Scholar] [CrossRef] [PubMed]
- Aratanechemuge, Y.; Komiya, T.; Moteki, H.; Katsuzaki, H.; Imai, K.; Hibasami, H. Selective Induction of Apoptosis by Ar-Turmerone Isolated from Turmeric (Curcuma Longa L) in Two Human Leukemia Cell Lines, but Not in Human Stomach Cancer Cell Line. Int. J. Mol. Med. 2002, 9, 481–484. [Google Scholar] [CrossRef]
- Yue, G.G.L.; Chan, B.C.L.; Hon, P.M.; Lee, M.Y.H.; Fung, K.P.; Leung, P.C.; Lau, C.B.S. Evaluation of in Vitro Anti-Proliferative and Immunomodulatory Activities of Compounds Isolated from Curcuma Longa. Food Chem. Toxicol. 2010, 48, 2011–2020. [Google Scholar] [CrossRef]
- Srivilai, J.; Khorana, N.; Waranuch, N.; Wisuitiprot, W.; Suphrom, N.; Suksamrarn, A.; Ingkaninan, K. Germacrene Analogs Are Anti-Androgenic on Androgen-Dependent Cells. NPC Nat. Prod. Commun. 2016, 11, 1225–1228. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, J.; Shao, M.; Zou, J. Germacrone Induces Apoptosis as Well as Protective Autophagy in Human Prostate Cancer Cells. Cancer Manag. Res. 2020, 12, 4009–4016. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.C.; Tu, Y.R.; Jiang, J.; Ye, S.F.; Du, H.X.; Zhang, Y. β-Elemene Reverses the Drug Resistance of Lung Cancer A549/DDP Cells via the Mitochondrial Apoptosis Pathway. Oncol. Rep. 2014, 31, 2131–2138. [Google Scholar] [CrossRef] [PubMed]
- Medzhitov, R. Inflammation 2010: New Adventures of an Old Flame. Cell 2010, 140, 771–776. [Google Scholar] [CrossRef]
- Del Prete, D.; Millán, E.; Pollastro, F.; Chianese, G.; Luciano, P.; Collado, J.A.; Munoz, E.; Appendino, G.; Taglialatela-Scafati, O. Turmeric Sesquiterpenoids: Expeditious Resolution, Comparative Bioactivity, and a New Bicyclic Turmeronoid. J. Nat. Prod. 2016, 79, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.L.; Du, Z.Y.; Li, P.H.; Yan, L.; Zhou, W.; Tang, Y.D.; Liu, G.R.; Fang, Y.X.; Zhang, K.; Dong, C.Z.; et al. Aromatic-Turmerone Ameliorates Imiquimod-Induced Psoriasis-like Inflammation of BALB/c Mice. Int. Immunopharmacol. 2018, 64, 319–325. [Google Scholar] [CrossRef]
- Oh, S.; Han, A.R.; Park, H.R.; Jang, E.J.; Kim, H.K.; Jeong, M.G.; Song, H.; Park, G.H.; Seo, E.K.; Hwang, E.S. Suppression of Inflammatory Cytokine Production by Ar-Turmerone Isolated from Curcuma Phaeocaulis. Chem. Biodivers. 2014, 11, 1034–1041. [Google Scholar] [CrossRef]
- Park, S.Y.; Kim, Y.H.; Kim, Y.; Lee, S.J. Aromatic-Turmerone’s Anti-Inflammatory Effects in Microglial Cells Are Mediated by Protein Kinase A and Heme Oxygenase-1 Signaling. Neurochem. Int. 2012, 61, 767–777. [Google Scholar] [CrossRef]
- Onuma, K.; Suenaga, Y.; Sakaki, R.; Yoshitome, S.; Sato, Y.; Ogawara, S.; Suzuki, S.; Kuramitsu, Y.; Yokoyama, H.; Murakami, A.; et al. Development of a Quantitative Bioassay to Assess Preventive Compounds against Inflammation-Based Carcinogenesis. Nitric. Oxide 2011, 25, 183–194. [Google Scholar] [CrossRef]
- Park, S.Y.; Jin, M.L.; Kim, Y.H.; Kim, Y.; Lee, S.J. Anti-Inflammatory Effects of Aromatic-Turmerone through Blocking of NF-ΚB, JNK, and P38 MAPK Signaling Pathways in Amyloid β-Stimulated Microglia. Int. Immunopharmacol. 2012, 14, 13–20. [Google Scholar] [CrossRef]
- An, J.; Sun, Y.; Zhang, Q.; Zhang, F.; Zhang, J.; Zhang, J. The Effects of Germacrone on Lipopolysaccharide-Induced Acute Lung Injury in Neonatal Rats. Cell Mol. Biol. 2014, 60, 8–12. [Google Scholar] [CrossRef]
- Zhang, J.; Yuan, L.; Wang, S.; Liu, J.; Bi, H.; Chen, G.; Li, J.; Chen, L. Germacrone Protects against Oxygen-Glucose Deprivation/Reperfusion Injury by Inhibiting Autophagy Processes in PC12 Cells. BMC Complement Med. Ther. 2020, 20, 77. [Google Scholar] [CrossRef]
- Chen, X.; Zong, C.; Gao, Y.; Cai, R.; Fang, L.; Lu, J.; Liu, F.; Qi, Y. Curcumol Exhibits Anti-Inflammatory Properties by Interfering with the JNK-Mediated AP-1 Pathway in Lipopolysaccharide-Activated RAW264.7 Cells. Eur. J. Pharmacol. 2014, 723, 339–345. [Google Scholar] [CrossRef]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A Review of Its’ Effects on Human Health. Foods 2017, 6, 92. [Google Scholar] [CrossRef]
- Alkadi, H. A Review on Free Radicals and Antioxidants. Infect. Disord. Drug Targets 2020, 20, 16–26. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, J.S.; Yang, B.; Lv, G.P.; Li, S.P. Free Radical Scavenging Activity and Characterization of Sesquiterpenoids in Four Species of Curcuma Using a TLC Bioautography Assay and GC-MS Analysis. Molecules 2010, 15, 7547–7557. [Google Scholar] [CrossRef]
- Yuan, T.; Zhang, C.; Qiu, C.; Xia, G.; Wang, F.; Lin, B.; Li, H.; Chen, L. Chemical Constituents from Curcuma Longa L. and Their Inhibitory Effects of Nitric Oxide Production. Nat. Prod. Res. 2017, 32, 1887–1892. [Google Scholar] [CrossRef]
- Ivanović, M.; Makoter, K.; Razboršek, M.I. Comparative Study of Chemical Composition and Antioxidant Activity of Essential Oils and Crude Extracts of Four Characteristic Zingiberaceae Herbs. Plants 2021, 10, 501. [Google Scholar] [CrossRef]
- Singh, G.; Kapoor, I.P.S.; Singh, P.; de Heluani, C.S.; de Lampasona, M.P.; Catalan, C.A.N. Comparative Study of Chemical Composition and Antioxidant Activity of Fresh and Dry Rhizomes of Turmeric (Curcuma Longa Linn.). Food Chem. Toxicol. 2010, 48, 1026–1031. [Google Scholar] [CrossRef]
- Zhang, Y.; Henning, S.M.; Lee, R.P.; Huang, J.; Zerlin, A.; Li, Z.; Heber, D. Turmeric and Black Pepper Spices Decrease Lipid Peroxidation in Meat Patties during Cooking. Int. J. Food Sci. Nutr. 2015, 66, 260–265. [Google Scholar] [CrossRef]
- Kanani, P.B.; Daneshyar, M.; Aliakbarlu, J.; Hamian, F. Effect of Dietary Turmeric and Cinnamon Powders on Meat Quality and Lipid Peroxidation of Broiler Chicken under Heat Stress Condition. Vet. Res. Forum 2017, 8, 163. [Google Scholar]
- Fan, J.; Watanabe, T. Atherosclerosis: Known and Unknown. Pathol. Int. 2022, 72, 151–160. [Google Scholar] [CrossRef]
- Zhang, D.; Qiao, W.; Zhao, Y.; Fang, H.; Xu, D.; Xia, Q. Curdione Attenuates Thrombin-Induced Human Platelet Activation: Β1-Tubulin as a Potential Therapeutic Target. Fitoterapia 2017, 116, 106–115. [Google Scholar] [CrossRef]
- Xia, Q.; Wang, X.; Xu, D.J.; Chen, X.H.; Chen, F.H. Inhibition of Platelet Aggregation by Curdione from Curcuma Wenyujin Essential Oil. Thromb. Res. 2012, 130, 409–414. [Google Scholar] [CrossRef]
- Lee, H.S. Antiplatelet Property of Curcuma Longa L. Rhizome-Derived Ar-Turmerone. Bioresour. Technol. 2006, 97, 1372–1376. [Google Scholar] [CrossRef]
- Liu, M.; Chen, X.; Ma, J.; Hassan, W.; Wu, H.; Ling, J.; Shang, J. β-Elemene Attenuates Atherosclerosis in Apolipoprotein E-Deficient Mice via Restoring NO Levels and Alleviating Oxidative Stress. Biomed. Pharmacother. 2017, 95, 1789–1798. [Google Scholar] [CrossRef]
- Ahmad, K.A.; Ze, H.; Chen, J.; Khan, F.U.; Xuezhuo, C.; Xu, J.; Qilong, D. The Protective Effects of a Novel Synthetic β-Elemene Derivative on Human Umbilical Vein Endothelial Cells against Oxidative Stress-Induced Injury: Involvement of Antioxidation and PI3k/Akt/ENOS/NO Signaling Pathways. Biomed. Pharmacother. 2018, 106, 1734–1741. [Google Scholar] [CrossRef]
- Padhi, S.; Nayak, A.K.; Behera, A. Type II Diabetes Mellitus: A Review on Recent Drug Based Therapeutics. Biomed. Pharmacother. 2020, 131, 110708. [Google Scholar] [CrossRef]
- Panigrahy, S.K.; Bhatt, R.; Kumar, A. Targeting Type II Diabetes with Plant Terpenes: The New and Promising Antidiabetic Therapeutics. Biologia 2020, 76, 241–254. [Google Scholar] [CrossRef]
- Zhou, C.X.; Zhang, L.S.; Chen, F.F.; Wu, H.S.; Mo, J.X.; Gan, L.S. Terpenoids from Curcuma Wenyujin Increased Glucose Consumption on HepG2 Cells. Fitoterapia 2017, 121, 141–145. [Google Scholar] [CrossRef]
- Nishiyama, T.; Mae, T.; Kishida, H.; Tsukagawa, M.; Mimaki, Y.; Kuroda, M.; Sashida, Y.; Takahashi, K.; Kawada, T.; Nakagawa, K.; et al. Curcuminoids and Sesquiterpenoids in Turmeric (Curcuma Longa L.) Suppress an Increase in Blood Glucose Level in Type 2 Diabetic KK-Ay Mice. J. Agric. Food Chem. 2005, 53, 959–963. [Google Scholar] [CrossRef]
- Yang, S.; Liu, J.; Jiao, J.; Jiao, L. Ar-Turmerone Exerts Anti-Proliferative and Anti-Inflammatory Activities in HaCaT Keratinocytes by Inactivating Hedgehog Pathway. Inflammation 2020, 43, 478–486. [Google Scholar] [CrossRef]
- Park, S.Y.; Jin, M.L.; Kim, Y.H.; Kim, Y.; Lee, S.J. Aromatic-Turmerone Inhibits α-MSH and IBMX-Induced Melanogenesis by Inactivating CREB and MITF Signaling Pathways. Arch. Dermatol. Res. 2011, 303, 737–744. [Google Scholar] [CrossRef]
- Park, J.-H.; Mohamed, M.; Shrestha, S. Germacrane Sesquiterpenes Isolated from the Rhizome of Curcuma Xanthorrhiza Roxb. Inhibit UVB-Induced Upregulation of MMP-1,-2, and-3 Expression in Human Keratinocytes Antioxidant Properties of Honey from Different Altitudes of Nepal Himalayas View Project Dissect IFT View Project. Artic. Arch. Pharmacal Res. 2014. [Google Scholar] [CrossRef]
- Miyakoshi, M.; Yamaguchi, Y.; Takagaki, R.; Mizutani, K.; Kambara, T.; Ikeda, T.; Zaman, M.S.; Kakihara, H.; Takenaka, A.; Igarashi, K. Hepatoprotective Effect of Sesquiterpenes in Turmeric. BioFactors 2004, 21, 167–170. [Google Scholar] [CrossRef]
- Megumi, C.; Muroyama, K.; Sasako, H.; Tsuge, N. Preventive Activity of Ar-Turmerone and Bisacurone Isolated from Turmeric Extract Against Ethanol-Induced Hepatocyte Injury. Food Sci. Technol. Res. 2017, 23, 275–281. [Google Scholar] [CrossRef]
- Abdel-Lateef, E.; Mahmoud, F.; Hammam, O.; El-Ahwany, E.; El-Wakil, E.; Kandil, S.; Abu Taleb, H.; El-Sayed, M.; Hassenein, H. Bioactive Chemical Constituents of Curcuma Longa L. Rhizomes Extract Inhibit the Growth of Human Hepatoma Cell Line (HepG2). Acta Pharmaceutica 2016, 66, 387–398. [Google Scholar] [CrossRef]
- Jia, Y.; Gao, L.; Yang, X.; Zhang, F.; Chen, A.; Wang, S.; Shao, J.; Tan, S.; Zheng, S. Blockade of Periostin-Dependent Migration and Adhesion by Curcumol via Inhibition of Nuclear Factor Kappa B Signaling in Hepatic Stellate Cells. Toxicology 2020, 440, 152475. [Google Scholar] [CrossRef]
- Liju, V.B.; Jeena, K.; Kuttan, R. An Evaluation of Antioxidant, Anti-Inflammatory, and Antinociceptive Activities of Essential Oil from Curcuma Longa. L. Indian J. Pharmacol. 2011, 43, 526. [Google Scholar] [CrossRef]
- Pan, C.; Si, Y.; Meng, Q.; Jing, L.; Chen, L.; Zhang, Y.; Bao, H. Suppression of the Rac1/MlK3/P38 Signaling Pathway by β-Elemene Alleviates Sepsis-Associated Encephalopathy in Mice. Front. Neurosci. 2019, 13, 443499. [Google Scholar] [CrossRef]
- Zhuang, S.; Liu, B.; Guo, S.; Xue, Y.; Wu, L.; Liu, S.; Zhang, C.; Ni, X. Germacrone Alleviates Neurological Deficits Following Traumatic Brain Injury by Modulating Neuroinflammation and Oxidative Stress. BMC Complement. Med. Ther. 2021, 21, 6. [Google Scholar] [CrossRef]
- Hori, Y.; Tsutsumi, R.; Nasu, K.; Boateng, A.; Ashikari, Y.; Sugiura, M.; Nakajima, M.; Kurauchi, Y.; Hisatsune, A.; Katsuki, H.; et al. Aromatic-Turmerone Analogs Protect Dopaminergic Neurons in Midbrain Slice Cultures through Their Neuroprotective Activities. Cells 2021, 10, 1090. [Google Scholar] [CrossRef]
- Fujiwaraj, M.; Yagi, N.; Miyazawa, M. Acetylcholinesterase Inhibitory Activity of Volatile Oil from Peltophorum Dasyrachis Kurz Ex Bakar (Yellow Batai) and Bisabolane-Type Sesquiterpenoids. J. Agric. Food Chem. 2010, 58, 2824–2829. [Google Scholar] [CrossRef]
- Meyer, J.H.; Ginovart, N.; Boovariwala, A.; Sagrati, S.; Hussey, D.; Garcia, A.; Young, T.; Praschak-Rieder, N.; Wilson, A.A.; Houle, S. Elevated Monoamine Oxidase A Levels in the Brain: An Explanation for the Monoamine Imbalance of Major Depression. Arch. Gen. Psychiatry 2006, 63, 1209–1216. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.C.; Tsai, J.C.; Liu, C.Y.; Huang, H.C.; Wu, L.Y.; Peng, W.H. Antidepressant-like Activity of Turmerone in Behavioral Despair Tests in Mice. BMC Complement. Altern. Med. 2013, 13, 299. [Google Scholar] [CrossRef]
- Saga, Y.; Hatakenaka, Y.; Matsumoto, M.; Yoshioka, Y.; Matsumura, S.; Zaima, N.; Konishi, Y. Neuroprotective Effects of Aromatic Turmerone on Activity Deprivation-Induced Apoptosis in Cerebellar Granule Neurons. Neuroreport 2020, 31, 1302–1307. [Google Scholar] [CrossRef]
- Hucklenbroich, J.; Klein, R.; Neumaier, B.; Graf, R.; Fink, G.R.; Schroeter, M.; Rueger, M.A. Aromatic-Turmerone Induces Neural Stem Cell Proliferation In Vitro and In Vivo. Stem. Cell Res. Ther. 2014, 5, 100. [Google Scholar] [CrossRef]
- Wang, J.; Li, H.; Yao, Y.; Ren, Y.; Lin, J.; Hu, J.; Zheng, M.; Song, X.; Zhao, T.; Chen, Y.Y.; et al. β-Elemene Enhances GAP-43 Expression and Neurite Outgrowth by Inhibiting RhoA Kinase Activation in Rats with Spinal Cord Injury. Neuroscience 2018, 383, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Orellana-Paucar, A.M.; Serruys, A.S.K.; Afrikanova, T.; Maes, J.; De Borggraeve, W.; Alen, J.; León-Tamariz, F.; Wilches-Arizábala, I.M.; Crawford, A.D.; de Witte, P.A.M.; et al. Anticonvulsant Activity of Bisabolene Sesquiterpenoids of Curcuma Longa in Zebrafish and Mouse Seizure Models. Epilepsy Behav. 2012, 24, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Orellana-Paucar, A.M.; Afrikanova, T.; Thomas, J.; Aibuldinov, Y.K.; Dehaen, W.; De Witte, P.A.M.; Esguerra, C.V. Insights from Zebrafish and Mouse Models on the Activity and Safety of Ar-Turmerone as a Potential Drug Candidate for the Treatment of Epilepsy. PLoS ONE 2013, 8, e81634. [Google Scholar] [CrossRef]
- Ding, J.; Wang, J.J.; Huang, C.; Wang, L.; Deng, S.; Xu, T.-L.; Ge, W.H.; Li, W.G.; Li, F. Curcumol from Rhizoma Curcumae Suppresses Epileptic Seizure by Facilitation of GABA(A) Receptors. Neuropharmacology 2014, 81, 244–255. [Google Scholar] [CrossRef]
- Ali, A.H.; Agustar, H.K.; Hassan, N.I.; Latip, J.; Embi, N.; Sidek, H.M. Data on Antiplasmodial and Stage-Specific Inhibitory Effects of Aromatic (Ar)-Turmerone against Plasmodium Falciparum 3D7. Data Brief 2020, 33, 106592. [Google Scholar] [CrossRef]
- Amaral, A.C.F.; Gomes, L.A.; Silva, J.R.D.A.; Ferreira, J.L.P.; Ramos, A.D.S.; Rosa, M.D.S.S.; Vermelho, A.B.; Rodrigues, I.A. Liposomal Formulation of Turmerone-Rich Hexane Fractions from Curcuma Longa Enhances Their Antileishmanial Activity. Biomed. Res. Int. 2014, 2014, 694934. [Google Scholar] [CrossRef] [PubMed]
- Javanian, M.; Barary, M.; Ghebrehewet, S.; Koppolu, V.; Vasigala, V.K.R.; Ebrahimpour, S. A Brief Review of Influenza Virus Infection. J. Med. Virol. 2021, 93, 4638–4646. [Google Scholar] [CrossRef] [PubMed]
- Schaffner, W.; Chen, W.H.; Hopkins, R.H.; Neuzil, K. Effective Immunization of Older Adults Against Seasonal Influenza. Am. J. Med. 2018, 131, 865–873. [Google Scholar] [CrossRef]
- Ti, H.; Mai, Z.; Wang, Z.; Zhang, W.; Xiao, M.; Yang, Z.; Shaw, P. Bisabolane-Type Sesquiterpenoids from Curcuma Longa L. Exert Anti-Influenza and Anti-Inflammatory Activities through NF-ΚB/MAPK and RIG-1/STAT1/2 Signaling Pathways. Food Funct. 2021, 12, 6697–6711. [Google Scholar] [CrossRef]
- Liao, Q.; Qian, Z.; Liu, R.; An, L.; Chen, X. Germacrone Inhibits Early Stages of Influenza Virus Infection. Antiviral. Res. 2013, 100, 578–588. [Google Scholar] [CrossRef]
- He, W.; Zhai, X.; Su, J.; Ye, R.; Zheng, Y.; Su, S. Antiviral Activity of Germacrone against Pseudorabies Virus in Vitro. Pathogens 2019, 8, 258. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Wang, Y.H.; Khan, I.A. Larvicidal and Biting Deterrent Activity of Essential Oils of Curcuma Longa, Ar-Turmerone, and Curcuminoids Against Aedes Aegypti and Anopheles Quadrimaculatus (Culicidae: Diptera). J. Med. Entomol. 2015, 52, 979–986. [Google Scholar] [CrossRef]
- Liu, J.; Fernandez, D.; Gao, Y.; Pierre, S.; Gao, Y.; Dai, G. Enzymology, Histological and Ultrastructural Effects of Ar-Turmerone on Culex Pipiens Pallens Larvae. Insects 2020, 11, 336. [Google Scholar] [CrossRef]
- Gnat, S.; Nowakiewicz, A.; Łagowski, D.; Zięba, P. Host- and Pathogen-Dependent Susceptibility and Predisposition to Dermatophytosis. J. Med. Microbiol. 2019, 68, 823–836. [Google Scholar] [CrossRef]
- Jankasem, M.; Wuthi-udomlert, M.; Gritsanapan, W. Antidermatophytic Properties of Ar -Turmerone, Turmeric Oil, and Curcuma Longa Preparations. ISRN Dermatol. 2013, 2013, 250597. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, L.A.F.; Henriques, O.B.; Andreoni, A.A.S.; Vital, G.R.F.; Campos, M.M.C.; Habermehl, G.G.; de Moraes, V.L.G. Antivenom and Biological Effects of Ar-Turmerone Isolated from Curcuma Longa (Zingiberaceae). Toxicon 1992, 30, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Joshi, J.P.; Ghaisas, S.; Vaidya, A.; Vaidya, R.; Kamat, D.V.; Bhagwat, A.; Bhide, S. Early Human Safety Study of Turmeric Oil (Curcuma Longa Oil) Administered Orally in Healthy Volunteers. J. Assoc. Physicians India 2003, 51, 1055–1060. [Google Scholar] [PubMed]
- Prasad, S.; Aggarwal, B.B. Turmeric, the Golden Spice. In Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2011; pp. 263–288. [Google Scholar]
India | Korea | Ecuador | |
---|---|---|---|
ar-turmerone | 16.7–25.7% | 19.54–32.24% | 1.08–45.5% |
α-turmerone | 30.1–32.0% | 3.72–6.50% | 13.4–19.8% |
β-turmerone | 14.7–18.4% | 2.86–5.60% | 7.35% |
α-zingiberene | 1.5–4.2% | - | 5.3% |
Bioactivity | Compound | Study Design | Sample/Subject | Dose | Route | Effect | Reference |
---|---|---|---|---|---|---|---|
Anticancer | Ar-turmerone | In vitro | U937 cells | 61–84% | NA | Apoptosis induction through caspase-3 activation involving Bax and p53 proteins, not Bcl-2 and p21 | [15] |
Cell death mediated through activation of mitochondrial cytochrome c and caspase-3 | |||||||
In vivo | P388D1 lymphoblast cell implanted tumors in mouse model | 200–300 mg/kg | i.p. | Immune activity enhancement and inhibition of P388D1 lymphocytic leukemia | [16] | ||
Increase in T-lymphocyte and B-lymphocyte proliferation activities | |||||||
IL-2 production activity increase | |||||||
In vitro | Human breast MDA-MB-231 cells | 10–30 mM | NA | Inhibition of MMP-9 and COX-2 via NF-kB | [18] | ||
Suppression of TPA-induced invasion and migration | |||||||
In vitro | Human leukemia Molt 4B and H60 cells | 30 µg/mL | NA | Selective apoptosis in human leukemia cells | [19] | ||
Ar-turmerone and α-turmerone | In vitro | Human cancer cell lines: HepG2, MCF-7, MDA-MB-231; human skin fibroblast cell line: Hs-68 | 11.0–41.8 μg/mL | NA | Inhibition of cancer cell proliferation and apoptosis induction | [20] | |
Stimulation of immune cell proliferation and cytokine production | |||||||
Germacrone | In vitro | Prostate cancer cell lines: PC-3 and 22RV1 | 30 to 480 mM | NA | Apoptosis and autophagy induction in prostate cancer cells | [22] | |
Inhibition of Akt/mTOR signaling pathway, leading to cell death | |||||||
β-elemene | In vitro | A549/DDP lung cancer cells | 20 μg/mL | NA | Reversal of lung cancer pharmacoresistance via mitochondrial apoptosis pathway | [23] | |
Enhancement of cisplatin sensitivity and apoptosis induction in A549/DDP cells | |||||||
Anti-inflammation | Ar-turmerone | In vitro | CD4+ T cells | 10 mM | NA | Suppression of IFN-g and IL-2 production in T cells. | [27] |
Anti-inflammatory effects without affecting IL-4, IL-5, or T-cell expansion | |||||||
In vitro | BV-2 microglial cells | 5 μM | NA | Suppression of LPS-induced neuroinflammatory molecules in microglia | [28] | ||
In vitro | BV2 microglial and HT-22 hippocampal cells | 5–20 μM | NA | Inhibition of neuroinflammatory molecules and ROS production in microglial cells | [30] | ||
Protection of hippocampal cells from neuronal toxicity | |||||||
Suppression of NF-κB, JNK, and p38 MAPK signaling pathways | |||||||
Turmerones (including ar-turmerone) | In vitro/In vivo | QR-32 cells/mouse | 0.2–100 nM/500 ppp | NA/p.o. | Significant tumor growth reduction in mice | [29] | |
Inhibition of inflammation-related carcinogenesis in mouse model | |||||||
Maintenance of a reducing environment at inflammatory lesions | |||||||
Suppression of iNOS and 8-OHdG expression | |||||||
Germacrone | In vivo | Human type II-like alveolar epithelial cells A549/rats | 50–150 μM/10 mg/kg | NA/i.p. | Cell apoptosis reduction and promotion of cell viability | [31] | |
Attenuation of LPS-induced pathological changes and pulmonary edema in rats | |||||||
Decrease in IL-6 and TNF-α and increase in TGF-β1 and IL-10 | |||||||
In vitro | PC12 cells | 20–80 μM | NA | Inhibition of autophagy in PC12 cells, improving cell viability | [32] | ||
Control of PC12 cell injury caused by OGDR | |||||||
Curcumol | In vitro | Murine macrophage RAW264.7 cell line | 12.5–200 μM | NA | Inhibition of NO production, TNF-α, IL-1β, and IL-6 | [33] | |
Suppression of JNK-mediated AP-1 pathway, targeting inflammation mediators | |||||||
Antioxidant | Turmerone Q | In vitro | RAW264.7 cell line | Not provided | NA | Inhibition of NO production in macrophages | [37] |
Cardiovascular | Curdione | In vitro/In vivo | Human platelets | 100 μM | NA | Inhibition of platelet activation by targeting b1-tubulin and vinculin | [43] |
Downregulation of Talin1 and b1-tubulin proteins | |||||||
In vitro/In vivo | Human platelets/mouse | 20–1000 μM/50–200 mg/kg | NA/p.o. | Inhibition of PAF and thrombin-induced platelet aggregation | [44] | ||
Increase in cAMP levels and suppression of intracellular Ca2+ mobilization in platelets | |||||||
Ar-turmerone | In vitro | Rabbit platelets | 100 µg/mL | NA | Inhibition of platelet aggregation induced by collagen and arachidonic acid | [45] | |
More potent activity than aspirin against collagen-induced platelet aggregation | |||||||
β-elemene | In vivo | C57BL/6 mice | Not provided | intragastrical | Enhancement of antioxidative defense and reduced lipid peroxidation in atherosclerosis | [46] | |
Increase in plasma nitrite and nitrate levels and eNOS phosphorylation in ApoE−/− mice | |||||||
In vitro | Human umbilical vein endothelial cells | 0.1, 1, and 10 μmol/L | NA | Antioxidant activity superior to vitamin E | [47] | ||
Protection against oxidative stress by inhibiting ROS production and signaling pathways | |||||||
Hypoglycemic | Ar-turmerone | In vivo | Type-2 diabetic KK-Ay mice | 0.1–0.5 g/100 g of diet | p.o. | Control of blood glucose increase | [49] |
Stimulation of human adipocyte differentiation and PPAR-γ ligand-binding activity | |||||||
Dermatological | Ar-turmerone | In vivo | IMQ-induced psoriasis-like BALBc mice | 0.4–40 mg/kg/day | topical | Inhibition of CD8 T cells, NF-kB, and proinflammatory cytokines | [26] |
Reduction in TNF-a, IL-6, IL-17, IL-22, and IL-23 levels | |||||||
In vitro | HaCaT cells | 5–30 μM | NA | Reduction in cell proliferation and inflammatory cytokine expression | [52] | ||
In vitro | B16F10 murine melanoma cells | 5–40 μM | NA | Inhibition of a-MSH and IBMX-induced melanogenesis by suppressing CREB | [53] | ||
Expression reduction in tyrosinase, TRP-1, and TRP-2 in cells | |||||||
Germacrone | In vitro | HaCaT cells | 5–10 μM | NA | Inhibition of UVB-induced MMP upregulation in keratinocytes | [54] | |
Hepatoprotection | Ar-, α-, and β-turmerone | In vivo | Wistar rats | 0.5% | p.o. | Reduced liver injury markers in rats | [55] |
Downregulation of LDH, ALT, and AST increased levels triggered by D-GalN treatment | |||||||
Ar-turmerone and bisacurone | In vitro | Hepatocytes isolated from Sprague–Dawley rats | 1–6 μM | NA | Preventive effects against ethanol-induced injury in primary cells | [56] | |
Ar-turmerone, β-sesquiphellandrene and curcumenol | In vitro | Hepatoma cell line (HepG2) | 15–2000 μg/mL | NA | Inhibition of hepatoma cell growth | [57] | |
Curcumol | In vitro | Human hepatic stellate cells (HSCs) | 20–45 μM | NA | Inhibition of HSC migration and adhesion by regulating NF-kB | [58] | |
In vivo | ICR mice | 30 mg/kg | p.o. | Reduction in periostin (POSTN) secretion and expression in HSCs | |||
Neurological | β-elemene | In vitro | Microglial cell line BV-2 | 1–25 μM | NA | Alleviated sepsis-associated encephalopathy by inhibiting RAC1/MLK3/p38 pathway | [60] |
In vivo | C57BL6 mice | 10–40 mg/kg | i.p. | Reduced p38 MAPK phosphorylation and pro-inflammatory cytokines in hippocampus | |||
Improved learning and memory in septic mice | |||||||
In vivo | Sprague–Dawley rats | 80–320 μg/kg | Not specified | Enhancement of neurite outgrowth and GAP-43 expression | [68] | ||
Inhibition of RhoA kinase activation, promoting locomotor recovery | |||||||
Lesion cavity area reduction and sparing of white matter | |||||||
Significant upregulation of GAP-43 expression | |||||||
Germacrone | In vivo | C57BL6 mice | 5–20 mg/kg | i.p. | Enhanced motor function and memory, reduced neuroinflammation and oxidative stress | [61] | |
Reduced neuronal apoptosis and microglial activation in a dose-dependent manner | |||||||
Increased Nrf2 expression and inhibition of p-p65 expression | |||||||
Ar-turmerone | In vitro | Murine microglial BV2 cells | 20 μM | NA | Protection of dopaminergic neurons through Nrf2 activation | [62] | |
Inhibition of microglial activation and neurodegeneration prevention | |||||||
In vitro | Human breast MDA-MB-231 cells | 50–250 μM | NA | Acetylcholinesterase inhibition | [63] | ||
In vivo | ICR mice | 1.25–5.0 mg/kg | p.o. | Reduced immobility time in mouse forced swimming test and tail suspension test | [65] | ||
Increased levels of monoamines in various brain regions | |||||||
Decreased MAO-A activity in the frontal cortex and hippocampus | |||||||
In vitro | Neural stem cells | 1.56–25 μg/mL | NA | Induction of neural stem cell proliferation | [67] | ||
In vivo | Wistar rats | 3 mg | intracerebroventricular | Enhanced neuronal differentiation of neural stem cells | |||
Mobilization of proliferating neural stem cells from SVZ and hippocampus | |||||||
Promotion of endogenous neural stem cell mobilization in the rat brain | |||||||
In vitro | Zebrafish | 46 μM | p.o. | Anticonvulsant properties in acute seizure models in mice | [69] | ||
In vivo | C57BI6 and NMRI mice | 0.01–50 mg/kg | i.p. | No motor function or balance effects observed in mice post-treatment | |||
Rapid absorption and long permanence of ar-turmerone in mouse brains after administration | |||||||
Ar-, α-, β-turmerone, and α-atlantone | In vivo | Zebrafish | 11–46 μM | p.o. | Electrographic evaluation demonstrated anticonvulsant effects in zebrafish | [70] | |
C57BI6 mice | 50 mg/kg | i.p. | Anticonvulsant activity in zebrafish and mouse models | ||||
Curcumol | In vitro | Human embryonic kidney cells and primary cultures of mouse hippocampal neurons | 10–300 μM | NA | Enhancement of GABAergic inhibition in hippocampus, suppressing neuronal excitability | [71] | |
In vivo | C57BL6J mice | 100 mg/kg | i.p. | Stimulation of GABA A receptors, reducing chemically induced seizure activity in mice | |||
Increased GABAergic miniature inhibitory postsynaptic currents in hippocampal slices, affecting amplitude and frequency. | |||||||
Antiparasitic | Ar-turmerone | In vitro | Plasmodium falciparum 3D7 | 46.8–820.4 µM | NA | Parasite development delayed due to antiplasmodial effect and cytotoxic activity | [72] |
Turmerones | In vitro | Leishmania amazonensis promastigotes | 2.75 µg/mL | p.o. | Significant cellular alterations in L. amazonensis promastigotes | [73] | |
Antiviral | Bisabolane-type sesquiterpenoids | In vitro | A549 and MDCK cells | 25–100 µg/mL | NA | Inhibition of H1N1 replication in A549 and MDCK cells | [76] |
Regulation of NF-κB/MAPK and RIG-1/STAT-1/2 signaling pathways | |||||||
Reduction in pro-inflammatory cytokine production | |||||||
Germacrone | In vitro/In vivo | Madin–Darby canine kidney cells (MDCKs)/BALBc mice | 1.6–25 µM/50–100 mg/kg | NA/i.v. | Inhibition of H1N1, H3N2, and influenza B viruses | [77] | |
In vitro | Vero and PK-1 cells | 10–250 µM | NA | Inhibition of PRV replication in a dose-dependent manner | [78] | ||
Reduction in virus titer and PRV-gB protein level | |||||||
Insecticidal | Ar-turmerone | In vivo | Aedes aegypti mosquitoes | 5–25 nmol/cm2 | p.o. | High biting deterrent activity against mosquitoes | [79] |
In vivo | C. pipiens pallens larvae | 100 p.p.m. | p.o. | Induction of muscle and digestive tissue changes in larvae | [80] | ||
Larvicidal mechanism involving stomach poison action, unrelated to AChE | |||||||
Antifungal | Ar-turmerone | In vitro | Dermatophytes | 3.90–7.81 µg/mL | NA | Effective antidermatophytic activity | [82] |
Lower MIC values than standard ketoconazole | |||||||
Antivenom | Ar-turmerone | In vivo | Swiss albino mice | 30–70 µg | i.p. | Neutralization of snake venom effects in mice and lymphocytes | [83] |
Inhibition of hemorrhagic activity and lethal effects of snake venoms | |||||||
Blockage of human lymphocyte proliferation and cytotoxicity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orellana-Paucar, A.M. Turmeric Essential Oil Constituents as Potential Drug Candidates: A Comprehensive Overview of Their Individual Bioactivities. Molecules 2024, 29, 4210. https://doi.org/10.3390/molecules29174210
Orellana-Paucar AM. Turmeric Essential Oil Constituents as Potential Drug Candidates: A Comprehensive Overview of Their Individual Bioactivities. Molecules. 2024; 29(17):4210. https://doi.org/10.3390/molecules29174210
Chicago/Turabian StyleOrellana-Paucar, Adriana Monserrath. 2024. "Turmeric Essential Oil Constituents as Potential Drug Candidates: A Comprehensive Overview of Their Individual Bioactivities" Molecules 29, no. 17: 4210. https://doi.org/10.3390/molecules29174210