Isolation of Bioactive Compounds (Carotenoids, Tocopherols, and Tocotrienols) from Calendula Officinalis L., and Their Interaction with Proteins and Oils in Nanoemulsion Formulation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Particle Size and PDI
2.2. Water Activity
2.3. Color of the Emulsion
2.4. Identification and Quantification of Carotenoids and Tocopherols by UPLC-PDA LC-MS-Q/TOF
2.5. Biological Activity (Antioxidant and Anti-Diabetic Properties)
2.6. Principal Component Analysis (PCA)
3. Materials and Methods
3.1. Reagents
3.2. Plant Material
3.3. Procedure of Preparing the Nanostructures
3.4. Particle Size and Polydispersity Index (PDI)
3.5. Water Activity (aw)
3.6. Color by CIE L*a*b*
3.7. Extraction Procedure, Identification, and Quantification of Carotenoids Compounds by LC-MS-Q/TOF and UPLC-PDA
3.8. Identification and Quantification of Tocotrienols and Tocopherols by LC-MS-Q/TOF and UPLC-PDA
3.9. Biological Properties: Antioxidant Activity (ABTS, ORAC) and Ability to Inhibit α-Amylase and α-Glucosidase
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dzida, K.; Skubij, N.; Tymoszuk, K.; Staszczak, A.; Poleszak, P. Właściwości lecznicze i walory dekoracyjne nagietka lekarskiego (Calendula officinalis L.). Ann. Umcs Sect. Eee Hortic. 2016, 26, 13–25. [Google Scholar]
- Butnariu, M.; Coradini, C.Z. Evaluation of Biologically Active Compounds from Calendula officinalis Flowers using Spectrophotometry. Chem. Cent. J. 2012, 6, 35. [Google Scholar] [CrossRef] [PubMed]
- Bernatoniene, J.; Masteikova, R.; Davalgiene, J.; Peciura, R.; Gauryliene, R.; Bernatoniene, R.; Majiene, D.; Lazauskas, R.; Civinskiene, G.; Velziene, S.; et al. Topical Application of Calendula officinalis (L.): Formulation and Evaluation of Hydrophilic Cream with Antioxidant Activity. J. Med. Plants Res. 2011, 5, 868–877. [Google Scholar]
- Babaee, N.; Moslemi, D.; Khalilpour, M.; Vejdani, F.; Moghadamnia, Y.; Bijani, A.; Baradaran, M.; Kazemi, M.T.; Khalilpour, A.; Pouramir, M.; et al. Antioxidant Capacity of Calendula officinalis Flowers Extract and Prevention of Radiation Induced Oropharyngeal Mucositis in Patients with Head and Neck Cancers: A Randomized Controlled Clinical Study. DARU J. Pharm. Sci. 2013, 21, 18. [Google Scholar] [CrossRef] [PubMed]
- Shahane, K.; Kshirsagar, M.; Tambe, S.; Jain, D.; Rout, S.; Ferreira, M.K.M.; Mali, S.; Amin, P.; Srivastav, P.P.; Cruz, J.; et al. An Updated Review on the Multifaceted Therapeutic Potential of Calendula officinalis L. Pharmaceuticals 2023, 16, 611. [Google Scholar] [CrossRef]
- Luana Carvalho de Queiroz, J.; Medeiros, I.; Costa Trajano, A.; Piuvezam, G.; Clara de França Nunes, A.; Souza Passos, T.; Heloneida de Araújo Morais, A. Encapsulation techniques perfect the antioxidant action of carotenoids: A systematic review of how this effect is promoted. Food Chem. 2022, 385, 132593. [Google Scholar] [CrossRef]
- Islam, F.; Muni, M.; Mitra, S.; Emran, T.B.; Chandran, D.; Das, R.; Rauf, A.; Safi, S.Z.; Chidambaram, K.; Dhawan, M.; et al. Recent advances in respiratory diseases: Dietary carotenoids as choice of therapeutics. Biomed. Pharmacother. 2022, 155, 113786. [Google Scholar] [CrossRef]
- Wen Lee, H.; Bi, X.; Jeyakumar Henry, C. Carotenoids, tocopherols and phylloquinone content of 26 green leafy vegetables commonly consumed in Southeast Asia. Food Chem. 2022, 385, 132729. [Google Scholar] [CrossRef]
- Rehman, A.; Tong, Q.; Jafari, S.M.; Assadpour, E.; Shehzad, Q.; Aadil, R.M.; Iqbal, M.W.; Rashed, M.M.A.; Mushtaq, B.S.; Ashraf, W. Carotenoid-loaded nanocarriers: A comprehensive review. Adv. Colloid Interface Sci. 2020, 275, 102048. [Google Scholar] [CrossRef]
- Ouyang, M.; Huang, Y.; Wang, Y.; Luo, F.; Liao, L. Stability of carotenoids and carotenoid esters in pumpkin (Cucurbita maxima) slices during hot air drying. Food Chem. 2022, 367, 130710. [Google Scholar] [CrossRef]
- Luo, H.; Li, Z.; Straight, C.R.; Wang, Q.; Zhou, J.; Sun, Y.; Lo, C.; Yi, L.; Wu, Y.; Huang, J.; et al. Black pepper and vegetable oil-based emulsion synergistically enhance carotenoid bioavailability of raw vegetables in humans. Food Chem. 2022, 373, 131277. [Google Scholar] [CrossRef]
- Dammak, I.; Sobral, P.J. Curcumin nanoemulsions stabilized with natural plant-based emulsifiers. Food Biosci. 2021, 43, 101335. [Google Scholar] [CrossRef]
- Walia, N.; Zhang, S.; Wismer, W.; Chen, L. A low energy approach to develop nanoemulsion by combining pea protein and Tween 80 and its application for vitamin D delivery. Food Hydrocoll. Health 2022, 2, 100078. [Google Scholar] [CrossRef]
- Maldonado, A.; Riquelme, N.; Muñoz-Fariña, O.; García, O.; Arancibia, C. Stability and bioaccessibility of α-tocopherol-enriched nanoemulsions containing different edible oils as carriers. LWT 2023, 174, 114419. [Google Scholar] [CrossRef]
- Kim, W.; Wang, Y.; Selomulya, C. Dairy and Plant Proteins as Natural Food Emulsifiers. Trends Food Sci. Technol. 2020, 105, 261–272. [Google Scholar] [CrossRef]
- Chalothorn, K.; Warisnoicharoen, W. Ultrasonic Emulsification of Whey Protein Isolate-Stabilized Nanoemulsions Containing Omega-3 Oil from Plant Seed. Am. J. Food Technol. 2021, 7, 532–541. [Google Scholar] [CrossRef]
- Jarzębski, M.; Fathordoobady, F.; Guo, Y.; Xu, M.; Singh, A.; Kitts, D.D.; Kowalczewski, P.Ł.; Jeżowski, P.; Pratap Singh, A. Pea Protein for Hempseed Oil Nanoemulsion Stabilization. Molecules 2019, 24, 4288. [Google Scholar] [CrossRef]
- Han, W.; Liu, T.-X.; Tang, C.-H. Facilitated formation of soy protein nanoemulsions by inhibiting protein aggregation: A strategy through the incorporation of polyols. Food Hydrocoll. 2023, 137, 108376. [Google Scholar] [CrossRef]
- Xu, J.; Mukherjee, D.; Chang, S.K.C. Physicochemical properties and storage stability of soybean protein nanoemulsions prepared by ultra-high pressure homogenization. Food Chem. 2018, 240, 1005–1013. [Google Scholar] [CrossRef]
- Alam, A.; Ansari, M.J.; Alqarni, M.H.; Salkini, M.A.; Raish, M. Antioxidant, Antibacterial, and Anticancer Activity of Ultrasonic Nanoemulsion of Cinnamomum Cassia L. Essential Oil. Plants 2023, 12, 834. [Google Scholar] [CrossRef]
- Bajaj, P.R.; Tang, J.; Sablani, S.S. Pea Protein Isolates: Novel Wall Materials for Microencapsulating Flaxseed Oil. Food Bioprocess Technol. 2015, 8, 2418–2428. [Google Scholar] [CrossRef]
- Smułek, W.; Siejak, P.; Fathordoobady, F.; Masewicz, Ł.; Guo, Y.; Jarzębska, M.; Kitts, D.D.; Kowalczewski, P.Ł.; Baranowska, H.M.; Stangierski, J.; et al. Whey Proteins as a Potential Co-Surfactant with Aesculus hippocastanum L. as a Stabilizer in Nanoemulsions Derived from Hempseed Oil. Molecules 2021, 26, 5856. [Google Scholar] [CrossRef]
- Teo, A.; Lam, Y.; Lee, S.J.; Goh, K.K.T. Spray drying of whey protein stabilized nanoemulsions containing different wall materials–maltodextrin or trehalose. LWT 2021, 136, 110344. [Google Scholar] [CrossRef]
- Liu, S.; Sun, H.; Ma, G.; Zhang, T.; Wang, L.; Pei, H.; Li, X.; Gao, L. Insights into flavor and key influencing factors of Maillard reaction products: A recent update. Front. Nutr. 2022, 9, 973677. [Google Scholar] [CrossRef]
- Pintea, A. HPLC analysis of carotenoids in four varieties of Calendula officinalis L. flowers. Acta Biol. Szeged. 2003, 47, 37–40. [Google Scholar]
- Kishimoto, S.; Maoka, T.; Sumitomo, K.; Ohmiya, A. Analysis of Carotenoid Composition in Petals of Calendula (Calendula officinalis L.). Biosci. Biotechnol. Biochem. 2005, 69, 2122–2128. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, T.; Ahmed, A.; Ahmed, Z. Food-Grade Nanoemulsions for the Effective Delivery of β-Carotene. Langmuir 2021, 37, 3086–3092. [Google Scholar] [CrossRef]
- Kuang, P.; Zhang, H.; Bajaj, P.R.; Yuan, Q.; Tang, J.; Chen, S.; Sablani, S.S. Physicochemical Properties and Storage Stability of Lutein Microcapsules Prepared with Maltodextrins and Sucrose by Spray Drying: Physicochemical propertie. J. Food Sci. 2015, 80, E359–E369. [Google Scholar] [CrossRef]
- Occhiuto, C.; Aliberto, G.; Ingegneri, M.; Trombetta, D.; Circosta, C.; Smeriglio, A. Comparative Evaluation of the Nutrients, Phytochemicals, and Antioxidant Activity of Two Hempseed Oils and Their Byproducts after Cold Pressing. Molecules 2022, 27, 3431. [Google Scholar] [CrossRef]
- Delgado-Vargas, F.; Jiménez-Aparicio, A.; Paredes-Lopez, O. Natural Pigments: Carotenoids, Anthocyanins, and Betalains—Characteristics, Biosynthesis, Processing, and Stability. Crit. Rev. Food Sci. Nutr. 2000, 40, 173–289. [Google Scholar] [CrossRef]
- Villalva, M.; Santoyo, S.; Salas-Pérez, L.; de las N. Siles-Sánchez, M.; Rodríguez García-Risco, M.; Fornari, T.; Reglero, G.; Jaime, L. Sustainable Extraction Techniques for Obtaining Antioxidant and Anti-Inflammatory Compounds from the Lamiaceae and Asteraceae Species. Foods 2021, 10, 2067. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Jin, H.; Yu, Y.; Sun, J.; Zheng, H.; Zhang, Y.; Xu, J.; Zhu, X. The Improvement of Nanoemulsion Stability and Antioxidation via Protein-Chlorogenic Acid-Dextran Conjugates as Emulsifiers. Nanomaterials 2020, 10, 1094. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Kong, B.; Jia, N.; Li, P. Antioxidant capacity of maillard reaction products formed by a porcine plasma protein hydrolysate-sugar model system as related to chemical characteristics. Food Sci. Biotechnol. 2014, 23, 33–41. [Google Scholar] [CrossRef]
- Wu, G.; Hui, X.; Mu, J.; Brennan, M.A.; Brennan, C.S. Functionalization of whey protein isolate fortified with blackcurrant concentrate by spray-drying and freeze-drying strategies. Food Res. Int. 2021, 141, 110025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yang, C.; Zhu, S.; Zhong, F.; Huang, D.; Li, Y. Understanding the mechanisms of whey protein isolate mitigating the digestibility of corn starch by in vitro simulated digestion. Food Hydrocoll. 2022, 124, 107211. [Google Scholar] [CrossRef]
- Chen, X.; He, X.; Zhang, B.; Sun, L.; Liang, Z.; Huang, Q. Wheat gluten protein inhibits α-amylase activity more strongly than a soy protein isolate based on kinetic analysis. Int. J. Biol. Macromol. 2019, 129, 433–441. [Google Scholar] [CrossRef]
- Qi, J.; Kim, S.M. α-Glucosidase Inhibitory Activities of Lutein and Zeaxanthin Purified from Green Alga Chlorella ellipsoidea. J. Ocean Univ. China 2018, 17, 983–989. [Google Scholar] [CrossRef]
- Nimbalkar, V.; Joshi, U.; Shinde, S.; Pawar, G. In-vivo and in-vitro evaluation of therapeutic potential of β-Carotene in diabetes. J. Diabetes Metab. Disord. 2021, 20, 1621–1630. [Google Scholar] [CrossRef]
- Turkiewicz, I.P.; Wojdyło, A.; Tkacz, K.; Nowicka, P. Carotenoids, chlorophylls, vitamin E and amino acid profile in fruits of nineteen Chaenomeles cultivars. J. Food Compos. Anal. 2020, 93, 103608. [Google Scholar] [CrossRef]
- Balázs, V.L.; Gulyás-Fekete, G.; Nagy, V.; Zubay, P.; Szabó, K.; Sándor, V.; Agócs, A.; Deli, J. Carotenoid Composition of Calendula officinalis Flowers with Identification of the Configuration of 5,8-Epoxy-carotenoids. ACS Agric. Sci. Technol. 2023, 3, 1092–1102. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Ou, B.; Huang, D.; Hampsch-Woodill, M.; Flanagan, J.A.; Deemer, E.K. Analysis of Antioxidant Activities of Common Vegetables Employing Oxygen Radical Absorbance Capacity (ORAC) and Ferric Reducing Antioxidant Power (FRAP) Assays: A Comparative Study. J. Agric. Food Chem. 2002, 50, 3122–3128. [Google Scholar] [CrossRef] [PubMed]
- Nowicka, P.; Wojdyło, A.; Samoticha, J. Evaluation of phytochemicals, antioxidant capacity, and antidiabetic activity of novel smoothies from selected Prunus fruits. J. Funct. Foods 2016, 25, 397–407. [Google Scholar] [CrossRef]
Lp. | Nanoemulsion Composition | Particle Size [nm] | Polydispersity Index (PDI) | |
---|---|---|---|---|
Type of Protein | Type of Oil | |||
1 | Whey protein | Hemp Oil | 194.23 ± 1.19 a | 0.280 ± 0.01 a |
2 | Whey protein isolate | 231.33 ± 28.83 bc | 0.380 ± 0.02 f | |
3 | Soy protein isolate | 257.53 ± 8.50 c | 0.354 ± 0.04 d | |
4 | Pea protein isolate | 265.13 ± 17.22 cd | 0.339 ± 0.04 c | |
5 | Chia protein | 4598.80 ± 358.79 e | 0.550 ± 0.08 i | |
6 | Whey protein | Sunflower Oil | 198.67 ± 12.08 ab | 0.317 ± 0.02 b |
7 | Whey protein isolate | 196.77 ± 3.13 a | 0.347 ± 0.03 d | |
8 | Soy protein isolate | 254.50 ± 19.92 c | 0.386 ± 0.02 g | |
9 | Pea protein isolate | 302.27 ± 22.15 d | 0.363 ± 0.02 e | |
10 | Chia protein | 6799.10 ± 410.22 f | 0.442 ± 0.10 h |
Sample | Water Activity | Colour Parameters | ||||
---|---|---|---|---|---|---|
Type of Protein | Type of Oil | Drying Technique | L* | a* | b* | |
Whey protein | Hemp Oil | Freeze drying (FD) | 0.181 h | 82.38 ± 0.43 i | 1.38 ± 0.11 c | 31.95 ± 0.09 f |
Whey protein isolate | 0.165 b | 84.73 ± 0.09 j | 0.72 ± 0.01 a | 30.02 ± 0.38 e | ||
Soy protein isolate | 0.081 d | 80.70 ± 0.13 g | 1.76 ± 0.04 d | 25.00 ± 0.10 b | ||
Pea protein isolate | 0.075 b | 74.62 ± 0.22 d | 3.90 ± 0.03 h | 33.75 ± 0.15 g | ||
Chia protein | 0.100 f | 63.63 ± 0.10 a | 3.19 ± 0.05 e | 30.70 ± 0.15 e | ||
Whey protein | Sunflower Oil | 0.227 k | 86.50 ± 0.27 k | 1.38 ± 0.14 c | 26.65 ± 0.12 c | |
Whey protein isolate | 0.192 i | 88.71 ± 0.04 l | 1.14 ± 0.03 b | 24.64 ± 0.07 a | ||
Soy protein isolate | 0.079 c | 78.26 ± 0.08 f | 1.80 ± 0.01 d | 30.15 ± 0.15 e | ||
Pea protein isolate | 0.059 a | 78.16 ± 0.13 f | 4.19 ± 0.05 i | 29.96 ± 0.23 e | ||
Chia protein | 0.095 e | 71.29 ± 0.14 c | 3.29 ± 0.05 f | 28.69 ± 0.05 d | ||
Whey protein | Hemp Oil | Vacuum drying (VD) | 0.185 hi | 74.28 ± 0,03 d | 4.28 ± 0.03 j | 41.25 ± 0.23 j |
Whey protein isolate | 0.185 hi | 77.62 ± 0.07 e | 3.59 ± 0.03 g | 41.05 ± 0.17 j | ||
Pea protein isolate | 0.107 f | 66.76 ± 0.42 b | 5.65 ± 0.08 k | 36.07 ± 0.20 i | ||
Whey protein | Sunflower Oil | 0.217 j | 81.45 ± 0.30 h | 4.43 ± 0.14 j | 34.58 ± 0.21 h | |
Whey protein isolate | 0.244 l | 82.46 ± 0.28 i | 3.73 ± 0.16 gh | 35.24 ± 0.40 h | ||
Pea protein isolate | 0.114 g | 71.63 ± 0.51 c | 6.45 ± 0.30 l | 33.67 ± 0.32 g |
Number of Peak | Retention Time | Carotenoid | λ Min/Max (nm) | [M + H]+ | MS/MS |
---|---|---|---|---|---|
1 | 5.67 | (8′R)-luteoxanthin | 399/422/447 | 601.5 | 583.5, 565.5, 509.5, 491.5, 221.1 |
2 | 5.78 | violoxanthin | 433/465 | 601.4 | 509.4, 491.4, 567.4 |
3 | 5.85 | lutein-5,6-epoxide | 415/436/465 | 585.4 | 567.1, 492.3, 244.9 |
4 | 5.91 | flavoxanthin | 391/443/468 | 585.4 | 567.1, 492,3, 244.9 |
5 | 6.18 | lutein | 447/473 | 569.4 | 551.4, 533.4; |
6 | 6.36 | zeaxanthin | 447/476 | 568.9 | 550.9, 532.9, 476.4, 429.4 |
7 | 6.49 | antheraxanthin | 415/443/471 | 585 | 567, 549, 493, 221 |
8 | 6.59 | (9Z)-lutein | 441/469 | 536.9 | 550.9, 532.9, 476.4, 429.4 |
9 | 6.70 | (5′Z,9′Z)-rubixanthin | 448/477 | 552 | 551.4, 533.4; |
10 | 6.80 | α-cryptoxanthin | 449/476 | 553 | 535, 495,461 |
11 | 8.00 | (5Z,9Z,5′Z,9′Z)-lycopene | 437/461/494 | 537 | 467, 444 |
12 | 8.07 | (5Z,9Z,5′Z)-lycopene | 442/463/490 | 537 | 467, 444 |
13 | 9.02 | δ-carotene | 429/467/497 | 537 | 481, 444 |
14 | 9.29 | α-carotene | 427/452/489 | 537 | 481, 444 |
15 | 9.45 | γ-carotene | 463/489 | 537 | 467, 444 |
16 | 9.55 | (5′Z)-γ-carotene | 429/459/486 | 537 | 467, 444 |
17 | 9.81 | ϵ-carotene | 417/443/470 | 537 | 467, 444 |
18 | 9.97 | β-carotene | 453/480 | 536.9 | 444.2; 430.3; 399.3 |
19 | 10.04 | (9-cis)-β-carotene | 449/477 | 536.9 | 444.2; 430.3; 399.3 |
Compounds | WP/HO/ FD | WPI/HO/ FD | SP/HO/ FD | PP/HO/ FD | CHP/HO/ FD | WP/SO/ FD | WPI/SO/ FD | SP/SO/ FD | PP/SO/ FD | CHP/SO/ FD | WP/HO/ VD | WPI/HO/ VD | PP/HO/ VD | WP/SO/ VD | WPI/SO/ VD | PP/SO/ VD | F | I |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Carotenoids | ||||||||||||||||||
(8′R)-luteoxanthin | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 0.05 | 1.27 |
violoxanthin | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 4.82 | 123.86 |
luteo-5,6-epoxide | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 3.94 | 197.87 |
flavoxanthin | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 4.82 | 123.86 |
lutein | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 2.09 | 191.46 |
zeaxanthin | 0.13 | 0.07 | 0.03 | 0.25 | 0.09 | nd | 0.05 | 0.07 | 0.19 | 0.14 | 0.07 | 0.14 | 0.62 | nd | 0.07 | 0.19 | 0.86 | 10.14 |
antheraxanthin | 0.04 | nd | nd | 0.30 | 0.04 | 0.07 | 0.06 | 0.07 | 0.17 | 0.06 | 0.07 | 0.03 | 0.08 | 0.03 | 0.09 | 0.03 | 0.65 | 28.59 |
(9Z)-lutein | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 0.07 | nd | nd | nd | 0.88 | 35.42 |
(5′Z,9′Z)rubixanthin | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 0.03 | 0.04 | nd | nd | nd | 0.66 | 32.90 |
α-cryptoxanthin | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 0.03 | 0.82 |
(5Z,9Z,5′Z,9′Z)-lycopene | 0.59 | 1.03 | 0.55 | 3.85 | 0.99 | 0.62 | 0.73 | 0.89 | 2.67 | 1.08 | 0.89 | 1.60 | 3.51 | 0.29 | 1.93 | 2.20 | 10.14 | 365.02 |
(5Z,9Z,5′Z)lycopene | 0.81 | 1.65 | 0.68 | 5.37 | 1.03 | 0.82 | 1.22 | 1.20 | 3.62 | 1.43 | 1.20 | 2.21 | 5.06 | 0.47 | 2.87 | 3.89 | 65.18 | 920.41 |
δ-carotene | 0.01 | nd | nd | 0.02 | nd | nd | 0.01 | nd | 0.02 | 0.01 | nd | 0.01 | 0.01 | nd | 0.01 | 0.01 | 0.07 | 3.27 |
α-carotene | nd | nd | nd | 0.50 | nd | nd | nd | nd | 0.36 | nd | nd | nd | 0.44 | nd | nd | 0.46 | 0.70 | 31.16 |
γ-carotene | 0.01 | 0.03 | 0.01 | 0.08 | 0.01 | 0.01 | 0.01 | 0.01 | 0.04 | 0.02 | 0.01 | 0.02 | 0.04 | 0.01 | 0.03 | 0.06 | 0.12 | 5.01 |
(5′Z)-γ-carotene | 0.04 | 0.12 | nd | 0.23 | 0.07 | 0.06 | 0.04 | nd | 0.19 | nd | nd | 0.09 | 0.18 | nd | 0.10 | 0.11 | 0.44 | 15.71 |
ϵ-carotene | 0.06 | 0.20 | 0.08 | 0.58 | 0.11 | 0.11 | 0.09 | 0.10 | 0.36 | 0.14 | 0.10 | 0.15 | 0.45 | 0.14 | 0.20 | 0.38 | 0.61 | 34.69 |
β-carotene | 4.01 | 6.27 | 1.64 | 15.72 | 2.34 | 2.79 | 1.81 | 3.33 | 10.47 | 5.51 | 3.10 | 4.22 | 9.28 | 0.42 | 3.95 | 8.42 | 12.73 | 669.28 |
Others | 3.26 | 4.60 | 3.84 | 12.84 | 3.27 | 3.26 | 3.31 | 3.07 | 11.11 | 3.92 | 2.82 | 3.91 | 11.24 | 0.83 | 7.25 | 7.97 | 51.28 | 1537.05 |
Total | 9.26 j | 13.98 h | 6.82 o | 39.74 c | 7.95 lm | 7.75 m | 7.33 n | 8.74 k | 29.21 e | 12.29 i | 7.58 mn | 12.42 i | 31.63 d | 2.18 p | 16.50 g | 23.72 f | 160.07 b | 4327.81 a |
Tocotrienols and Tocopherols | ||||||||||||||||||
δ-tocotrienol | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 0.05 | 1.72 |
β-tocotrienol | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 0.02 | 0.88 |
γ-tocotrienol | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 0.10 | 2.41 |
α-tocotrienol | nd | 0.08 | nd | nd | nd | 0.02 | nd | nd | nd | nd | nd | 0.44 | nd | 0.04 | nd | nd | 0.04 | 1.81 |
δ-tocopherol | 0.04 | 0.04 | 0.02 | 0.03 | 0.02 | nd | nd | 0.02 | 0.03 | 0.04 | 0.03 | nd | 0.06 | nd | nd | 0.05 | 0.04 | 0.44 |
β-tocopherol | nd | 0.05 | nd | 0.08 | 0.03 | 0.08 | 0.05 | nd | nd | nd | nd | 0.09 | 0.12 | 0.03 | 0.04 | nd | 0.10 | 2.93 |
γ-tocopherol | 1.68 | 1.46 | 1.17 | 0.36 | 0.82 | 0.05 | 0.06 | 0.83 | 0.69 | 1.79 | 0.96 | 1.49 | 2.53 | 0.04 | 0.10 | 3.32 | 0.34 | 4.88 |
α-tocopherol | 0.23 | 0.55 | 0.29 | 0.31 | 0.16 | 1.40 | 0.90 | 0.11 | 0.22 | 0.06 | 0.29 | 0.79 | 0.12 | 0.64 | 0.60 | 0.32 | 1.38 | 41.22 |
Total | 1.95 f | 2.18 e | 1.48 i | 0.78 o | 1.08 k | 1.55 h | 1.01 l | 0.96 m | 0.93 n | 1.89 g | 1.28 j | 2.81 d | 2.83 d | 0.75 p | 0.74 p | 3.69 b | 2.07 c | 56.29 a |
Antioxidant Activity (mmol Trolox/100 g) | Anti-Diabetic Activity (IC50 [mg/mL]) | |||||
---|---|---|---|---|---|---|
Type of Protein | Type of Oil | Drying Technique | ABTS | ORAC | α-Amylase | α-Glucosidase |
Whey protein | Hemp Oil (HO) | Freeze drying (FD) | 0.20 ± 0.08 bcd | 0.20 ± 0.01 h | 1042.77 ± 10.43 f | 2485.12 ± 37.28 h |
Whey protein isolate | 0.26 ± 0.05 b | 0.24 ± 0.01 ef | 874.82 ± 8.75 de | 2338.89 ± 35.08 g | ||
Soy protein isolate | 0.27 ± 0.07 b | 0.22 ± 0.01 fg | 1118.03 ± 11.18 g | 2175.93 ± 32.64 e | ||
Pea protein isolate | 0.21 ± 0.04 b | 0.20 ± 0.01 h | 1379.06 ± 13.79 i | 2175.52 ± 32.63 r | ||
Chia protein | 0.26 ± 0.03 b | 0.36 ± 0.00 d | 1512.88 ± 15.13 j | 1640.65 ± 24.61 a | ||
Whey protein | Sunflower Oil (SO) | 0.22 ± 0.01 bcd | 0.22 ± 0.00 fg | 1349.25 ± 13.49 i | 2573.71 ± 38.61 i | |
Whey protein isolate | 0.20 ± 0.06 bcd | 0.26 ± 0.01 e | 487.70 ± 4.88 a | 2729.48 ± 40.94 j | ||
Soy protein isolate | 0.25 ± 0.06 bcd | 0.25 ± 0.00 e | 516.43 ± 5.16 b | 2542.78 ± 38.14 hi | ||
Pea protein isolate | 0.19 ± 0.03 bcd | 0.25 ± 0.01 e | 602.01 ± 6.03 c | 2285.05 ± 34.28 f | ||
Chia protein | 0.27 ± 0.02 b | 0.33 ± 0.01 d | 1672.28 ± 16.72 k | 2071.40 ± 31.07 d | ||
Whey protein | Hemp Oil (HO) | Vacuum drying (VD) | 0.23 ± 0.01 bcd | 0.49 ± 0.00 b | 1731.34 ± 17.31 l | 1952.18 ± 29.19 c |
Whey protein isolate | 0.63 ± 0.05 a | 0.65 ± 0.02 a | 1171.59 ± 11.72 h | 2503.79 ± 37.56 h | ||
Pea protein isolate | 0.25 ± 0.01 b | 0.31 ± 0.01 c | 1020.75 ± 10.21 f | 1630.44 ± 24.65 a | ||
Whey protein | Sunflower Oil (SO) | 0.13 ± 0.02 d | 0.22 ± 0.00 fg | 1202.61 ± 12.04 h | 1946.03 ± 29.91 c | |
Whey protein isolate | 0.16 ± 0.08 bcd | 0.30 ± 0.01 d | 775.79 ± 77.65 d | 2385.39 ± 35.87 g | ||
Pea protein isolate | 0.23 ± 0.09 bc | 0.24 ± 0.00 e | 846.88 ± 84.70 de | 1728.81 ± 25.39 b | ||
Sample | ||||||
Callendula Officialis (flowers) | 0.33 ± 0.01 B | 0.30 ± 0.02 B | 185.26 ± 2.77 B | 2227.11 ± 33.40 B | ||
Isolated compound from Callendula Officialis | 82.02 ± 0.57 A | 47.74 ± 1.06 A | 11.80 ± 0.18 A | 39.15 ± 0.78 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haładyn, K.; Wojdyło, A.; Nowicka, P. Isolation of Bioactive Compounds (Carotenoids, Tocopherols, and Tocotrienols) from Calendula Officinalis L., and Their Interaction with Proteins and Oils in Nanoemulsion Formulation. Molecules 2024, 29, 4184. https://doi.org/10.3390/molecules29174184
Haładyn K, Wojdyło A, Nowicka P. Isolation of Bioactive Compounds (Carotenoids, Tocopherols, and Tocotrienols) from Calendula Officinalis L., and Their Interaction with Proteins and Oils in Nanoemulsion Formulation. Molecules. 2024; 29(17):4184. https://doi.org/10.3390/molecules29174184
Chicago/Turabian StyleHaładyn, Kamil, Aneta Wojdyło, and Paulina Nowicka. 2024. "Isolation of Bioactive Compounds (Carotenoids, Tocopherols, and Tocotrienols) from Calendula Officinalis L., and Their Interaction with Proteins and Oils in Nanoemulsion Formulation" Molecules 29, no. 17: 4184. https://doi.org/10.3390/molecules29174184
APA StyleHaładyn, K., Wojdyło, A., & Nowicka, P. (2024). Isolation of Bioactive Compounds (Carotenoids, Tocopherols, and Tocotrienols) from Calendula Officinalis L., and Their Interaction with Proteins and Oils in Nanoemulsion Formulation. Molecules, 29(17), 4184. https://doi.org/10.3390/molecules29174184