Selective Oxidation of Benzo[d]isothiazol-3(2H)-Ones Enabled by Selectfluor
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Optimization of the Reaction Conditions
3.3. Synthetic Procedures for the Synthesis of Compounds 2
- The details for 2-Butylbenzo[d]isothiazol-3(2H)-one-1-oxide (2a). Colorless oil, 42.4 mg, 95%. 1H NMR (300 MHz, CDCl3) δ 7.94–7.91 (m, 1H), 7.83 (d, J = 7.3 Hz, 1H), 7.76–7.66 (m, 2H), 3.93–3.83 (m, 1H), 3.75–3.65 (m, 1H), 1.75–1.66 (m, 2H), 1.39–1.32 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 165.38, 145.56, 134.10, 133.21, 128.43, 126.11, 125.07, 41.07, 31.36, 20.09, 13.67. HRMS (ESI, m/z): calcd. for C11H14NO2S [M + H]+, 224.0740; found, 224.0737.
- The details for 2-Methylbenzo[d]isothiazol-3(2H)-one-1-oxide (2b). White solid, 34.4 mg, 95%, m.p. = 114–115 °C. 1H NMR (300 MHz, CDCl3) δ 8.01–7.99 (m, 1H), 7.93–7.90 (m, 1H), 7.84–7.73 (m, 2H), 3.39 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 165.45, 145.47, 134.18, 133.27, 128.10, 126.07, 125.09, 26.98. HRMS (ESI, m/z): calcd. for C8H8NO2S [M + H]+, 182.0270; found, 182.0264.
- The details for 2-Ethylbenzo[d]isothiazol-3(2H)-one-1-oxide (2c). White solid, 36.3 mg, 93%, m.p. = 80–81 °C. 1H NMR (300 MHz, CDCl3) δ 8.02–7.99 (m, 1H), 7.93–7.89 (m, 1H), 7.83–7.73 (m, 2H), 4.09–3.97 (m, 1H), 3.91–3.79 (m, 1H), 1.42 (t, J = 7.2 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 165.14, 145.54, 134.12, 133.21, 128.47, 126.05, 125.07, 36.39, 14.81. HRMS (ESI, m/z): calcd. for C9H10NO2S [M + H]+, 196.0427; found, 196.0422.
- The details for 2-Propylbenzo[d]isothiazol-3(2H)-one-1-oxide (2d). White solid, 41.0 mg, 98%, m.p. = 55–56 °C. 1H NMR (300 MHz, CDCl3) δ 8.01–7.98 (m, 1H), 7.92–7.89 (m, 1H), 7.83–7.73 (m, 2H), 3.96–3.86 (m, 1H), 3.80–3.70 (m, 1H), 1.91–1.77 (m, 2H), 1.01 (t, J = 7.4 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 165.40, 145.55, 134.12, 133.21, 128.38, 126.10, 125.07, 42.93, 22.67, 11.37. HRMS (ESI, m/z): calcd. for C10H12NO2S [M + H]+, 210.0583; found, 210.0581.
- The details for 2-Pentylbenzo[d]isothiazol-3(2H)-one-1-oxide (2e). Colorless oil, 43.7 mg, 92%. 1H NMR (300 MHz, CDCl3) δ 7.91 (d, J = 7.1 Hz, 1H), 7.83 (d, J = 7.3 Hz, 1H), 7.75–7.65 (m, 2H), 3.91–3.82 (m, 1H), 3.73–3.63 (m, 1H), 1.78–1.68 (m, 2H), 1.37–1.23 (m, 4H), 0.83 (t, J = 7.2 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 165.34, 145.59, 134.07, 133.17, 128.43, 126.08, 125.05, 41.29, 28.99, 28.93, 22.23, 13.93. HRMS (ESI, m/z): calcd. for C12H15NNaO2S [M + Na]+, 260.0716; found, 260.0716.
- The details for 2-Hexylbenzo[d]isothiazol-3(2H)-one 1-oxide (2f). Colorless oil, 45.2 mg, 90%. 1H NMR (300 MHz, CDCl3) δ 7.92 (d, J = 7.2 Hz, 1H), 7.83 (d, J = 7.3 Hz, 1H), 7.75–7.65 (m, 2H), 3.92–3.79 (m, 1H), 3.73–3.63 (m, 1H), 1.78–1.67 (m, 2H), 1.35–1.18 (m, 6H), 0.81 (t, J = 6.7 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 165.35, 145.58, 134.08, 133.19, 128.44, 126.10, 125.06, 41.32, 31.37, 29.29, 26.51, 22.51, 14.02. HRMS (ESI, m/z): calcd. for C13H17NNaO2S [M + Na]+, 274.0872; found, 274.0866.
- The details for 2-Nonylbenzo[d]isothiazol-3(2H)-one-1-oxide (2g). Colorless oil, 52.8 mg, 90%. 1H NMR (300 MHz, CDCl3) δ 8.00 (dd, J = 6.9, 1.7 Hz, 1H), 7.91 (dd, J = 6.8, 1.6 Hz, 1H), 7.83–7.72 (m, 2H), 3.99–3.90 (m, 1H), 3.81–3.71 (m, 1H), 1.88–1.73 (m, 2H), 1.42–1.25 (m, 12H), 0.87 (t, J = 6.8 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 165.35, 145.60, 134.07, 133.18, 128.46, 126.11, 125.05, 41.33, 31.83, 29.44, 29.33, 29.22, 29.17, 26.85, 22.66, 14.12. HRMS (ESI, m/z): calcd. for C16H23NNaO2S [M + Na]+, 316.1342; found, 316.1337.
- The details 2-Isopropylbenzo[d]isothiazol-3(2H)-one-1-oxide (2h). White solid, 39.0 mg, 93%, m.p. = 47–48 °C. 1H NMR (300 MHz, CDCl3) δ 7.90 (d, J = 7.2 Hz, 1H), 7.81 (d, J = 7.3 Hz, 1H), 7.75–7.61 (m, 2H), 4.67–4.54 (m, 1H), 1.52–1.48 (m, 6H). 13C NMR (75 MHz, CDCl3) δ 165.29, 145.59, 134.07, 133.07, 128.74, 125.96, 124.87, 46.96, 22.49, 21.87. HRMS (ESI, m/z): calcd. for C10H12NO2S [M + H]+, 210.0583; found, 210.0583.
- The details for 2-(sec-Butyl)benzo[d]isothiazol-3(2H)-one-1-oxide (2i). Yellow oil, 42.4 mg, 95%. 1H NMR (300 MHz, CDCl3) δ 8.00–7.96 (m, 1H), 7.90–7.87 (m, 1H), 7.82–7.71 (m, 2H), 4.52–4.40 (m, 1H), 2.11–1.77 (m, 2H), 1.57–1.52 (m, 3H), 1.04–0.93 (m, 3H). 13C NMR (75 MHz, CDCl3) δ 165.56 (d, J = 10.3 Hz), 145.67 (d, J = 6.9 Hz), 134.05, 133.05 (d, J = 1.7 Hz), 128.68 (d, J = 7.7 Hz), 126.00 (d, J = 3.3 Hz), 124.87, 52.72 (d, J = 13.2 Hz), 29.00 (d, J = 38.6 Hz), 20.23 (d, J = 35.2 Hz), 11.14 (d, J = 3.9 Hz). HRMS (ESI, m/z): calcd. for C11H14NO2S [M + H]+, 224.0740; found, 224.0738.
- The details for 2-Benzylbenzo[d]isothiazol-3(2H)-one-1-oxide (2j). White solid, 49.4 mg, 96%, m.p. = 92–93 °C (known compound [30]). 1H NMR (300 MHz, CDCl3) δ 7.93–7.90 (m, 1H), 7.79 (d, J = 7.2 Hz, 1H), 7.72–7.62 (m, 2H), 7.35–7.18 (m, 5H), 5.20 (d, J = 15.3 Hz, 1H), 4.65 (d, J = 15.3 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 165.22, 145.64, 135.83, 134.28, 133.29, 128.89, 128.65, 128.24, 128.22, 126.31, 125.24, 44.33.
- The details for 2-Allylbenzo[d]isothiazol-3(2H)-one-1-oxide (2k). Colorless oil, 39.4 mg, 95% (known compound [30]). 1H NMR (300 MHz, CDCl3) δ 7.94 (d, J = 7.2 Hz, 1H), 7.84 (d, J = 7.4 Hz, 1H), 7.77–7.66 (m, 2H), 5.95–5.82 (m, 1H), 5.31 (d, J = 17.0 Hz, 1H), 5.24 (d, J = 10.1 Hz, 1H), 4.62–4.54 (m, 1H), 4.22 (dd, J = 15.9, 6.8 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 165.11, 145.68, 134.26, 133.26, 131.73, 128.20, 126.24, 125.19, 119.34, 43.17.
- The details for 2-(Prop-2-yn-1-yl)benzo[d]isothiazol-3(2H)-one-1-oxide (2l). White solid, 37.8 mg, 92%, m.p. = 142–143 °C. 1H NMR (300 MHz, CDCl3) δ 7.99–7.96 (m, 1H), 7.85–7.82 (m, 1H), 7.75–7.65 (m, 2H), 5.29–5.16 (m, 2H), 2.67 (t, J = 2.5 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 169.98, 154.81, 132.73, 132.39, 129.33, 125.05, 124.27, 77.00, 76.30, 57.79. HRMS (ESI, m/z): calcd. for C10H7NNaO2S [M + Na]+, 228.0090; found, 228.0090.
- The details for 2-(1-Oxido-3-oxobenzo[d]isothiazol-2(3H)-yl)acetonitrile (2m). White solid, 38.7 mg, 94%, m.p. = 120–121 °C. 1H NMR (300 MHz, CDCl3) δ 7.98 (d, J = 7.4 Hz, 1H), 7.90 (d, J = 7.5 Hz, 1H), 7.85–7.72 (m, 2H), 4.84 (d, J = 17.9 Hz, 1H), 4.50 (d, J = 17.9 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 164.57, 145.53, 135.26, 133.86, 126.79, 126.61, 125.69, 114.17, 28.04. HRMS (ESI, m/z): calcd. for C9H7N2O2S [M + H]+, 207.0223; found, 207.0223.
- The details for Ethyl 2-(1-oxido-3-oxobenzo[d]isothiazol-2(3H)-yl)acetate (2n). Colorless oil, 45.5 mg, 90%, (known compound [31]). 1H NMR (300 MHz, CDCl3) δ 7.89 (d, J = 6.8 Hz, 1H), 7.79 (d, J = 7.9 Hz, 1H), 7.69–7.58 (m, 2H), 5.13 (d, J = 15.7 Hz, 1H), 4.97 (d, J = 15.7 Hz, 1H), 4.22 (q, J = 7.2 Hz, 2H), 1.23 (t, J = 7.2 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 170.23, 166.54, 154.91, 132.75, 132.38, 129.12, 125.02, 124.37, 65.61, 61.90, 14.11.
- The details for 2-((Trimethylsilyl)methyl)benzo[d]isothiazol-3(2H)-one-1-oxide (2o). Colorless oil, 48.7 mg, 96%. 1H NMR (300 MHz, CDCl3) δ 7.96–7.93 (m, 1H), 7.88–7.83 (m, 1H), 7.78–7.69 (m, 2H), 3.43 (d, J = 15.6 Hz, 1H), 3.19 (d, J = 15.6 Hz, 1H), 0.16 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 165.22, 145.49, 133.86, 133.21, 128.40, 125.93, 124.97, 32.13, -1.63. HRMS (ESI, m/z): calcd. for C11H16NO2SSi [M + H]+, 254.0666; found, 254.0666.
- The details for Benzo[d]isothiazol-3(2H)-one-1-oxide (2p). White solid, 30.1 mg, 90%, m.p. = 158–159 °C (known compound [30]). 1H NMR (300 MHz, DMSO-d6) δ 11.52 (br, 1H), 8.13 (d, J = 7.5 Hz, 1H), 7.95–7.82 (m, 3H). 13C NMR (75 MHz, DMSO-d6) δ 167.94, 148.57, 135.18, 133.69, 127.73, 126.33, 125.91.
- The details for 2-Phenylbenzo[d]isothiazol-3(2H)-one-1-oxide (2q). White solid, 44.8 mg, 92%, m.p. = 136–137 °C (known compound [30]). 1H NMR (400 MHz, CDCl3) δ 8.11–8.09 (m, 1H), 7.98–7.95 (m, 1H), 7.89–7.79 (m, 2H), 7.53–7.43 (m, 5H). 13C NMR (101 MHz, CDCl3) δ 164.54, 145.51, 134.65, 133.90, 133.48, 129.79, 128.94, 128.25, 127.42, 126.80, 125.26.
- The details for 2-(p-Tolyl)benzo[d]isothiazol-3(2H)-one-1-oxide (2r). White solid, 46.3 mg, 90%, m.p. = 169–170 °C (known compound [30]). 1H NMR (400 MHz, CDCl3) δ 8.10–8.07 (m, 1H), 7.97–7.94 (m, 1H), 7.88–7.78 (m, 2H), 7.41–7.38 (m, 2H), 7.32–7.30 (m, 2H), 2.41 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 164.66, 145.57, 139.19, 134.57, 133.42, 131.04, 130.42, 128.29, 127.45, 126.73, 125.24, 21.31.
- The details for 2-(4-Bromophenyl)benzo[d]isothiazol-3(2H)-one-1-oxide (2s). White solid, 61.2 mg, 95%, m.p. = 100–101 °C. 1H NMR (400 MHz, CDCl3) δ 8.11–8.09 (m, 1H), 7.98–7.96 (m, 1H), 7.91–7.81 (m, 2H), 7.66–7.62 (m, 2H), 7.45–7.41 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 164.37, 145.39, 134.81, 133.60, 133.10, 132.94, 128.74, 128.02, 126.87, 125.30, 122.81. HRMS (ESI, m/z): calcd. for C13H9BrNO2S [M + H]+, 321.9532; found, 321.9529.
- The details for 2-Butyl-5-fluorobenzo[d]isothiazol-3(2H)-one-1-oxide (2t). White solid, 45.0 mg, 93%, m.p. = 82–83 °C. 1H NMR (300 MHz, CDCl3) δ 7.83 (dd, J = 8.5, 4.3 Hz, 1H), 7.58 (dd, J = 7.4, 2.4 Hz, 1H), 7.44–7.37 (m, 1H), 3.91–3.82 (m, 1H), 3.74–3.64 (m, 1H), 1.76–1.66 (m, 2H), 1.41–1.29 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 165.65 (d, J = 256.5 Hz), 164.12 (d, J = 3.0 Hz), 141.09 (d, J = 3.1 Hz), 131.59 (d, J = 9.2 Hz), 127.33 (d, J = 9.3 Hz), 121.45 (d, J = 23.9 Hz), 113.32 (d, J = 24.5 Hz), 41.33, 31.25, 20.04, 13.60. 19F NMR (282 MHz, CDCl3) δ -103.42. HRMS (ESI, m/z): calcd. for C11H13FNO2S [M + H]+, 242.0646; found, 242.0648.
- The details for 2-Butyl-5-chlorobenzo[d]isothiazol-3(2H)-one-1-oxide (2u). Colorless oil, 47.4 mg, 92%. 1H NMR (300 MHz, CDCl3) δ 7.88 (dd, J = 1.9, 0.5 Hz, 1H), 7.77 (dd, J = 8.2, 0.6 Hz, 1H), 7.68 (dd, J = 8.2, 1.9 Hz, 1H), 3.91–3.81 (m, 1H), 3.74–3.64 (m, 1H), 1.76–1.65 (m, 2H), 1.41–1.29 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 164.14, 143.64, 140.08, 134.12, 130.37, 126.29, 126.27, 41.31, 31.26, 20.05, 13.61. HRMS (ESI, m/z): calcd. for C11H13ClNO2S [M + H]+, 258.0350; found, 258.0343.
- The details for 6-Bromo-2-butylbenzo[d]isothiazol-3(2H)-one-1-oxide (2v). White solid, 57.4 mg, 95%, m.p. = 97–98 °C. 1H NMR (300 MHz, CDCl3) δ 8.04 (s, 1H), 7.90–7.83 (m, 1H), 3.98–3.88 (m, 1H), 3.81–3.72 (m, 1H), 1.86–1.73 (m, 2H), 1.48–1.36 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 164.61, 147.12, 136.50, 128.84, 128.31, 127.35, 127.20, 41.24, 31.27, 20.06, 13.61. HRMS (ESI, m/z): calcd. for C11H13BrNO2S [M + H]+, 301.9845; found, 301.9840.
- The details for 2-Butyl-5-methylbenzo[d]isothiazol-3(2H)-one-1-oxide (2w). White solid, 42.7 mg, 90%, m.p. = 100–101 °C. 1H NMR (300 MHz, CDCl3) δ 7.71–7.68 (m, 2H), 7.51 (d, J = 7.8 Hz, 1H), 3.91–3.81 (m, 1H), 3.72–3.62 (m, 1H), 2.45 (s, 3H), 1.76–1.65 (m, 2H), 1.41–1.29 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 165.50, 144.33, 142.77, 134.75, 128.68, 126.37, 124.84, 41.03, 31.35, 21.67, 20.08, 13.64. HRMS (ESI, m/z): calcd. for C12H15NNaO2S [M + Na]+, 260.0716; found, 260.0716.
- The details for 2-Butyl-6-methoxybenzo[d]isothiazol-3(2H)-one-1-oxide (2x). White solid, 45.6 mg, 90%, m.p. = 139–140 °C. 1H NMR (300 MHz, CDCl3) δ 7.89 (d, J = 8.4 Hz, 1H), 7.36 (s, 1H), 7.21 (dd, J = 8.5, 2.2 Hz, 1H), 3.95–3.87 (m, 4H), 3.79–3.70 (m, 1H), 1.83–1.72 (m, 2H), 1.46– 1.39 (m, 2H), 0.97 (t, J = 7.3 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 165.21, 164.54, 147.86, 127.43, 120.44, 119.56, 109.51, 56.19, 41.08, 31.42, 20.07, 13.64. HRMS (ESI, m/z): calcd. for C12H16NO3S [M + H]+, 254.0845; found, 254.0666.
3.4. Synthetic Procedures for the Synthesis of Compounds 4
- The details for 2-Methylisothiazol-3(2H)-one-1-oxide (4a). White solid, 24.0 mg, 91%, m.p. = 81–82 °C. 1H NMR (300 MHz, CDCl3) δ 7.60 (d, J = 6.5 Hz, 1H), 6.83 (d, J = 6.4 Hz, 1H), 3.25 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 166.06, 148.19, 130.66, 26.57. HRMS (ESI, m/z): calcd. for C4H6NO2S [M + H]+, 132.0114; found, 132.0111.
- The details for 4,5-Dichloro-2-octylisothiazol-3(2H)-one-1-oxide (4b). Colorless oil, 53.7 mg, 90%. 1H NMR (300 MHz, CDCl3) δ 3.80–3.59 (m, 2H), 1.71–1.62 (m, 2H), 1.31–1.18 (m, 10H), 0.81 (d, J = 6.6 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 159.92, 148.68, 130.86, 42.85, 31.72, 29.08, 29.07, 29.00, 26.66, 22.60, 14.07. HRMS (ESI, m/z): calcd. for C11H18Cl2NO2S [M + H]+, 298.0430; found, 298.0416.
- The details for 3-Butyl-2,3-dihydro-4H-benzo[e][1,3]thiazin-4-one-1-oxide (4e). Colorless oil, 43.7 mg, 92%. 1H NMR (300 MHz, CDCl3) δ 8.14–8.11 (m, 1H), 7.70–7.56 (m, 3H), 4.67 (d, J = 13.0 Hz, 1H), 4.48 (d, J = 13.0 Hz, 1H), 3.61 (t, J = 7.4 Hz, 2H), 1.64–1.54 (m, 2H), 1.39–1.28 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 162.05, 140.88, 132.84, 132.56, 130.42, 127.51, 127.00, 65.22, 48.87, 29.80, 19.95, 13.77. HRMS (ESI, m/z): calcd. for C12H15NNaO2S [M + Na]+, 260.0716; found, 260.0714.
3.5. Synthetic Procedures for Gram-Scale Reactions
3.6. Synthetic Procedures for the Synthesis of Compounds 5
- The details for 2-Butylbenzo[d]isothiazol-3(2H)-one-1,1-dioxide (5a). White solid, 40.7 mg, 85%, m.p. = 42–43 °C (known compound [32]). 1H NMR (300 MHz, CDCl3) δ 8.00–7.96 (m, 1H), 7.87–7.72 (m, 3H), 3.70 (t, J = 7.4 Hz, 2H), 1.82–1.72 (m, 2H), 1.44–1.31 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 158.96, 137.74, 134.65, 134.27, 127.48, 125.09, 120.88, 39.23, 30.43, 20.05, 13.52.
- The details for 2-Ethylbenzo[d]isothiazol-3(2H)-one-1,1-dioxide (5b). White solid, 34.2 mg, 81%, m.p. = 93–94 °C (known compound [32]). 1H NMR (300 MHz, CDCl3) δ 7.99–7.96 (m, 1H), 7.86–7.72 (m, 3H), 3.78 (q, J = 7.2 Hz, 2H), 1.38 (t, J = 7.2 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 158.71, 137.78, 134.67, 134.29, 127.50, 125.08, 120.88, 34.50, 13.98.
- The details for 2-Benzylbenzo[d]isothiazol-3(2H)-one-1,1-dioxide (5c). White solid, 45.4 mg, 83%, m.p. = 110–111 °C (known compound [32]). 1H NMR (300 MHz, CDCl3) δ 7.97–7.94 (m, 1H), 7.85–7.69 (m, 3H), 7.42 (dd, J = 7.6, 1.9 Hz, 2H), 7.30–7.17 (m, 3H), 4.82 (s, 2H). 13C NMR (75 MHz, CDCl3) δ 158.93, 137.75, 134.85, 134.51, 134.38, 128.75, 128.72, 128.30, 127.30, 125.26, 121.06, 42.69.
- The details for 2-((Trimethylsilyl)methyl)benzo[d]isothiazol-3(2H)-one-1,1-dioxide (5d). Colorless oil, 45.8 mg, 85% (known compound [33]). 1H NMR (300 MHz, CDCl3) δ 8.03–8.00 (m, 1H), 7.92–7.89 (m, 1H), 7.86–7.77 (m, 2H), 3.13 (s, 2H), 0.19 (s, 9H). 13C NMR (75 MHz, CDCl3) δ 159.02, 137.75, 134.45, 134.33, 127.79, 124.98, 120.99, 29.12, -1.54.
- The details for Benzo[d]isothiazol-3(2H)-one-1,1-dioxide (5e). White solid, 27.5 mg, 75%, m.p. = 227–228 °C (known compound [34]). 1H NMR (300 MHz, DMSO-d6) δ 12.36 (br, 1H), 8.19–8.15 (m, 1H), 8.04–7.92 (m, 3H). 13C NMR (75 MHz, DMSO-d6) δ 161.30, 139.74, 136.01, 135.22, 127.92, 125.31, 121.64.
3.7. Procedures for Free Radical Trapping Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obermeyer, L.; Dicke, K.; Skudlik, C.; Brans, R. Occupational allergic contact dermatitis from 2-butyl-1,2-benzisothiazol-3-one in cutting fluids: A case series. Contact Dermat. 2024, 90, 520–522. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, P.; Yadav, R.K.; Shukla, P.K.; Srivastava, K.; Puri, S.K.; Muraleedharan, K.M. Broad spectrum anti-infective properties of benzisothiazolones and the parallels in their anti-bacterial and anti-fungal effects. Bioorg. Med. Chem. Lett. 2017, 27, 1291–1295. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, J.; Isaksson, M. Occupational contact dermatitis caused by N-butyl-1,2-benzisothiazolin-3-one in a cutting fluid. Contact Dermat. 2015, 73, 60–62. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Dou, D.; Aravapalli, S.; Teramoto, T.; Lushington, G.H.; Mwania, T.M.; Alliston, K.R.; Eichhorn, D.M.; Padmanabhan, R.; Groutas, W.C. Design, synthesis and characterization of novel 1,2-benzisothiazol-3(2H)-one and 1,3,4-oxadiazole hybrid derivatives: Potent inhibitors of dengue and west nile virus NS2B/NS3 proteases. Bioorg. Med. Chem. 2013, 21, 102–113. [Google Scholar] [CrossRef] [PubMed]
- Novick, R.M.; Nelson, M.L.; Unice, K.M.; Keenan, J.J.; Paustenbach, D.J. Estimation of the safe use concentrations of the preservative 1,2-benzisothiazolin-3-one (BIT) in consumer cleaning products and sunscreens. Food Chem. Toxicol. 2013, 56, 60–66. [Google Scholar] [CrossRef] [PubMed]
- Magid, A.-G.; Moyer, J.A.; Patel, U.; Webb, M.; Schiehser, G.; Andree, T.; Thomas Haskins, J. Synthesis and structure-activity relationship of substituted tetrahydro- and hexahydro-1,2-benzisothiazol-3-one 1,1-dioxides and thiadiazinones: Potential anxiolytic agents. J. Med. Chem. 1989, 32, 1024–1033. [Google Scholar]
- Dakova, B.; Martens, T.; Evers, M. Electrochemical oxidation of [2H] benziso-1,2-thiazol-3-one mediated by chloride anions. Application to a new and expedient electrochemical synthesis of [2H] benziso-1,2-thiazol-3-one S-oxide. Electrochim. Acta 2000, 45, 4525–4530. [Google Scholar] [CrossRef]
- Serebryakov, E.A.; Kislitsin, P.G.; Semenov, V.V.; Zlotin, S.G. Selective synthesis of 1,2-benzisothiazol-3-one-1-oxide nitro derivatives. Synthesis 2001, 2001, 1659–1664. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, H.; Yang, X.; Zhou, P.; Shu, C. Recent advances in the synthesis of cyclic sulfinic acid derivatives (sultines and cyclic sulfinamides). Chem. Commun. 2023, 59, 6272–6285. [Google Scholar] [CrossRef]
- Dobrydnev, A.V.; Popova, M.V.; Volovenko, Y.M. Cyclic Sulfinamides. Chem. Rec. 2024, 24, e202300221. [Google Scholar] [CrossRef]
- Kim, Y.; Li, C.-J. Perspectives on green synthesis and catalysis. Green Synth. Catal. 2020, 1, 1–11. [Google Scholar] [CrossRef]
- Song, H.-X.; Han, Q.-Y.; Zhao, C.-L.; Zhang, C.-P. Fluoroalkylation reactions in aqueous media: A review. Green Chem. 2018, 20, 1662–1731. [Google Scholar] [CrossRef]
- Norcott, P.; Spielman, C.; McErlean, C.S.P. An in-water, on-water domino process for synthesis. Green Chem. 2012, 14, 605–609. [Google Scholar] [CrossRef]
- Nyffeler, P.T.; Duron, S.G.; Burkart, M.D.; Vincent, S.P.; Wong, C.-H. Selectfluor: Mechanistic insight and applications. Angew. Chem. Int. Ed. 2005, 44, 192–212. [Google Scholar] [CrossRef]
- Stavber, S. Recent advances in the application of SelectfluorTMF-TEDA-BF4 as a versatile mediator or catalyst in organic synthesis. Molecules 2011, 16, 6432–6464. [Google Scholar] [CrossRef]
- Campbell, M.G.; Ritter, T. Modern carbon–fluorine bond forming reactions for aryl fluoride synthesis. Chem. Rev. 2015, 115, 612–633. [Google Scholar] [CrossRef]
- Champagne, P.A.; Desroches, J.; Hamel, J.-D.; Vandamme, M.; Paquin, J.-F. Monofluorination of organic compounds: 10 Years of innovation. Chem. Rev. 2015, 115, 9073–9174. [Google Scholar] [CrossRef]
- Yang, K.; Song, M.; Ali, A.; Mudassir, S.; Ge, H. Recent advances in the application of selectfluor as a “fluorine-free” functional reagent in organic synthesis. Chem. Asian J. 2020, 15, 729–741. [Google Scholar] [CrossRef]
- Aguilar Troyano, F.-J.; Merkens, K.; Adrian, G.-S. Selectfluor radical dication (TEDA2+•)—A versatile species in modern synthetic organic chemistry. Asian J. Org. Chem. 2020, 9, 992–1007. [Google Scholar] [CrossRef]
- Yang, K.; Zhang, H.; Niu, B.; Tang, T.; Ge, H. Benzisothiazol-3-ones through a metal-free intramolecular N–S bond formation. Eur. J. Org. Chem. 2018, 2018, 5520–5523. [Google Scholar] [CrossRef]
- Dai, S.; Yang, K.; Luo, Y.; Xu, Z.; Li, Z.; Li, Z.-Y.; Li, B.; Sun, X. Metal-free and Selectfluor-mediated diverse transformations of 2-alkylthiobenzamides to access 2,3-dihydrobenzothiazin-4-ones, benzoisothiazol-3-ones and 2-alkylthiobenzonitriles. Org. Chem. Front. 2022, 9, 4016–4022. [Google Scholar] [CrossRef]
- Roberto, C.-M.; Mariela, C.-D.; Rafael, C.-A.; David, L.-N.; Mariana, C.-M.; Valeria Fernanda, V.-C.; Carlos Eduardo, H.-T.; Emilia, G.-C.; Ahmad, M.Z. Natural sweeteners: Sources, extraction and current uses in foods and food industries. Food Chem. 2022, 370, 130991. [Google Scholar]
- Xu, L.; Cheng, J.; Trudell, M.L. Chromium(VI) oxide catalyzed oxidation of sulfides to sulfones with periodic acid. J. Org. Chem. 2003, 68, 5388–5391. [Google Scholar] [CrossRef]
- Vincent, S.P.; Burkart, M.D.; Tsai, C.-Y.; Zhang, Z.; Wong, C.-H. Electrophilic fluorination-nucleophilic addition reaction mediated by selectfluor: Mechanistic studies and new applications. J. Org. Chem. 1999, 64, 5264–5279. [Google Scholar] [CrossRef]
- Guo, X.; Sun, X.; Jiang, M.; Zhao, Y. Switchable synthesis of sulfoxides, sulfones and thiosulfonates through selectfluor-promoted oxidation with H2O as O-source. Synthesis 2022, 54, 1996–2004. [Google Scholar] [CrossRef]
- Waldner, A. Synthesis and application of a highly efficient, homochiral dienophile. Tetrahedron Lett. 1989, 30, 3061–3064. [Google Scholar] [CrossRef]
- Zhang, Y.; Wong, Z.R.; Wu, X.; Lauw, S.J.L.; Huang, X.; Webster, R.D.; Chi, Y.R. Sulfoxidation of alkenes and alkynes with NFSI as a radical initiator and selective oxidant. Chem. Commun. 2017, 53, 184–187. [Google Scholar] [CrossRef]
- Chen, Y.; Qi, H.; Chen, N.; Ren, D.; Xu, J.; Yang, Z. Fluorium-initiated dealkylative cyanation of thioethers to thiocyanates. J. Org. Chem. 2019, 84, 9044–9050. [Google Scholar] [CrossRef]
- Xu, R.; Xiao, G.; Li, Y.; Liu, H.; Song, Q.; Zhang, X.; Yang, Z.; Zheng, Y.; Tan, Z.; Deng, Y. Multifunctional 5,6-dimethoxybenzo[d]isothiazol-3(2H)-one-Nalkylbenzylamine derivatives with acetylcholinesterase, monoamine oxidases and β-amyloid aggregation inhibitory activities as potential agents against Alzheimer’s disease. Bioorg. Med. Chem. 2018, 26, 1885–1895. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, M.; Yoshida, T. Method for the Preparation of Benzoisothiazolinone-1-oxide Compound. JP2011162465A, 25 August 2011. [Google Scholar]
- Sivaramakrishnan, S.; Cummings, A.H.; Gates, K.S. Protection of a single-cysteine redox switch from oxidative destruction: On the functional role of sulfenyl amide formation in the redox-regulated enzyme PTP1B. Bioorg. Med. Chem. Lett. 2010, 20, 444–447. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, J.; Carta, F.; Vullo, D.; Leitans, J.; Kazaks, A.; Tars, K.; Zalubovskis, R.; Supuran, C.T. N-Substituted and ring opened saccharin derivatives selectively inhibit transmembrane, tumor-associated carbonic anhydrases IX and XII. Bioorg. Med. Chem. 2017, 25, 3583–3589. [Google Scholar] [CrossRef]
- Cho, D.-W.; Oh, S.-W.; Kim, D.-U.; Park, H.-J.; Xue, J.-Y.; Yoon, U.-C.; Mariano, P.S. Studies of silyl-transfer photochemical reactions of N-[(trimethylsilyl)alkyl]saccharins. Bull. Korean Chem. Soc. 2010, 31, 2453–2458. [Google Scholar] [CrossRef]
- Fu, S.; Lian, X.; Ma, T.; Chen, W.; Zheng, M.; Zeng, W. TiCl4-promoted direct N-acylation of sulfonamide with carboxylic ester. Tetrahedron Lett. 2010, 51, 5834–5837. [Google Scholar] [CrossRef]
Entry | Oxidant (Eq.) | Solvent (v/v, mL) | Yield (%) |
---|---|---|---|
1 | Selectfluor (1.0) | H2O | 87 |
2 | Selectfluor (1.0) | MeOH | trace |
3 | Selectfluor (1.0) | EtOH | 0 |
4 | Selectfluor (1.0) | DMC | 0 |
5 | Selectfluor (1.0) | DMF | >99 |
6 | Selectfluor II (1.0) | H2O | 82 |
7 | NFSI (1.0) | H2O | 80 |
8 | NFTP (1.0) | H2O | 0 |
9 | NIS (1.0) | H2O | 0 |
10 | NaIO4 (1.0) | H2O | 0 |
11 | K2S2O8 (1.0) | H2O | 0 |
12 | Selectfluor (1.0) | H2O/DMF (v/v = 4/1) | >99 |
13 | Selectfluor (1.0) | H2O/DMF (v/v = 9/1) | >99[95] b |
14 | Selectfluor (1.0) | H2O/DMF (v/v = 19/1) | 90 |
15 | Selectfluor (0.5) | H2O/DMF (v/v = 9/1) | 48 |
16 | Selectfluor (2.0) | H2O/DMF (v/v = 9/1) | >99 |
17 | Selectfluor (3.0) | H2O/DMF (v/v = 9/1) | >99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Yuan, D.; Liu, C.; Herington, F.; Yang, K.; Ge, H. Selective Oxidation of Benzo[d]isothiazol-3(2H)-Ones Enabled by Selectfluor. Molecules 2024, 29, 3899. https://doi.org/10.3390/molecules29163899
Li Q, Yuan D, Liu C, Herington F, Yang K, Ge H. Selective Oxidation of Benzo[d]isothiazol-3(2H)-Ones Enabled by Selectfluor. Molecules. 2024; 29(16):3899. https://doi.org/10.3390/molecules29163899
Chicago/Turabian StyleLi, Qin, Dan Yuan, Chong Liu, Faith Herington, Ke Yang, and Haibo Ge. 2024. "Selective Oxidation of Benzo[d]isothiazol-3(2H)-Ones Enabled by Selectfluor" Molecules 29, no. 16: 3899. https://doi.org/10.3390/molecules29163899
APA StyleLi, Q., Yuan, D., Liu, C., Herington, F., Yang, K., & Ge, H. (2024). Selective Oxidation of Benzo[d]isothiazol-3(2H)-Ones Enabled by Selectfluor. Molecules, 29(16), 3899. https://doi.org/10.3390/molecules29163899