Chemical Profile and Potential Applications of Sclerocarya birrea (A.Rich.) Hochst. subsp. caffra (Sond.) Kokwaro Kernel Oils: Analysis of Volatile Compounds and Fatty Acids
Abstract
:1. Introduction
2. Results
2.1. Volatile Constituents of Kernel Oil
2.2. Fatty Acids Methyl Esters (FAMEs)
3. Discussion
3.1. Volatile Constituents of Kernel Oil
3.2. Fatty Acids Methyl Esters (FAMEs)
4. Materials and Methods
4.1. Sampling
4.2. Volatile Compounds of Kernel Oil
4.2.1. Sample Preparation
4.2.2. Chromatographic Separation
4.2.3. Identification of Compounds
4.3. Fatty Acids Methyl Esters (FAMEs)
4.3.1. Sample Preparation
4.3.2. Chromatographic Separation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Wyk, B.; van Wyk, P. Field Guide to Trees of Southern Africa; Struik Nature: Cape Town, South Africa, 2013; pp. 520–521. [Google Scholar]
- Mokgolodi, N.C.; Ding, Y.f.; Setshogo, M.P.; Ma, C.; Liu, Y. The importance of an indigenous tree to southern African communities with specific relevance to its domestication and commercialization: A case of the marula tree. For. Stud. China 2011, 13, 36–44. [Google Scholar] [CrossRef]
- Fortune Business Insights. Food Additives and Ingredients: Essential Oils Market. 27 May 2024. Available online: https://www.fortunebusinessinsights.com/industry-reports/essential-oils-market-101063 (accessed on 13 June 2024).
- Sadgrove, N.J.; Padilla-González, G.F.; Phumthum, M. Fundamental chemistry of essential oils and volatile organic compounds, methods of analysis and authentication. Plants 2022, 11, 789. [Google Scholar] [CrossRef] [PubMed]
- Fotsing Yannick Stephane, F.; Kezetas Jean Jules, B. Terpenoids as Important Bioactive Constituents of Essential Oils; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Sharmeen, J.B.; Mahomoodally, F.M.; Zengin, G.; Maggi, F. Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules 2021, 26, 666. [Google Scholar] [CrossRef] [PubMed]
- Maszewska, M.; Florowska, A.; Dłużewska, E.; Wroniak, M.; Marciniak-Lukasiak, K.; Żbikowska, A. Oxidative stability of selected edible oils. Molecules 2018, 23, 1746. [Google Scholar] [CrossRef] [PubMed]
- de Souza, R.J.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J. Intake of saturated and trans unsaturated fatty acids and risk of all-cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ 2015, 351, h3978. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. J. Parenter. Enter. Nutr. 2015, 39, 18S–32S. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Kpoviessi, D.S.S.; Gbaguidi, F.A.; Kossouoh, C.; Agbani, P.; Yayi-Ladekan, E.; Sinsin, B.; Moudachirou, M.; Accrombessi, G.C.; Quetin-Leclercq, J. Chemical composition and seasonal variation of essential oil of Sclerocarya birrea (A. Rich.) Hochst subsp birrea leaves from Benin. J. Med. Plants Res. 2011, 5, 4640–4646. [Google Scholar]
- Li, Y.; He, L.; Song, Y.; Zhang, P.; Chen, D.; Guan, L.; Liu, S. Comprehensive study of volatile compounds and transcriptome data providing genes for grape aroma. BMC Plant. Biol. 2023, 23, 171. [Google Scholar] [CrossRef]
- Halla, N.; Fernandes, I.P.; Heleno, S.A.; Costa, P.; Boucherit-Otmani, Z.; Boucherit, K.; Rodrigues, A.E.; Ferreira, I.C.F.R.; Barreiro, M.F. Cosmetics Preservation: A Review on Present Strategies. Molecules 2018, 23, 1571. [Google Scholar] [CrossRef]
- Xue, C.; Wu, Y.; Gu, Y.; Jiang, W.; Dong, H.; Zhang, Y.; Zhao, C.; Li, Y. Biofuels and Bioenergy: Acetone and Butanol. In Comprehensive Biotechnology; Moo-Young, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 3, pp. 79–100. [Google Scholar]
- Speight, J.G. Chapter 3—Industrial Organic Chemistry. In Environmental Organic Chemistry for Engineers; Speight, J.G., Ed.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 87–151. [Google Scholar]
- Liu, K.; Chen, Q.; Liu, Y.; Zhou, X.; Wang, X. Isolation and biological activities of decanal, linalool, valencene, and octanal from sweet orange oil. J. Food Sci. 2012, 77, C1156–C1161. [Google Scholar] [CrossRef]
- Brahmkshatriya, P.P.; Brahmkshatriya, P.S. Terpenes: Chemistry, Biological Role, and Therapeutic Applications. In Natural Products; Ramawat, K., Mérillon, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 2665–2691. [Google Scholar]
- Zhao, D.D.; Jiang, L.L.; Li, H.Y.; Yan, P.F.; Zhang, Y.L. Chemical Components and Pharmacological Activities of Terpene Natural Products from the Genus Paeonia. Molecules 2016, 21, 1362. [Google Scholar] [CrossRef]
- Zahi, M.R.; El Hattab, M.; Liang, H.; Yuan, Q. Enhancing the antimicrobial activity of d-limonene nanoemulsion with the inclusion of ε-polylysine. Food. Chem. 2017, 221, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Melkina, O.E.; Khmel, I.A.; Plyuta, V.A.; Koksharova, O.A.; Zavilgelsky, G.B. Ketones 2-heptanone, 2-nonanone, and 2-undecanone inhibit DnaK-dependent refolding of heat-inactivated bacterial luciferases in Escherichia coli cells lacking small chaperon IbpB. Appl. Microbiol. Biotechnol. 2017, 101, 5765–5771. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive Compounds and Quality of Extra Virgin Olive Oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef]
- Magaia, T.; Skog, K.I. Composition of amino acids, fatty acids and dietary fibre monomers in kernels of Adansonia digitata and Sclerocarya birrea. Afr. J. Food. Agric. Nutr. Dev. 2017, 17, 12441–12454. [Google Scholar] [CrossRef]
- Mariod, A.A.; Matthäus, B.; Idris, Y.M.A.; Abdelwahab, S.I. Fatty Acids, Tocopherols, Phenolics and the Antimicrobial Effect of Sclerocarya birrea Kernels with Different Harvesting Dates. J. Am. Oil. Chem. Soc. 2010, 87, 377–384. [Google Scholar] [CrossRef]
- Matemu, A.O.; Adeyemi, D.; Nyoni, H.; Mdee, L.; Tshabalala, P.; Mamba, B.; Msagati, T.A.M. Fatty Acid Composition of Dried Fruits of Sclerocarya birrea, Diospyros blancoi and Landolphia kirkii. Int. J. Environ. Res. Public Health 2017, 14, 1401. [Google Scholar] [CrossRef]
- Malebana, I.M.; Nkosi, B.D.; Erlwanger, K.H.; Chivandi, E. A comparison of the proximate, fibre, mineral content, amino acid and the fatty acid profile of Marula (Sclerocarya birrea caffra) nut and soyabean (Glycine max) meals. J. Sci. Food Agric. 2018, 98, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- White, B. Dietary fatty acids. Am. Fam. Physician 2009, 80, 345–350. [Google Scholar]
- Rustan, A.C.; Drevon, C.A. Fatty Acids: Structures and Properties. Encycl. Life Sci. 2005, 1–7. [Google Scholar] [CrossRef]
- Hu, F.B.; Manson, J.E.; Willett, W.C. Types of dietary fat and risk of coronary heart disease: A critical review. J. Am. Coll. Nutr. 2001, 20, 5–19. [Google Scholar] [CrossRef] [PubMed]
- WHO. Saturated Fatty Acid and Trans-Fatty Acid Intake for Adults and Children: WHO Guideline; World Health Organization: Geneva, Switzerland, 2023; Licence: CC BY-NC-SA 3.0 IGO. [Google Scholar]
- WHO. Global Health Observatory Data. Noncommunicable Diseases Mortality and Morbidity; World Health Organization: Geneva, Switzerland, 2021; Available online: http://www.who.int/gho/ncd/mortality_morbidity/en/ (accessed on 16 June 2024).
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, I.A.; Wanders, A.J.; Katan, M.B. Effect of animal and industrial trans fatty acids on HDL and LDL cholesterol levels in humans: A quantitative review. PLoS ONE 2010, 5, e9434. [Google Scholar] [CrossRef]
- Porta, R.D.; Aladedunye, F.A. Frying and stability of high-oleic oils. In High Oleic Oils Development, Properties, and Uses; AOCS Press: Urbana, IL, USA, 2022; pp. 189–200. [Google Scholar]
- Ahmad, A.; Ahsan, H. Lipid-based formulations in cosmeceuticals and biopharmaceuticals. Biomed. Dermatol. 2020, 4, 12. [Google Scholar] [CrossRef]
Tentative Identification | Class | * Structure | Retention Time (mins) | Area % | |
---|---|---|---|---|---|
1 | 1-Butanol | Alcohols | 6.08 | 1.04 | |
2 | 1-Hexanol | Alcohols | 11.53 | 3.26 | |
3 | 1-Nonanol | Alcohols | 16.69 | 1.18 | |
4 | 1-Octen-3-ol | Alcohols | 13.38 | 2.49 | |
5 | 1-Octen-3-one | Alcohols | 10.28 | 0.21 | |
6 | 1-Pentanol | Alcohols | 9.25 | 7.51 | |
7 | Heptanol | Alcohols | 13.44 | 3.31 | |
8 | Octanol | Alcohols | 15.14 | 6.41 | |
9 | Phenethyl alcohol | Alcohols | 20.09 | 0.52 | |
10 | Trans-2-Octenol | Alcohols | 16.03 | 0.57 | |
11 | Decanal | Aldehyde | 14.11 | 0.21 | |
12 | Heptanal | Aldehydes | 6.95 | 3.99 | |
13 | Nonanal | Aldehydes | 12.21 | 10.25 | |
14 | Trans, cis-2,4-Decadienal | Aldehydes | 18.15 | 0.50 | |
15 | Trans, trans-2,4 heptadienal | Aldehydes | 14.00 | 0.66 | |
16 | Trans, trans-2,4-decadienal | Aldehydes | 18.74 | 1.82 | |
17 | Trans-2-Decenal | Aldehydes | 16.37 | 3.05 | |
18 | Trans-2-heptenal | Aldehydes | 10.71 | 6.20 | |
19 | Trans-2-hexenal | Aldehydes | 8.02 | 0.86 | |
20 | Trans-2-Nonenal | Aldehydes | 14.68 | 0.98 | |
21 | Trans-2-trans-4-nonadienal | Aldehydes | 17.22 | 0.58 | |
22 | 2-undecenal | Aldehydes | 17.94 | 1.27 | |
23 | Octanal | Aldehydes | 9.95 | 4.82 | |
24 | n-Butylbenzene | Alkylbenzenes | 10.36 | 0.55 | |
25 | 3-Decyne | Alkynes | 14.16 | 0.41 | |
26 | Benzyl alcohol | Aromatic alcohol | 19.65 | 0.32 | |
27 | Benzaldehyde | Aromatic aldehydes | 14.46 | 0.82 | |
28 | Isoamyl alcohol | Branched-chain alcohols | 8.07 | 0.65 | |
29 | Butanoic acid | Carboxylic acids | 16.22 | 0.09 | |
30 | Octanoic acid | Carboxylic acids | 21.95 | 2.93 | |
31 | Valeric acid | Carboxylic acids | 17.79 | 1.12 | |
32 | Isovaleric acid | carboxylic acids | 16.82 | 0.88 | |
33 | Nonanoic acid | Carboxylic acids | 23.20 | 1.29 | |
34 | 4-Isopropyl-1,3-cyclohexanedione | Cyclic ketones | 11.09 | 0.24 | |
35 | 1-Ethylcyclohexene | Cycloalkenes | 10.21 | 0.27 | |
36 | 3-ethyl-2-methyl-1,3-Hexadiene | Dienes | 12.50 | 1.94 | |
37 | 2,3-Octanedione (CAS) | Diketones | 10.96 | 0.73 | |
38 | 2-Amylfuran | Furans | 8.43 | 2.88 | |
39 | 2-Phenoxyethanol | Glycol ethers | 22.90 | 0.11 | |
40 | p-Ethylguaiacol | Guaiacols | 21.57 | 0.08 | |
41 | 1,2-Dichlorobenzene | Halogenated benzenes | 13.06 | 0.35 | |
42 | 2-Nonanone | Ketones | 12.12 | 0.39 | |
43 | 2-Octanone | Ketones | 9.86 | 0.16 | |
44 | γ-Hexalactone | Lactone | 17.19 | 0.45 | |
45 | γ-Valerolactone | Lactone | 15.83 | 0.16 | |
46 | 4-Pentylbutan-4-olide | Lactones | 21.50 | 0.24 | |
47 | γ-Butyrolactone | Lactones | 16.10 | 0.12 | |
48 | Heptanoic acid | Medium-chain fatty acid | 20.63 | 1.86 | |
49 | Linalool | Monoterpene alcohol | 15.00 | 0.13 | |
50 | Limonene | Monoterpenes | 6.93 | 3.70 | |
51 | Guaiacol | Phenolic compounds | 19.43 | 0.59 | |
52 | 2,6-Dimethoxyphenol (Syringol) | Phenols | 24.31 | 0.14 | |
53 | m-Cresol | Phenols | 23.22 | 0.03 | |
54 | p-Cresol | Phenols | 22.22 | 0.07 | |
55 | Phenol | Phenols | 21.30 | 0.33 | |
56 | 3-Ethylpyridine (β-Lutidine) | Pyridines | 11.88 | 0.71 | |
57 | 3-Vinylpyridine | Pyridines | 13.70 | 0.30 | |
58 | Hexadecanoic acid | Saturated fatty acids | 30.68 | 0.30 | |
59 | Hexanoic acid | Saturated fatty acids | 19.25 | 6.60 | |
60 | α-humulene | Sesquiterpene | 16.62 | 0.17 | |
61 | (+)-β-selinene | Sesquiterpenes | 17.35 | 0.90 | |
62 | α-selinene | Sesquiterpenes | 17.44 | 0.28 | |
63 | α-Ylangene | Sesquiterpenes | 13.80 | 0.11 | |
64 | β-caryophyllene | Terpenes | 15.52 | 1.51 | |
65 | Styrene | Vinyl aromatic hydrocarbons | 9.07 | 0.89 |
Component (Methyl Esters) | Abbreviation | Concentration (mg/g) |
---|---|---|
* α-Linolenic acid | C18:3n3 | 1.37 |
* Linoleic acid | C18:2 (cis) | 55.54 |
Palmitic acid | C16 | 81.072 |
Palmitoleic acid | C16:1 | 0.994 |
Oleic acid | C18:1 (cis) | 521.61 |
Lauric acid | C12 | 0.181 |
Heptadecanoic acid | C17 | 0.877 |
Stearic acid | C18 | 42.45 |
Arachidic acid | C20 | 3.46 |
cis-11-Eicosenoic acid | C20:1 | 1.37 |
Henicosanoic acid | C21 | 0.008 |
Behenic acid | C22 | 0.794 |
Tricosanoic acid | C23 | 0.082 |
Lignoceric acid | C24 | 0.863 |
Myristic acid | C14 | 0.354 |
Pentadecanoic acid | C15 | 0.076 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bvenura, C.; Kambizi, L. Chemical Profile and Potential Applications of Sclerocarya birrea (A.Rich.) Hochst. subsp. caffra (Sond.) Kokwaro Kernel Oils: Analysis of Volatile Compounds and Fatty Acids. Molecules 2024, 29, 3815. https://doi.org/10.3390/molecules29163815
Bvenura C, Kambizi L. Chemical Profile and Potential Applications of Sclerocarya birrea (A.Rich.) Hochst. subsp. caffra (Sond.) Kokwaro Kernel Oils: Analysis of Volatile Compounds and Fatty Acids. Molecules. 2024; 29(16):3815. https://doi.org/10.3390/molecules29163815
Chicago/Turabian StyleBvenura, Callistus, and Learnmore Kambizi. 2024. "Chemical Profile and Potential Applications of Sclerocarya birrea (A.Rich.) Hochst. subsp. caffra (Sond.) Kokwaro Kernel Oils: Analysis of Volatile Compounds and Fatty Acids" Molecules 29, no. 16: 3815. https://doi.org/10.3390/molecules29163815
APA StyleBvenura, C., & Kambizi, L. (2024). Chemical Profile and Potential Applications of Sclerocarya birrea (A.Rich.) Hochst. subsp. caffra (Sond.) Kokwaro Kernel Oils: Analysis of Volatile Compounds and Fatty Acids. Molecules, 29(16), 3815. https://doi.org/10.3390/molecules29163815