Intermolecular Interactions between Aldehydes and Alcohols: Conformational Equilibrium and Rotational Spectra of Acrolein-Methanol Complex
Abstract
:1. Introduction
2. Results and Discussion
2.1. Computational Results
2.2. Spectroscopic Results
2.3. Determination of Spectroscopic Parameters and Torsion Barriers
2.4. Deuterated Isotopologues
2.5. Possible Presence of Other Isomers
2.6. Analysis and General Discussion of the Clustering Interaction
3. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bellamy, L.J.; Pace, R.J. Hydrogen Bonding by Alcohols and Phenols—I. The Nature of the Hydrogen Bond in Alcohol Dimers and Polymers. Spectrochim. Acta 1966, 22, 525–533. [Google Scholar] [CrossRef]
- Li, W.; Evangelisti, L.; Gou, Q.; Caminati, W.; Meyer, R. The Barrier to Proton Transfer in the Dimer of Formic Acid: A Pure Rotational Study. Angew. Chem. Int. Ed. 2019, 58, 859–865. [Google Scholar] [CrossRef]
- Dixon, D.A.; Dobbs, K.D.; Valentini, J.J. Amide-Water and Amide-Amide Hydrogen Bond Strengths. J. Phys. Chem. 1994, 98, 13435–13439. [Google Scholar] [CrossRef]
- Rose, G.D.; Wolfenden, R. Hydrogen Bonding, Hydrophobicity, Packing, and Protein Folding. Annu. Rev. Biophys. Biomol. Struct. 1993, 22, 381–415. [Google Scholar] [CrossRef]
- Desiraju, G.R.; Steiner, T. The Weak Hydrogen Bond: In Structural Chemistry and Biology; International Union of Crystallography; Monograpg on crystallography Volume 9; Oxford University Press Inc.: New York, Ny, USA, 1999. [Google Scholar]
- Kraśnicki, A.; Kisiel, Z.; Guillemin, J.-C. From Molecular to Cluster Properties: Rotational Spectroscopy of 2-Aminopyridine and of Its Biomimetic Cluster with Water. Molecules 2021, 26, 6870. [Google Scholar] [CrossRef]
- Li, W.; Pérez, C.; Steber, A.L.; Schnell, M.; Lv, D.; Wang, G.; Zeng, X.; Zhou, M. Evolution of Solute–Water Interactions in the Benzaldehyde-(H2O) 1–6 Clusters by Rotational Spectroscopy. J. Am. Chem. Soc. 2023, 145, 4119–4128. [Google Scholar] [CrossRef]
- Macario, A.; López, J.C.; Blanco, S. Molecular Structure of Salicylic Acid and Its Hydrates: A Rotational Spectroscopy Study. Int. J. Mol. Sci. 2024, 25, 4074. [Google Scholar] [CrossRef]
- Pérez, C.; López, J.C.; Blanco, S.; Schnell, M. Water-Induced Structural Changes in Crown Ethers from Broadband Rotational Spectroscopy. J. Phys. Chem. Lett. 2016, 7, 4053–4058. [Google Scholar] [CrossRef]
- Murugachandran, S.I.; Sanz, M.E. Interactions of Limonene with the Water Dimer. Phys. Chem. Chem. Phys. 2022, 24, 26529–26538. [Google Scholar] [CrossRef]
- Melosso, M.; Alessandrini, S.; Spada, L.; Melli, A.; Wang, X.; Zheng, Y.; Duan, C.; Li, J.; Du, W.; Gou, Q. Rotational Spectra and Semi-Experimental Structures of Furonitrile and Its Water Cluster. Phys. Chem. Chem. Phys. 2023, 25, 31281–31291. [Google Scholar] [CrossRef]
- Blanco, S.; López, J.C.; Lesarri, A.; Alonso, J.L. Microsolvation of Formamide: A Rotational Study. J. Am. Chem. Soc. 2006, 128, 12111–12121. [Google Scholar] [CrossRef] [PubMed]
- Magneron, I.; Thevenet, R.; Mellouki, A.; Le Bras, G.; Moortgat, G.K.; Wirtz, K. A Study of the Photolysis and OH-Initiated Oxidation of Acrolein and Trans-Crotonaldehyde. J. Phys. Chem. A 2002, 106, 2526–2537. [Google Scholar] [CrossRef]
- Atkinson, R. A Structure-activity Relationship for the Estimation of Rate Constants for the Gas-phase Reactions of OH Radicals with Organic Compounds. Int. J. Chem. Kinet. 1987, 19, 799–828. [Google Scholar] [CrossRef]
- Kwok, E.S.C.; Atkinson, R. Estimation of Hydroxyl Radical Reaction Rate Constants for Gas-Phase Organic Compounds Using a Structure-Reactivity Relationship: An Update. Atmos. Environ. 1995, 29, 1685–1695. [Google Scholar] [CrossRef]
- Judge, R.H.; Moule, D.C. Thiocarbonyl Spectroscopy: Methyl Torsional Vibrations and Internal. J. Chem. Phys. 1987, 87, 60–67. [Google Scholar] [CrossRef]
- Fraser, G.T.; Lovas, F.J.; Suenram, R.D. On the Apparent Methyl Internal-Rotation Barrier Decrease in Weakly Bound Methanol Complexes. J. Mol. Spectrosc. 1994, 167, 231–235. [Google Scholar] [CrossRef]
- Calabrese, C.; Maris, A.; Vigorito, A.; Mariotti, S.; Fathi, P.; Geppert, W.D.; Melandri, S. Structure, Dynamics, and Accurate Laboratory Rotational Frequencies of the Acrylonitrile--Methanol Complex. J. Phys. Chem. A 2020, 124, 3601–3608. [Google Scholar] [CrossRef]
- Li, Z.; Nizkorodov, S.A.; Chen, H.; Lu, X.; Yang, X.; Chen, J. Nitrogen-Containing Secondary Organic Aerosol Formation by Acrolein Reaction with Ammonia/Ammonium. Atmos. Chem. Phys. 2019, 19, 1343–1356. [Google Scholar] [CrossRef]
- Borchers, M.T.; Wesselkamper, S.; Wert, S.E.; Shapiro, S.D.; Leikauf, G.D. Monocyte Inflammation Augments Acrolein-Induced Muc5ac Expression in Mouse Lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 1999, 277, L489–L497. [Google Scholar] [CrossRef] [PubMed]
- Ayer, H.E.; Yeager, D.W. Irritants in Cigarette Smoke Plumes. Am. J. Public Health 1982, 72, 1283–1285. [Google Scholar] [CrossRef]
- Pradipta, A.R.; Tanaka, K. Application of Acrolein Imines to Organic Synthesis, Biofunctional Studies, and Clinical Practice. Chem. Rec. 2021, 21, 646–662. [Google Scholar] [CrossRef] [PubMed]
- Evangelisti, L.; Maris, A.; Grieco, F.; Calabrese, C.; Melandri, S. Millimeter Wave Free-Jet Spectrum of Acrolein and Several Isotopologues. Can. J. Phys. 2020, 98, 555–559. [Google Scholar] [CrossRef]
- Cherniak, E.A.; Costain, C.C. Microwave Spectrum and Molecular Structure of Trans-Acrolein. J. Chem. Phys. 1966, 45, 104–110. [Google Scholar] [CrossRef]
- Wagner, R.; Fine, J.; Simmons, J.W.; Goldstein, J.H. Microwave Spectrum, Structure, and Dipole Moment of s-Trans Acrolein. J. Chem. Phys. 1957, 26, 634–637. [Google Scholar] [CrossRef]
- Winnewisser, M.; Winnewisser, G.; Honda, T.; Hirota, E. Ground State Centrifugal Distortion Constants of Trans-Acrolein, CH2 = CH–CHO from the Microwave and Millimeter Wave Rotational Spectra 1, 2. Z. Für Naturforsch. A 1975, 30, 1001–1014. [Google Scholar] [CrossRef]
- Blom, C.E.; Bauder, A. Microwave Spectrum, Rotational Constants and Dipole Moment of s-Cis Acrolein. Chem. Phys. Lett. 1982, 88, 55–58. [Google Scholar] [CrossRef]
- Blom, C.E.; Grassi, G.; Bauder, A. Molecular Structure of S-Cis-and s-Trans-Acrolein Determined by Microwave Spectroscopy. J. Am. Chem. Soc. 1984, 106, 7427–7431. [Google Scholar] [CrossRef]
- Jaman, A.I.; Bhattacharya, R. Millimeter-Wave Rotational Spectra of Trans-Acrolein (Propenal) (CH2CHCOH): A DC Discharge Product of Allyl Alcohol (CH2CHCH2OH) Vapor and DFT Calculation. J. At. Mol. Opt. Phys. 2012, 2012, 363247. [Google Scholar] [CrossRef]
- Alves, A.C.P.; Christoffersen, J.; Hollas, J.M. Near Ultra-Violet Spectra of the s-Trans and a Second Rotamer of Acrolein Vapour. Mol. Phys. 1971, 20, 625–644. [Google Scholar] [CrossRef]
- Li, W.; Maris, A.; Calabrese, C.; Usabiaga, I.; Geppert, W.D.; Evangelisti, L.; Melandri, S. Atmospherically Relevant Acrolein--Water Complexes: Spectroscopic Evidence of Aldehyde Hydration and Oxygen Atom Exchange. Phys. Chem. Chem. Phys. 2019, 21, 23559–23566. [Google Scholar] [CrossRef]
- Stockman, P.A.; Blake, G.A.; Lovas, F.J.; Suenram, R.D. Microwave Rotation-Tunneling Spectroscopy of the Water--Methanol Dimer: Direct Structural Proof for the Strongest Bound Conformation. J. Chem. Phys. 1997, 107, 3782–3790. [Google Scholar] [CrossRef]
- Haeckel, M.; Stahl, W. The Microwave Spectrum and Molecular Structure of the Hydrogen-Bonded Aniline–Methanol Complex. J. Mol. Spectrosc. 1999, 198, 263–277. [Google Scholar] [CrossRef] [PubMed]
- Lovas, F.J.; Hartwig, H. The Microwave Spectrum of the Methanol Dimer ForK= 0 and 1 States. J. Mol. Spectrosc. 1997, 185, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Ilyushin, V.V.; Lovas, F.J.; Plusquellic, D.F. Microwave Spectrum of the Heterodimers: CH3OH–CO2 and CH3OH–H2CO. J. Mol. Spectrosc. 2006, 239, 94–100. [Google Scholar] [CrossRef]
- Westphal, A.; Jacoby, C.; Ratzer, C.; Reichelt, A.; Schmitt, M. Determination of the Intermolecular Geometry of the Phenol–Methanol Cluster. Phys. Chem. Chem. Phys. 2003, 5, 4114–4122. [Google Scholar] [CrossRef]
- Sun, L.; Tan, X.; Oh, J.J.; Kuczkowski, R.L. The Microwave Spectrum and Structure of the Methanol⋅SO2 Complex. J. Chem. Phys. 1995, 103, 6440–6449. [Google Scholar] [CrossRef]
- Tan, X.-Q.; Ioannou, I.I.; Kuczkowski, R.L. The Methanol·HCl Complex: Structure and Methyl Group Internal Rotation Barrier. J. Mol. Struct. 1995, 356, 105–115. [Google Scholar] [CrossRef]
- Tan, X.Q.; Sun, L.H.; Kuczkowski, R.L. The Methanol · Ar Complex: Apparent Reduction of the Methyl Group Internal Rotation Barrier. J. Mol. Spectrosc. 1995, 171, 248–264. [Google Scholar] [CrossRef]
- Schmitt, M.; Küpper, J.; Spangenberg, D.; Westphal, A. Determination of the Structures and Barriers to Hindered Internal Rotation of the Phenol–Methanol Cluster in the S0 and S1 States. Chem. Phys. 2000, 254, 349–361. [Google Scholar] [CrossRef]
- Lovas, F.J.; Suenram, R.D.; Fraser, G.T.; Gillies, C.W.; Zozom, J. The Microwave Spectrum of Formamide–Water and Formamide–Methanol Complexes. J. Chem. Phys. 1988, 88, 722–729. [Google Scholar] [CrossRef]
- Lovas, F.J.; Belov, S.P.; Tretyakov, M.Y.; Ortigoso, J.; Suenram, R.D. The Microwave Spectrum and Structure of the CH3OH CO Dimer. J. Mol. Spectrosc. 1994, 167, 191–204. [Google Scholar] [CrossRef]
- Finneran, I.A.; Carroll, P.B.; Mead, G.J.; Blake, G.A. Hydrogen Bond Competition in the Ethanol–Methanol Dimer. Phys. Chem. Chem. Phys. 2016, 18, 22565–22572. [Google Scholar] [CrossRef] [PubMed]
- Lees, R.M.; Lovas, F.J.; Kirchhoff, W.H.; Johnson, D. Microwave Spectra of Molecules of Astrophysical Interest: III. Methanol. J. Phys. Chem. Ref. Data 1973, 2, 205–214. [Google Scholar] [CrossRef]
- Hartwig, H.; Dreizler, H. The Microwave Spectrum of Trans-2,3-Dimethyloxirane in Torsional Excited States. Z. Für Naturforsch. A 1996, 51, 923–932. [Google Scholar] [CrossRef]
- Xu, L.-H.; Lovas, F.J. Microwave Spectra of Molecules of Astrophysical Interest. XXIV. Methanol (CH3OH and 13CH3OH). J. Phys. Chem. Ref. Data 1997, 26, 17–156. [Google Scholar] [CrossRef]
- Ubbelohde, A.R.; Gallagher, K.J. Acid-Base Effects in Hydrogen Bonds in Crystals. Acta Crystallogr. 1955, 8, 71–83. [Google Scholar] [CrossRef]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef] [PubMed]
- Jeziorski, B.; Moszynski, R.; Szalewicz, K. Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van Der Waals Complexes. Chem. Rev. 1994, 94, 1887–1930. [Google Scholar] [CrossRef]
- Grabow, J.-U.; Stahl, W.; Dreizler, H. A Multioctave Coaxially Oriented Beam-Resonator Arrangement Fourier-Transform Microwave Spectrometer. Rev. Sci. Instrum. 1996, 67, 4072–4084. [Google Scholar] [CrossRef]
- Balle, T.J.; Flygare, W.H. Fabry—Perot Cavity Pulsed Fourier Transform Microwave Spectrometer with a Pulsed Nozzle Particle Source. Rev. Sci. Instrum. 1981, 52, 33–45. [Google Scholar] [CrossRef]
- Caminati, W.; Millemaggi, A.; Alonso, J.L.; Lesarri, A.; López, J.C.; Mata, S. Molecular Beam Fourier Transform Microwave Spectrum of the Dimethylether--Xenon Complex: Tunnelling Splitting and 131Xe Quadrupole Coupling Constants. Chem. Phys. Lett. 2004, 392, 1–6. [Google Scholar] [CrossRef]
- Caminati, W.; Evangelisti, L.; Feng, G.; Giuliano, B.M.; Gou, Q.; Melandri, S.; Grabow, J.-U. On the Cl⋯C Halogen Bond: A Rotational Study of CF3Cl-CO. Phys. Chem. Chem. Phys. 2016, 18, 17851–17855. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision B. 01, 2016; Gaussian Inc.: Wallingford, CT, USA, 2016; Volume 1. [Google Scholar]
- Woods, R.C. A General Program for the Calculation of Internal Rotation Splittings in Microwave Spectroscopy. J. Mol. Spectrosc. 1966, 21, 4–24. [Google Scholar] [CrossRef]
t-ACR-MeOH-1 | t-ACR-MeOH-2 | t-ACR-MeOH-3 | |
---|---|---|---|
A, B, C/MHz μa, μb, μc/D ΔEe/kJ mol−1 ΔE0/kJ mol−1 | 6233, 1390, 1145 −2.4, −0.5, 0.0 0 0 | 11158, 1036, 954 2.7, 0.6, 0.0 3.7 3.2 | 4905, 1692, 1373 −3.2, −1.4, 1.6 1.4 1.3 |
c-ACR-MeOH-1 | c-ACR-MeOH-2 | c-ACR-MeOH-3 | |
A, B, C/MHz μa, μb, μc/D ΔEe/kJ mol−1 ΔE0/kJ mol−1 | 5974, 1505, 1211 −2.4, 0.0, 0.0 10.5 10.1 | 16485, 1007, 955 −2.5, 0.2, 0.0 13.5 12.7 | 4958, 1824, 1481 −3.0, −1.2, −1.8 11.0 10.9 |
t-ACR-MeOH-1 | t-ACR-MeOD-1- | t-ACR-MeOH-2 | t-ACR-MeOD-2- | |
---|---|---|---|---|
A/MHz | 6180.152(3) [a] | 6193.285(9) | 11263.02(4) | 11312(12) |
B/MHz | 1350.2493(7) | 1345.401(2) | 1009.515(3) | 1004.652(2) |
C/MHz | 1116.9532(7) | 1114.199(1) | 933.289(3) | 929.742(2) |
DJ/kHz | 0.905(6) | 0.905(6) | 0.724(9) | 0.71(1) |
DJK/kHz | −4.30(9) | −4.7(1) | −37.1(2) | −38(1) |
d1/kHz | −0.219(6) | −0.217(9) | −0.09(1) | −0.082(9) |
V3/kJ mol−1 | 2.686(3) | 2.825(3) | 2.722(6) | 2.856(1) |
δ/deg | 0.089(7) | 0.09(2) | 2.896(5) | 2.881(4) |
F0/GHz | 158.6(1) | 159.3(2) | 156.1(3) | [156.1] [b] |
Dc3J/kHz | −1.25(5) | −1.4(1) | - | |
σ [c]/kHz | 5.8 | 12.0 | 15.9 | 8.9 |
N [d] | 42 | 46 | 42 | 24 |
Mcc/uÅ2 | 1.7991 | 1.8275 | 1.9915 | 2.0731 |
Energies | Electrostatic | Induction | Dispersion | Exchange | BE SAPT | BE MP2 |
---|---|---|---|---|---|---|
Acrolein-Methanol | ||||||
t-ACR-MeOH-1 | −46.15 | −16.16 | −20.45 | 54.08 | −28.68 | −30.4 |
t-ACR-MeOH-2 | −38.67 | −14.24 | −17.15 | 44.22 | −25.84 | −26.8 |
t-ACR-MeOH-3 | −43.84 | −14.07 | −22.36 | 53.60 | −26.68 | −29.1 |
c-ACR-MeOH-1 | −45.38 | −16.44 | −20.75 | 54.23 | −28.34 | −29.4 |
c-ACR-MeOH-2 | −38.39 | −14.20 | −17.04 | 44.08 | −25.55 | −26.3 |
c-ACR-MeOH-3 | −43.96 | −14.24 | −23.41 | 54.59 | −27.02 | −28.9 |
Acrolein-Water | ||||||
t-ACR-W-1 | −44.43 | −15.15 | −17.96 | 49.78 | −27.76 | −28.8 |
t-ACR-W-2 | −37.85 | −13.69 | −15.27 | 41.47 | −25.35 | −25.8 |
c-ACR-W-1 | −42.90 | −14.94 | −17.94 | 48.63 | −27.14 | −27.6 |
c-ACR-W-2 | −37.57 | −13.66 | −15.17 | 41.34 | −25.05 | −25.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, D.; Sundelin, D.; Maris, A.; Evangelisti, L.; Geppert, W.D.; Melandri, S. Intermolecular Interactions between Aldehydes and Alcohols: Conformational Equilibrium and Rotational Spectra of Acrolein-Methanol Complex. Molecules 2024, 29, 3444. https://doi.org/10.3390/molecules29153444
Lv D, Sundelin D, Maris A, Evangelisti L, Geppert WD, Melandri S. Intermolecular Interactions between Aldehydes and Alcohols: Conformational Equilibrium and Rotational Spectra of Acrolein-Methanol Complex. Molecules. 2024; 29(15):3444. https://doi.org/10.3390/molecules29153444
Chicago/Turabian StyleLv, Dingding, David Sundelin, Assimo Maris, Luca Evangelisti, Wolf Dietrich Geppert, and Sonia Melandri. 2024. "Intermolecular Interactions between Aldehydes and Alcohols: Conformational Equilibrium and Rotational Spectra of Acrolein-Methanol Complex" Molecules 29, no. 15: 3444. https://doi.org/10.3390/molecules29153444
APA StyleLv, D., Sundelin, D., Maris, A., Evangelisti, L., Geppert, W. D., & Melandri, S. (2024). Intermolecular Interactions between Aldehydes and Alcohols: Conformational Equilibrium and Rotational Spectra of Acrolein-Methanol Complex. Molecules, 29(15), 3444. https://doi.org/10.3390/molecules29153444