Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (169)

Search Parameters:
Keywords = acrolein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2151 KiB  
Article
A Possibility of Tribological Investigation of Physicochemical Processes in a Friction Pair Operating Under Selective Transfer Conditions
by Filip Ilie, Daniel Constantin Cotici and Andrei-Florin Hristache
Lubricants 2025, 13(8), 331; https://doi.org/10.3390/lubricants13080331 - 30 Jul 2025
Viewed by 236
Abstract
The physicochemical processes that occur during selective transfer in the contact area of a bronze/steel friction pair lubricated with glycerin are experimentally studied by the polarization method to observe how they influence the tribological properties (friction and wear) of the pair. The proposed [...] Read more.
The physicochemical processes that occur during selective transfer in the contact area of a bronze/steel friction pair lubricated with glycerin are experimentally studied by the polarization method to observe how they influence the tribological properties (friction and wear) of the pair. The proposed method allows for the study of tribochemical transformations of glycerin and the friction pair materials during the work process with selective transfer. The analysis of the experimental results allows for the establishment of the conditions for a stable and stationary selective transfer during the operation of the bronze/steel pair, by friction, at which the friction coefficient (COF) values and wear are low. This was achieved by implementing continuous lubrication with fresh glycerin in the contact area, choosing the optimal flow rate, and maintaining an optimal ratio between glycerin and the chemical transformation products, within well-established limits, to avoid undesirable consequences. Acrolein, as a product of chemical transformation (resulting from the catalytic dehydration of glycerin), is the most important for the initiation and stability of the selective transfer, and as the main reaction product, also represents a pathway of regeneration. Thus, it was found that the friction relative moments and the acrolein concentration presented conclusive/specific results at loads of 4–15 MPa and a sliding speed of 0.3 m/s. The optimum lubricant entry speed is 15–30 mg/min, for a minimum COF and reduced wear (about 0.028–0.03 at relatively high operating temperatures (45 and 60 °C)), and at low temperatures (30 °C) the minimum COF is about 0.038, but the lubricant inlet entry speed increases considerably, by around 1000 mg/min. Therefore, this paper aims to demonstrate the possibility of moving to another stage of practical use of a friction pair (with greatly improved tribological properties) that operates with selective transfer, much different from the ones still present, using a lubricant with special properties (glycerin). The research method used (polarization) highlights the physicochemical properties, tribochemical transformations of the lubricant, and the friction pair materials present in the contact area, for the understanding, maintenance, and stability of selective transfer, based on experiments, as a novelty compared to other studies. Full article
(This article belongs to the Special Issue Experimental Modelling of Tribosystems)
Show Figures

Figure 1

20 pages, 5770 KiB  
Article
In Vitro Evaluation of the Protective Efficacy of Crocus sativus L. Waste for the Sustainable Development of Bioactive Phytocomplexes
by Alessia Galante, Francesca Corsi, Emily Cioni, Mauro Di Stasi, Maria Anna Maggi, Silvia Bisti, Ilaria Piano and Claudia Gargini
Molecules 2025, 30(14), 2894; https://doi.org/10.3390/molecules30142894 - 8 Jul 2025
Viewed by 334
Abstract
Saffron, branded as Repron®, is effective in slowing the progression of several neurodegenerative diseases. Its production, however, requires specific cultivation techniques and procedures that, together with low yields, make it expensive. To address this challenge, hydroponic cultivation has been adopted. Previous [...] Read more.
Saffron, branded as Repron®, is effective in slowing the progression of several neurodegenerative diseases. Its production, however, requires specific cultivation techniques and procedures that, together with low yields, make it expensive. To address this challenge, hydroponic cultivation has been adopted. Previous studies have shown that hydroponically cultivated saffron and Repron® share comparable chemical compositions and neuroprotective effects under oxidative stress conditions. In this study, we evaluated the protective properties of extracts derived from Crocus sativus L. waste, compared with those of saffron derived from stigmas. Human retinal pigment epithelium (ARPE-19) cells were pre-treated with extracts of various plant waste fractions before being subjected to three stress conditions: H2O2-induced oxidative stress (500 μM, 3 h), lipopolysaccharide (LPS; 0.25 mg/mL, 24 h), and hyperglycemia (25 mM glucose, 96 h). Saffron Repron® served as a positive control. The results revealed that the extract derived from C. sativus waste had superior protective effects against oxidative stress and inflammation by preserving the state of the mitochondria and tight junctions (ZO-1); conversely, the tepal extract alone was more effective under hyperglycemic conditions by also modulating acrolein levels. These results suggest that different plant fractions contain bioactive compounds with specific protective actions, which together lead to increased cell survival. Full article
Show Figures

Graphical abstract

14 pages, 4709 KiB  
Article
Eco-Friendly Gallic Acid-Tailored Binder with Synergistic Polarity Sites for High-Loading Lithium–Sulfur Batteries
by Xulong Jing, Shuyu Liu, Jiapei Wang, Chao Wan, Juan Zhu, Xiaojun He and Biyu Jin
Sustainability 2025, 17(12), 5240; https://doi.org/10.3390/su17125240 - 6 Jun 2025
Viewed by 560
Abstract
The development of polymer binders with tailored functionalities and green manufacturing processes is highly needed for high-performance lithium–sulfur batteries. In this study, a readily hydrolyzable 3,9-divinyl-2,4,8,10-tetraoxaspiro-[5.5]-undecane is utilized to prepare a water-based binder. Specifically, the acrolein produced by hydrolysis undergoes in situ polymerization [...] Read more.
The development of polymer binders with tailored functionalities and green manufacturing processes is highly needed for high-performance lithium–sulfur batteries. In this study, a readily hydrolyzable 3,9-divinyl-2,4,8,10-tetraoxaspiro-[5.5]-undecane is utilized to prepare a water-based binder. Specifically, the acrolein produced by hydrolysis undergoes in situ polymerization to form a linear polymer, while the other hydrolyzed product, pentaerythritol, physically crosslinks these polymer chains via hydrogen bonding, generating a network polymer (BTU). Additionally, gallic acid (GA), a substance derived from waste wood, is further introduced into BTU during slurry preparation, forming a biphenol-containing binder (BG) with a multi-hydrogen-bonded structure. This resilience and robust cathode framework effectively accommodate volumetric changes during cycling while maintaining efficient ion and electron transport pathways. Furthermore, the abundant polar groups in BG enable strong polysulfide adsorption. As a result, sulfur cathode with a high mass loading of 5.3 mg cm−2 employing the BG (7:3) binder still retains an areal capacity of 4.7 mA h cm−2 after 50 cycles at 0.1 C. This work presents a sustainable strategy for battery manufacturing by integrating renewable biomass-derived materials and eco-friendly aqueous processing to develop polymer binders, offering a green pathway to high-performance lithium–sulfur batteries. Full article
(This article belongs to the Special Issue Sustainable Materials and Technologies for Battery Manufacturing)
Show Figures

Figure 1

17 pages, 3300 KiB  
Article
Acrolein-Triggered Ferroptosis and Protection by Intermittent Fasting via the AMPK/NRF2-CLOCK/BMAL1 Pathway
by Yuandie Zhang, Hong Chen, Qianfeng Chen, Margaret Zaitoun, Ying Cheng, Jierong Ge and Qing Feng
Toxics 2025, 13(5), 369; https://doi.org/10.3390/toxics13050369 - 1 May 2025
Viewed by 727
Abstract
Environmental pollution significantly exacerbates various diseases, particularly those affecting the cardiovascular and respiratory systems. Our previous studies have shown that acrolein, an environmental pollutant, promotes atherosclerosis by downregulating the circadian clock genes (CLOCK/BMAL1) and disrupting circadian rhythm. We have also found that intermittent [...] Read more.
Environmental pollution significantly exacerbates various diseases, particularly those affecting the cardiovascular and respiratory systems. Our previous studies have shown that acrolein, an environmental pollutant, promotes atherosclerosis by downregulating the circadian clock genes (CLOCK/BMAL1) and disrupting circadian rhythm. We have also found that intermittent fasting (IF), closely linked to the circadian clock, may mitigate atherosclerosis induced by acrolein. Ferroptosis, a newly identified form of regulated cell death, is associated with the acceleration of atherosclerotic development, but its relationship with the circadian clock is not well understood. In this study, we explored the potential of IF to alleviate ferroptosis by modulating the circadian clock. Our in vivo experiments revealed that IF reversed ferroptosis and upregulated CLOCK/BMAL1 in APOE-/- mice. In human umbilical vein endothelial cells (HUVECs), we discovered that acrolein-induced ferroptosis leads to cell death, while short-term starvation (STS, IF cell model) reversed this effect. Acrolein also suppressed the expression of AMP-activated protein kinase (AMPK), nuclear factor erythroid 2-related factor 2 (NRF2), and CLOCK/BMAL1, which were restored by subsequent STS treatments. Additionally, the overexpression of CLOCK/BMAL1 mitigated ferroptosis, consistent with findings from CLOCK gene knockout experiments. Notably, CLOCK/BMAL1 and AMPK/NRF2 were found to be mutually regulated. Concurrently, the AMPK and NRF2 signaling pathways may be interdependent and act in concert. In conclusion, our findings suggest that IF modulates the CLOCK/BMAL1-AMPK/NRF2 pathway to alleviate acrolein-induced ferroptosis, offering a potential strategy to address health issues related to environmental pollution. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Figure 1

17 pages, 1424 KiB  
Review
Ultraprocessed Foods and Neuropsychiatric Outcomes: Putative Mechanisms
by Mariane Lutz, Marcelo Arancibia, Javier Moran-Kneer and Marcia Manterola
Nutrients 2025, 17(7), 1215; https://doi.org/10.3390/nu17071215 - 30 Mar 2025
Cited by 1 | Viewed by 3860
Abstract
A body of evidence indicates an association between ultraprocessed foods (UPFs) and health outcomes. Most of it has been obtained through preclinical studies, although a number of observational studies substantiate how a high intake of these products increases the risk of neuropsychiatric disorders, [...] Read more.
A body of evidence indicates an association between ultraprocessed foods (UPFs) and health outcomes. Most of it has been obtained through preclinical studies, although a number of observational studies substantiate how a high intake of these products increases the risk of neuropsychiatric disorders, and an increasing amount of dietary intervention studies confirm these findings. The aim of this narrative review is to describe some of the putative mechanisms involved in the deleterious effects of a high intake of UPFs on neuropsychiatric outcomes. A myriad of unhealthy actions may be associated with the consumption of UPFs, and some mechanisms are being discussed. They include UPFs’ high caloric density; their high sugar, sodium, and additives content and low amounts of fiber; and a high palatability that induces overconsumption, acting as obesogens. Moreover, thermal treatment of these foods generates oxidative products such as glycotoxins, lipotoxins, and acrolein, all of which affect the brain. The chemical products act, directly or indirectly, on the gut microbiome and affect the gut–brain axis, causing neuroinflammation, oxidative stress, and neurodegeneration. UPFs also exert various epigenetic effects that affect mental health and might explain the intergenerational inheritance of neuropsychiatric disorders. A diet containing a high proportion of these foods has a low nutritional density, including bioactive protective agents such as antioxidant and anti-inflammatory compounds that promote eubiosis. The evidence shows that UPFs intake affects neuropsychiatric outcomes such as neurodegeneration, cognitive decline, dementia, and mood disorders and reinforces the need to promote a healthy dietary pattern throughout all life stages, thus interfering with the current commercial determinants of health. Full article
Show Figures

Figure 1

20 pages, 2997 KiB  
Article
A Case Study of Ozone Pollution in a Typical Yangtze River Delta City During Typhoon: Identifying Precursors, Assessing Health Risks, and Informing Local Governance
by Mei Wan, Xinglong Pang, Xiaoxia Yang, Kai Xu, Jianting Chen, Yinglong Zhang, Junyue Wu and Yushang Wang
Atmosphere 2025, 16(3), 330; https://doi.org/10.3390/atmos16030330 - 14 Mar 2025
Viewed by 688
Abstract
Ozone (O3) is a crucial atmospheric component that significantly affects air quality and poses considerable health risks to humans. In the coastal areas of the Yangtze River Delta, typhoons, influenced by the subtropical high-pressure system, can lead to complex ozone pollution [...] Read more.
Ozone (O3) is a crucial atmospheric component that significantly affects air quality and poses considerable health risks to humans. In the coastal areas of the Yangtze River Delta, typhoons, influenced by the subtropical high-pressure system, can lead to complex ozone pollution situations. This study aimed to explore the causes, sources, and health risks of O3 pollution during such events. Ground-based data from Jiaxing City’s key ozone precursor (VOCs) composition observations, ERA5 reanalysis data, and models CMAQ-ISAM and PMF were employed. Focusing on the severe ozone pollution event in Jiaxing from 3 to 11 September 2022, the results showed that local ozone production was the main contributor (60.8–81.4%, with an average of 72.3%), while external regional transport was secondary. Concentrations of olefins and aromatic hydrocarbons increased remarkably, playing a vital role in ozone formation. Meteorological conditions, such as reduced cloud cover during typhoon periphery transit, promoted ozone accumulation. By considering the unique respiratory exposure habits of the Chinese population, refined health risk assessments were conducted. Acrolein was found to be the main cause of chronic non-carcinogenic risks (NCRs), with NCR values reaching 1.74 and 2.02 during and after pollution. In lifetime carcinogenic risk (LCR) assessment, the mid-pollution LCR was 1.73 times higher, mainly due to 1,2-dichloroethane and benzene. This study presents a methodology that is readily adaptable to analogous pollution incidents, thereby providing a pragmatic framework to guide actionable local government policy-making aimed at safeguarding public health and mitigating urban ozone pollution. Full article
Show Figures

Figure 1

12 pages, 3252 KiB  
Article
Au Nanoclusters on Vanadium-Doped ZrO2 Nanoparticles for Propylene Oxidation: An Investigation into the Impact of V
by Caixia Qi, Jingzhou Zhang, Xun Sun, Libo Sun, Huijuan Su and Toru Murayama
Materials 2025, 18(5), 1118; https://doi.org/10.3390/ma18051118 - 1 Mar 2025
Cited by 1 | Viewed by 784
Abstract
V-doped ZrO2 support materials were synthesized through a hydrothermal method, followed by a deposition–precipitation process to load Au clusters using an H4AuClO4 precursor. This study investigated the impact of vanadium doping on propylene epoxidation over the corresponding Au-supported catalysts. [...] Read more.
V-doped ZrO2 support materials were synthesized through a hydrothermal method, followed by a deposition–precipitation process to load Au clusters using an H4AuClO4 precursor. This study investigated the impact of vanadium doping on propylene epoxidation over the corresponding Au-supported catalysts. Vanadium incorporation significantly enhanced propylene conversion and promoted acrolein production, leading to reduced propylene oxide selectivity. Propylene epoxidation at higher temperatures accelerated the decomposition of oxygenates into CO2. Vanadium addition to ZrO2 altered the interactions between Au and V-doped ZrO2, thereby modifying the chemical states of Zr, Au, and V and forming surface oxygen vacancies and active oxygen species. These changes defined the catalytic performance of the materials. Full article
Show Figures

Figure 1

15 pages, 1515 KiB  
Review
Ultra-Processed Foods and Type 2 Diabetes Mellitus: What Is the Evidence So Far?
by Natalia G. Vallianou, Angelos Evangelopoulos, Ilektra Tzivaki, Stavroula Daskalopoulou, Andreas Adamou, Georgia Chrysi Michalaki Zafeiri, Irene Karampela, Maria Dalamaga and Dimitris Kounatidis
Biomolecules 2025, 15(2), 307; https://doi.org/10.3390/biom15020307 - 19 Feb 2025
Cited by 1 | Viewed by 2565
Abstract
Ultra-processed foods (UPFs) are foods that have undergone extensive industrial processing with the addition of various substances in order to make them more tasty, eye-catching, and easy to consume. UPFs are usually rich in sugars, salt, and saturated fat, whereas they lack essential [...] Read more.
Ultra-processed foods (UPFs) are foods that have undergone extensive industrial processing with the addition of various substances in order to make them more tasty, eye-catching, and easy to consume. UPFs are usually rich in sugars, salt, and saturated fat, whereas they lack essential nutrients. The aim of this review is to elaborate upon the current evidence associating overconsumption of UPFs with the development of type 2 diabetes mellitus (T2DM). We will discuss data interconnecting UPFs and T2DM risk and will further describe specific ingredients that have been suggested to increase this risk. In addition, we will thoroughly explain how additives, such as emulsifiers or sweeteners, or other compounds formed during manufacturing, such as acrylamide and acrolein, and during packaging, such as bisphenol-A, are proposed to be implicated in the pathogenesis of insulin resistance and T2DM. Full article
Show Figures

Figure 1

17 pages, 17370 KiB  
Article
The Characteristics, Sources, and Health Risks of Volatile Organic Compounds in an Industrial Area of Nanjing
by Tao Tan, Xinyuan Xu, Haixin Gu, Li Cao, Ting Liu, Yunjiang Zhang, Junfeng Wang, Mindong Chen, Haiwei Li and Xinlei Ge
Toxics 2024, 12(12), 868; https://doi.org/10.3390/toxics12120868 - 29 Nov 2024
Cited by 5 | Viewed by 1459
Abstract
This study investigates the chemical complexity and toxicity of volatile organic compounds (VOCs) emitted from national petrochemical industrial parks and their effects on air quality in an industrial area of Nanjing, China. Field measurements were conducted from 1 December 2022, to 17 April [...] Read more.
This study investigates the chemical complexity and toxicity of volatile organic compounds (VOCs) emitted from national petrochemical industrial parks and their effects on air quality in an industrial area of Nanjing, China. Field measurements were conducted from 1 December 2022, to 17 April 2023, focusing on VOC concentrations and speciations, diurnal variations, ozone formation potential (OFP), source identification, and associated health risks. The results revealed an average total VOC (TVOC) concentration of 15.9 ± 12.9 ppb and an average OFP of 90.1 ± 109.5 μg m−3. Alkanes constituted the largest fraction of VOCs, accounting for 44.1%, while alkenes emerged as the primary contributors to OFP, comprising 52.8%. TVOC concentrations peaked before dawn, a pattern attributed to early morning industrial activities and nighttime heavy vehicle operations. During periods classified as clean, when ozone levels were below 160 μg m−3, both TVOC (15.9 ± 12.9 ppb) and OFP (90.4 ± 110.0 μg m−3) concentrations were higher than those during polluted hours. The analysis identified the key sources of VOC emissions, including automobile exhaust, oil and gas evaporation, and industrial discharges, with additional potential pollution sources identified in adjacent regions. Health risk assessments indicated that acrolein exceeded the non-carcinogenic risk threshold at specific times. Moreover, trichloromethane, 1,3-butadiene, 1,2-dichloroethane, and benzene were found to surpass the acceptable lifetime carcinogenic risk level (1 × 10−6) during certain periods. These findings highlight the urgent need for enhanced monitoring and regulatory measures aimed at mitigating VOC emissions and protecting public health in industrial areas. In the context of complex air pollution in urban industrial areas, policymakers should focus on controlling industrial and vehicle emissions, which can not only reduce secondary pollution, but also inhibit the harm of toxic substances on human health. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

17 pages, 1653 KiB  
Article
Assessment of Lipid Peroxidation Products in Adult Formulas: GC-MS Determination of Carbonyl and Volatile Compounds Under Different Storage Conditions
by Jorge Antonio Custodio-Mendoza, Alexandra Rangel Silva, Marcin A. Kurek, Paulo Joaquim Almeida, João Rodrigo Santos, José António Rodrigues and Antonia María Carro
Foods 2024, 13(23), 3752; https://doi.org/10.3390/foods13233752 - 23 Nov 2024
Cited by 2 | Viewed by 1627
Abstract
The occurrence of carbonyl compounds and volatile organic compounds (VOCs) in adult formulas is a critical issue in product safety and quality. This research manuscript reports the determination of targeted and untargeted carbonyl compounds and VOCs in adult formulas stored at different temperatures [...] Read more.
The occurrence of carbonyl compounds and volatile organic compounds (VOCs) in adult formulas is a critical issue in product safety and quality. This research manuscript reports the determination of targeted and untargeted carbonyl compounds and VOCs in adult formulas stored at different temperatures (room temperature, 4 °C, and 60 °C) over one month. Gas chromatography-mass spectrometry was utilized for the sample analysis. Ultrasound-assisted dispersive liquid–liquid microextraction at 60 °C for 20 min facilitated the extraction of six carbonyl compounds, while headspace solid-phase microextraction (HS-SPME) was employed for the determination of untargeted VOCs using a DVB/CAR/PDMS fiber, involving 15 min of equilibration and 45 min of extraction at 40 °C with magnetic stirring. Analytical features of the methods were assessed according to Food and Drug Administration guidelines, and good limits of detection and quantitation, linearity, accuracy, and precision were achieved. Notably, the highest levels of carbonyl compounds were found in high-protein formulas, with quantifiable levels of malondialdehyde, acrolein, and formaldehyde detected and quantified in 80% of samples. Additionally, significant levels of VOCs such as hexanal and 2-heptanone were found in samples stored at elevated temperatures. These findings suggest the importance of protein content and storage conditions in the levels of carbonyl compounds and VOCs found in adult formulas, with implications for consumer safety and quality control. Full article
(This article belongs to the Special Issue Storage and Shelf-Life Assessment of Food Products)
Show Figures

Graphical abstract

18 pages, 3031 KiB  
Article
Synergistic Effects of Nonthermal Plasma and Solid Acid Catalysts in Thermo-Catalytic Glycerol Dehydration
by Lu Liu, Fei Yu, Siqun Wang and Xiaofei Philip Ye
Catalysts 2024, 14(11), 790; https://doi.org/10.3390/catal14110790 - 6 Nov 2024
Viewed by 855
Abstract
To enhance the bio-based synthesis of acrolein from glycerol, a hybrid approach combining in situ nonthermal plasma (NTP) with thermo-catalytic dehydration was employed. This study investigated the impact of the reaction temperature and NTP discharge field strength on glycerol conversion, acrolein selectivity, byproduct [...] Read more.
To enhance the bio-based synthesis of acrolein from glycerol, a hybrid approach combining in situ nonthermal plasma (NTP) with thermo-catalytic dehydration was employed. This study investigated the impact of the reaction temperature and NTP discharge field strength on glycerol conversion, acrolein selectivity, byproduct formation, and coke deposition using two catalysts of silicotungstic acid supported on mesoporous alumina and silica. The results revealed that, while the reaction temperature and NTP field strength exhibited complex interactions, the in situ application of NTP markedly improved both glycerol conversion and acrolein selectivity when optimized for specific temperature–NTP field strength combinations. Additionally, the reaction mechanisms of glycerol dehydration with the two catalysts, in the presence and absence of NTP, were systematically analyzed and discussed based on the experimental data. Full article
Show Figures

Graphical abstract

12 pages, 2387 KiB  
Article
Preliminary Assessment of Tunic Off-Gassing after Wildland Firefighting Exposure
by Kiam Padamsey, Adelle Liebenberg, Ruth Wallace and Jacques Oosthuizen
Fire 2024, 7(9), 321; https://doi.org/10.3390/fire7090321 - 14 Sep 2024
Cited by 2 | Viewed by 1083
Abstract
Evidence has previously shown that outer tunics (turnout coats) worn by firefighters at structural fires are contaminated with harmful chemicals which subsequently off-gas from the material. However, there is limited research on whether this phenomenon extends to wildland firefighter uniforms. This pilot study [...] Read more.
Evidence has previously shown that outer tunics (turnout coats) worn by firefighters at structural fires are contaminated with harmful chemicals which subsequently off-gas from the material. However, there is limited research on whether this phenomenon extends to wildland firefighter uniforms. This pilot study aimed to explore if the tunics of volunteer bushfire and forestry firefighters in Western Australia off-gas any contaminants after exposure to prescribed burns or bushfires, and whether there is a need to explore this further. Nine tunics were collected from firefighters following nine bushfire and prescribed burn events, with a set of unused tunics serving as a control. Chemical analysis was performed on these tunics to assess levels of acrolein, benzene, formaldehyde, and sulphur dioxide contamination. The assessment involved measuring chemical off-gassing over a 12 h period using infrared spectrometry. Tunics worn by firefighters appear to adsorb acrolein, benzene, formaldehyde, and sulphur dioxide from bushfire smoke and these contaminants are emitted from firefighting tunics following contamination at elevated concentrations. Further investigation of this research with a larger study sample will be beneficial to understand this phenomenon better and to determine the full extent and range of chemical contaminants absorbed by all firefighter clothing. Full article
Show Figures

Figure 1

12 pages, 835 KiB  
Communication
Singlet-Oxygen-Mediated Regulation of Photosynthesis-Specific Genes: A Role for Reactive Electrophiles in Signal Transduction
by Tina Pancheri, Theresa Baur and Thomas Roach
Int. J. Mol. Sci. 2024, 25(15), 8458; https://doi.org/10.3390/ijms25158458 - 2 Aug 2024
Cited by 1 | Viewed by 1208
Abstract
During photosynthesis, reactive oxygen species (ROS) are formed, including hydrogen peroxide (H2O2) and singlet oxygen (1O2), which have putative roles in signalling, but their involvement in photosynthetic acclimation is unclear. Due to extreme reactivity and [...] Read more.
During photosynthesis, reactive oxygen species (ROS) are formed, including hydrogen peroxide (H2O2) and singlet oxygen (1O2), which have putative roles in signalling, but their involvement in photosynthetic acclimation is unclear. Due to extreme reactivity and a short lifetime, 1O2 signalling occurs via its reaction products, such as oxidised poly-unsaturated fatty acids in thylakoid membranes. The resulting lipid peroxides decay to various aldehydes and reactive electrophile species (RES). Here, we investigated the role of ROS in the signal transduction of high light (HL), focusing on GreenCut2 genes unique to photosynthetic organisms. Using RNA seq. data, the transcriptional responses of Chlamydomonas reinhardtii to 2 h HL were compared with responses under low light to exogenous RES (acrolein; 4-hydroxynonenal), β-cyclocitral, a β-carotene oxidation product, as well as Rose Bengal, a 1O2-producing photosensitiser, and H2O2. HL induced significant (p < 0.05) up- and down-regulation of 108 and 23 GreenCut2 genes, respectively. Of all HL up-regulated genes, over half were also up-regulated by RES, including RBCS1 (ribulose bisphosphate carboxylase small subunit), NPQ-related PSBS1 and LHCSR1. Furthermore, 96% of the genes down-regulated by HL were also down-regulated by 1O2 or RES, including CAO1 (chlorophyllide-a oxygnease), MDH2 (NADP-malate dehydrogenase) and PGM4 (phosphoglycerate mutase) for glycolysis. In comparison, only 0–4% of HL-affected GreenCut2 genes were similarly affected by H2O2 or β-cyclocitral. Overall, 1O2 plays a significant role in signalling during the initial acclimation of C. reinhardtii to HL by up-regulating photo-protection and carbon assimilation and down-regulating specific primary metabolic pathways. Our data support that this pathway involves RES. Full article
Show Figures

Figure 1

16 pages, 15492 KiB  
Article
Intermolecular Interactions between Aldehydes and Alcohols: Conformational Equilibrium and Rotational Spectra of Acrolein-Methanol Complex
by Dingding Lv, David Sundelin, Assimo Maris, Luca Evangelisti, Wolf Dietrich Geppert and Sonia Melandri
Molecules 2024, 29(15), 3444; https://doi.org/10.3390/molecules29153444 - 23 Jul 2024
Cited by 1 | Viewed by 1240
Abstract
The rotational spectra of the 1:1 complex formed by acrolein and methanol and its deuterated isotopologues have been analyzed. Two stable conformations in which two hydrogen bonds between the two moieties are formed were detected. The rotational lines show a hyperfine structure due [...] Read more.
The rotational spectra of the 1:1 complex formed by acrolein and methanol and its deuterated isotopologues have been analyzed. Two stable conformations in which two hydrogen bonds between the two moieties are formed were detected. The rotational lines show a hyperfine structure due to the methyl group internal rotation in the complex and the V3 barriers hindering the motion were determined as 2.629(5) kJ mol−1 and 2.722(5) kJ mol−1 for the two conformations, respectively. Quantum mechanical calculations at the MP2/aug-cc-pVTZ level and comprehensive analysis of the intermolecular interactions, utilizing NCI and SAPT approaches, highlight the driving forces of the interactions and allow the determination of the binding energies of complex formation. Full article
Show Figures

Figure 1

34 pages, 7952 KiB  
Article
MgO Modified by X2, HX, or Alkyl Halide (X = Cl, Br, or I) Catalytic Systems and Their Activity in Chemoselective Transfer Hydrogenation of Acrolein into Allyl Alcohol
by Marek Gliński, Urszula Ulkowska, Zbigniew Kaszkur, Dariusz Łomot and Piotr Winiarek
Molecules 2024, 29(13), 3180; https://doi.org/10.3390/molecules29133180 - 3 Jul 2024
Viewed by 1833
Abstract
A new type of catalyst containing magnesium oxide modified with various modifiers ranging from bromine and iodine, to interhalogen compounds, hydrohalogenic acids, and alkyl halides have been prepared using chemical vapor deposition (CVD) and wet impregnation methods. The obtained systems were characterized using [...] Read more.
A new type of catalyst containing magnesium oxide modified with various modifiers ranging from bromine and iodine, to interhalogen compounds, hydrohalogenic acids, and alkyl halides have been prepared using chemical vapor deposition (CVD) and wet impregnation methods. The obtained systems were characterized using a number of methods: determination of the concentration of X ions, surface area determination, powder X-ray diffraction (PXRD), surface acid–base strength measurements, TPD of probe molecules (acetonitrile, pivalonitrile, triethylamine, and n-butylamine), TPD-MS of reaction products of methyl iodide with MgO, and Fourier transform infrared spectroscopy (FTIR). The catalysts’ activity and chemoselectivity during transfer hydrogenation from ethanol to acrolein to allyl alcohol was measured. A significant increase in the activity of modified MgO (up to 80% conversion) in the transfer hydrogenation of acrolein was found, while maintaining high chemoselectivity (>90%) to allyl alcohol. As a general conclusion, it was shown that the modification of MgO results in the suppression of strong basic sites of the oxide, with a simultaneous appearance of Brønsted acidic sites on its surface. Independently, extensive research on the reaction progress of thirty alkyl halides with MgO was also performed in order to determine its ability to neutralize chlorinated wastes. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

Back to TopTop