The Role of Hydrogen Bonding in the Raman Spectral Signals of Caffeine in Aqueous Solution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Caffeine⋯Water Interactions
2.2. Spectra
2.2.1. UV-Vis Spectrum
2.2.2. Spontaneous Raman and UV Resonance Raman Spectra
- Carbonyl stretching frequencies, , experimentally reported to appear at 1647 and 1692 cm−1 (theoretically located at 1728 and 1670 cm−1, respectively) and due to the two C=O groups couple into an in-phase and an out-of-phase stretching vibration. The in-phase one is predicted to have less intensity (sometimes a half) than the out-of-phase carbonyl vibration [40].
- C=C and C=N stretching modes in the purine ring system, and , at 1598 cm−1.
- Imidazole ring stretching plus + + C-H bend appearing as a peak at 1549 cm−1.
- Symmetric CH-bending vibrations in the methyl groups appearing as a broad band or a set of peaks [40] at 1488, 1470, 1454, and 1431 cm−1. These are collectively labeled as in ref. [29] and centered at approximately 1497 cm−1. Importantly, some of them also include a contribution of the in the imidazole ring.
- Bending of C8-H atoms in the imidazole group combined with CH3 bending of methyl groups, located at about 1437 cm−1. This peak is labeled as in ref. [29].
- Joint quadratal , and bending of methyl groups at 1406 cm−1.
- Stretching in the imidazole ring plus some bending of methyl groups at 1362 cm−1. It will be called in what follows.
- Trigonal C-N stretching vibrations in the imidazole ring combined with N-CH3 (M1) stretching vibration at about 1335 cm−1. In some reports, this is the most intense Raman peak and is labeled as in ref. [29]. It will be termed as in the next discussion.
- Mixed , and in both rings expressed as a band centered at 1291 cm−1. The general nomenclature proposed in ref. [29] for this peak will be maintained here.
- CH3 rocking (in plane), and located at 1034 and 1079 cm−1, respectively.
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
(UV)RR | (Ultra–Violet) Resonance Raman |
QM | Quantum Mechanics |
FQ | Fluctuating Charges |
RREP | Resonance Raman Excitation Profile |
MD | Molecular Dynamics |
SERS | Surface-Enhanced Raman Scattering |
RDF | Radial Distribution Function |
NBO | Natural Bond Orbitals |
BCP | Bond Critical Point |
QTAIM | Quantum Theory of Atoms in Molecules |
FWHM | Full Width at Half Maximum |
PCM | Polarizable Continuum Model |
References
- Temple, J.L.; Bernard, C.; Lipshultz, S.E.; Czachor, J.D.; Westphal, J.A.; Mestre, M.A. The safety of ingested caffeine: A comprehensive review. Front. Psychiatry 2017, 8, 80. [Google Scholar] [CrossRef]
- Derry, C.J.; Derry, S.; Moore, R.A. Caffeine as an analgesic adjuvant for acute pain in adults. Cochrane Database Syst. Rev. 2014, 12. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of caffeine intake on muscle strength and power: A systematic review and meta-analysis. J. Int. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef]
- de Souza, J.G.; Del Coso, J.; Fonseca, F.d.S.; Silva, B.V.C.; de Souza, D.B.; da Silva Gianoni, R.L.; Filip-Stachnik, A.; Serrão, J.C.; Claudino, J.G. Risk or benefit? Side effects of caffeine supplementation in sport: A systematic review. Eur. J. Nutr. 2022, 61, 3823–3834. [Google Scholar] [CrossRef]
- McLellan, T.M.; Caldwell, J.A.; Lieberman, H.R. A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci. Biobehav. Rev. 2016, 71, 294–312. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Li, S.; Sun, J.; Li, Y.; Zhang, D. Association of Coffee, Decaffeinated Coffee and Caffeine Intake from Coffee with Cognitive Performance in Older Adults: National Health and Nutrition Examination Survey (NHANES) 2011–2014. Nutrients 2020, 12, 840. [Google Scholar] [CrossRef]
- Zaukuu, J.L.Z.; Benes, E.; Bázár, G.; Kovács, Z.; Fodor, M. Agricultural potentials of molecular spectroscopy and advances for food authentication: An overview. Processes 2022, 10, 214. [Google Scholar] [CrossRef]
- Vieira, L.; Soares, A.; Freitas, R. Caffeine as a contaminant of concern: A review on concentrations and impacts in marine coastal systems. Chemosphere 2022, 286, 131675. [Google Scholar] [CrossRef] [PubMed]
- Rigueto, C.V.T.; Nazari, M.T.; De Souza, C.F.; Cadore, J.S.; Brião, V.B.; Piccin, J.S. Alternative techniques for caffeine removal from wastewater: An overview of opportunities and challenges. J. Water Process Eng. 2020, 35, 101231. [Google Scholar] [CrossRef]
- Korekar, G.; Kumar, A.; Ugale, C. Occurrence, fate, persistence and remediation of caffeine: A review. Environ. Sci. Pollution Res. 2020, 27, 34715–34733. [Google Scholar] [CrossRef]
- Rodríguez-Gil, J.; Cáceres, N.; Dafouz, R.; Valcárcel, Y. Caffeine and paraxanthine in aquatic systems: Global exposure distributions and probabilistic risk assessment. Sci. Total Environ. 2018, 612, 1058–1071. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H. Spectroscopic technique: Raman spectroscopy. In Modern Techniques for Food Authentication; Elsevier: Amsterdam, The Netherlands, 2018; pp. 139–191. [Google Scholar]
- Cozzolino, D. An overview of the successful application of vibrational spectroscopy techniques to quantify nutraceuticals in fruits and plants. Foods 2022, 11, 315. [Google Scholar] [CrossRef] [PubMed]
- Jesus, J.I.S.d.S.d.; Löbenberg, R.; Bou-Chacra, N.A. Raman spectroscopy for quantitative analysis in the pharmaceutical industry. J. Pharm. Pharm. Sci. 2020, 23, 24–46. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.C.; Shah, M.B.; Solanki, S.J.; Makwana, V.D.; Sureja, D.K.; Gajjar, A.K.; Bodiwala, K.B.; Dhameliya, T.M. Recent advancements and applications of Raman spectroscopy in pharmaceutical analysis. J. Mol. Struct. 2023, 1278, 134914. [Google Scholar] [CrossRef]
- Li, Y.S.; Church, J.S. Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials. J. Food Drug Anal. 2014, 22, 29–48. [Google Scholar] [CrossRef] [PubMed]
- Silge, A.; Weber, K.; Cialla-May, D.; Müller-Bötticher, L.; Fischer, D.; Popp, J. Trends in pharmaceutical analysis and quality control by modern Raman spectroscopic techniques. TrAC Trends Anal. Chem. 2022, 153, 116623. [Google Scholar] [CrossRef]
- Norton, R.D.; Phan, H.T.; Gibbons, S.N.; Haes, A.J. Quantitative surface-enhanced spectroscopy. Annu. Rev. Phys. Chem. 2022, 73, 141–162. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Gu, H.; Zhong, L.; Hu, Y.; Liu, F. The pH dependent Raman spectroscopic study of caffeine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 78, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Ni, D.; Yu, Z.; Liang, P.; Chen, H. Fabrication of flower-like silver nanostructures for rapid detection of caffeine using surface enhanced Raman spectroscopy. Sens. Actuators B Chem. 2016, 231, 423–430. [Google Scholar] [CrossRef]
- Alharbi, O.; Xu, Y.; Goodacre, R. Simultaneous multiplexed quantification of caffeine and its major metabolites theobromine and paraxanthine using surface-enhanced Raman scattering. Anal. Bioanal. Chem. 2015, 407, 8253–8261. [Google Scholar] [CrossRef]
- Zareef, M.; Hassan, M.M.; Arslan, M.; Ahmad, W.; Ali, S.; Ouyang, Q.; Li, H.; Wu, X.; Chen, Q. Rapid prediction of caffeine in tea based on surface-enhanced Raman spectroscopy coupled multivariate calibration. Microchem. J. 2020, 159, 105431. [Google Scholar] [CrossRef]
- Frosch, T.; Wyrwich, E.; Yan, D.; Popp, J.; Frosch, T. Fiber-Array-Based Raman hyperspectral imaging for simultaneous, Chemically Selective monitoring of particle size and shape of active ingredients in analgesic tablets. Molecules 2019, 24, 4381. [Google Scholar] [CrossRef]
- Chi, Z.; Chen, X.; Holtz, J.S.; Asher, S.A. UV Resonance Raman-Selective Amide Vibrational Enhancement: Quantitative Methodology for Determining Protein Secondary Structure. Biochemistry 1998, 37, 2854–2864. [Google Scholar] [CrossRef]
- Efremov, E.V.; Ariese, F.; Gooijer, C. Achievements in Resonance Raman Spectroscopy: Review of a Technique with a Distinct Analytical Chemistry Potential. Anal. Chim. Acta 2008, 606, 119–134. [Google Scholar] [CrossRef]
- Xiong, K. UV Resonance Raman Spectroscopy: A Highly Sensitive, Selective and Fast Technique for Environmental Analysis. J. Environ. Anal. Chem. 2014, 2, e107. [Google Scholar] [CrossRef]
- Chowdhury, J. Chapter 7—Resonance Raman Spectroscopy: Principles and Applications. In Molecular and Laser Spectroscopy; Gupta, V., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 147–164. [Google Scholar] [CrossRef]
- Rossi, B.; Bottari, C.; Catalini, S.; D’Amico, F.; Gessini, A.; Masciovecchio, C. Chapter 13—Synchrotron-based Ultraviolet Resonance Raman Scattering for Material Science. In Molecular and Laser Spectroscopy; Gupta, V., Ozaki, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 447–482. [Google Scholar] [CrossRef]
- Tavagnacco, L.; Di Fonzo, S.; D’Amico, F.; Masciovecchio, C.; Brady, J.; Cesàro, A. Stacking of purines in water: The role of dipolar interactions in caffeine. Phys. Chem. Chem. Phys. 2016, 18, 13478–13486. [Google Scholar] [CrossRef]
- Guthmuller, J.; Champagne, B. Time dependent density functional theory investigation of the resonance Raman properties of the julolidinemalononitrile push-pull chromophore in various solvents. J. Chem. Phys. 2007, 127, 164507. [Google Scholar] [CrossRef]
- Kane, K.A.; Jensen, L. Calculation of absolute resonance Raman intensities: Vibronic theory vs. short-time approximation. J. Phys. Chem. C 2010, 114, 5540–5546. [Google Scholar] [CrossRef]
- Avila Ferrer, F.J.; Barone, V.; Cappelli, C.; Santoro, F. Duschinsky, Herzberg–Teller, and multiple electronic resonance interferential effects in resonance Raman spectra and excitation profiles. The case of pyrene. J. Chem. Theory Comput. 2013, 9, 3597–3611. [Google Scholar] [CrossRef]
- Ozaki, Y.; Wójcik, M.J.; Popp, J. Molecular Spectroscopy: A Quantum Chemistry Approach; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Liang, W.; Ma, H.; Zang, H.; Ye, C. Generalized time-dependent approaches to vibrationally resolved electronic and Raman spectra: Theory and applications. Int. J. Quantum Chem. 2015, 115, 550–563. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, Y.; Wang, M.; Cerezo, J.; Improta, R.; Santoro, F. The Resonance Raman Spectrum of Cytosine in Water: Analysis of the Effect of Specific Solute–Solvent Interactions and Non-Adiabatic Couplings. Molecules 2023, 28, 2286. [Google Scholar] [CrossRef]
- Mennucci, B. Polarizable continuum model. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 386–404. [Google Scholar] [CrossRef]
- Ucun, F.; Sağlam, A.; Güçlü, V. Molecular structures and vibrational frequencies of xanthine and its methyl derivatives (caffeine and theobromine) by ab initio Hartree–Fock and density functional theory calculations. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 67, 342–349. [Google Scholar] [CrossRef]
- Kim, D.; Kim, H.M.; Yang, K.Y.; Kim, S.K.; Kim, N.J. Molecular beam resonant two-photon ionization study of caffeine and its hydrated clusters. J. Chem. Phys. 2008, 128, 13. [Google Scholar] [CrossRef]
- Kim, D.; Yang, K.Y.; Kim, H.M.; Kim, T.R.; Kim, N.J.; Shin, S.; Kim, S.K. Site-dependent effects of methylation on the electronic spectra of jet-cooled methylated xanthine compounds. Phys. Chem. Chem. Phys. 2017, 19, 22375–22384. [Google Scholar] [CrossRef]
- Srivastava, S.K.; Singh, V.B. Ab initio and DFT studies of the structure and vibrational spectra of anhydrous caffeine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 115, 45–50. [Google Scholar] [CrossRef]
- Chenouf, J.; Boutahir, M.; Mejía-López, J.; Rahmani, A.; Fakrach, B.; Chadli, H.; Rahmani, A. Predicting the structure configuration and Raman analysis of caffeine molecules encapsulated into single-walled carbon nanotubes: Evidence for charge transfer. Sol. Energy 2022, 232, 204–211. [Google Scholar] [CrossRef]
- Pavel, I.; Szeghalmi, A.; Moigno, D.; Cîntă, S.; Kiefer, W. Theoretical and pH dependent surface enhanced Raman spectroscopy study on caffeine. Biopolym. Orig. Res. Biomol. 2003, 72, 25–37. [Google Scholar] [CrossRef]
- Cappelli, C. Integrated QM/polarizable MM/continuum approaches to model chiroptical properties of strongly interacting solute–solvent systems. Int. J. Quantum Chem. 2016, 116, 1532–1542. [Google Scholar] [CrossRef]
- Giovannini, T.; Egidi, F.; Cappelli, C. Molecular spectroscopy of aqueous solutions: A theoretical perspective. Chem. Soc. Rev. 2020, 49, 5664–5677. [Google Scholar] [CrossRef]
- Giovannini, T.; Cappelli, C. Continuum vs. atomistic approaches to computational spectroscopy of solvated systems. Chem. Commun. 2023, 59, 5644–5660. [Google Scholar] [CrossRef]
- Gómez, S.; Giovannini, T.; Cappelli, C. Multiple Facets of Modeling Electronic Absorption Spectra of Systems in Solution. ACS Phys. Chem. Au. 2023, 3, 1–16. [Google Scholar] [CrossRef]
- Gómez, S.; Giovannini, T.; Cappelli, C. Absorption spectra of xanthines in aqueous solution: A computational study. Phys. Chem. Chem. Phys. 2020, 22, 5929–5941. [Google Scholar] [CrossRef]
- Gomez, S.; Cappelli, C. When Tautomers Matter: UV-Vis Absorption Spectra of Hypoxanthine in Aqueous Solution from Fully Atomistic Simulations. ChemPhysChem 2024, 2024, e202400107. [Google Scholar] [CrossRef]
- Gómez, S.; Egidi, F.; Puglisi, A.; Giovannini, T.; Rossi, B.; Cappelli, C. Unlocking the power of resonance Raman spectroscopy: The case of amides in aqueous solution. J. Mol. Liq. 2021, 346, 117841. [Google Scholar] [CrossRef]
- Gómez, S.; Bottari, C.; Egidi, F.; Giovannini, T.; Rossi, B.; Cappelli, C. Amide Spectral Fingerprints are Hydrogen Bonding-Mediated. J. Phys. Chem. Lett. 2022, 13, 6200–6207. [Google Scholar] [CrossRef]
- Gómez, S.; Rojas-Valencia, N.; Giovannini, T.; Restrepo, A.; Cappelli, C. Ring Vibrations to Sense Anionic Ibuprofen in Aqueous Solution as Revealed by Resonance Raman. Molecules 2022, 27, 442. [Google Scholar] [CrossRef]
- Uribe, L.; Gomez, S.; Egidi, F.; Giovannini, T.; Restrepo, A. Computational hints for the simultaneous spectroscopic detection of common contaminants in water. J. Mol. Liq. 2022, 355, 118908. [Google Scholar] [CrossRef]
- Gómez, S.; Lafiosca, P.; Egidi, F.; Giovannini, T.; Cappelli, C. Uv-resonance Raman spectra of systems in complex environments: A multiscale modeling applied to doxorubicin intercalated into dna. J. Chem. Inf. Model 2023, 63, 1208–1217. [Google Scholar] [CrossRef]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Weinhold, F.; Landis, C.; Glendening, E. What is NBO analysis and how is it useful? Int. Rev. Phys. Chem. 2016, 35, 399–440. [Google Scholar] [CrossRef]
- Weinhold, F.; Landis, C.R. Discovering Chemistry with Natural Bond Orbitals; Wiley-VCH: Hoboken, NJ, USA, 2012; p. 319. [Google Scholar]
- Bader, R. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Matta, C.; Boyd, R.; Becke, A. The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Alula, M.T.; Mengesha, Z.T.; Mwenesongole, E. Advances in surface-enhanced Raman spectroscopy for analysis of pharmaceuticals: A review. Vib. Spectrosc. 2018, 98, 50–63. [Google Scholar] [CrossRef]
- Balbuena, P.B.; Blocker, W.; Dudek, R.M.; Cabrales-Navarro, F.A.; Hirunsit, P. Vibrational spectra of anhydrous and monohydrated caffeine and theophylline molecules and crystals. J. Phys. Chem. A 2008, 112, 10210–10219. [Google Scholar] [CrossRef]
- Singh, V.B. Spectroscopic signatures and structural motifs in isolated and hydrated caffeine: A computational study. RSC Adv. 2014, 4, 58116–58126. [Google Scholar] [CrossRef]
- Hanes, A.T.; Grieco, C.; Lalisse, R.F.; Hadad, C.M.; Kohler, B. Vibrational relaxation by methylated xanthines in solution: Insights from 2D IR spectroscopy and calculations. J. Chem. Phys. 2023, 158, 044302. [Google Scholar] [CrossRef]
- Gómez, S.; Rojas-Valencia, N.; Restrepo, A. Analysis of conformational preferences in caffeine. Molecules 2022, 27, 1937. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.; Kohler, B. Hydrogen bond donors accelerate vibrational cooling of hot purine derivatives in heavy water. J. Phys. Chem. A 2013, 117, 6771–6780. [Google Scholar] [CrossRef]
- Tavagnacco, L.; Schnupf, U.; Mason, P.E.; Saboungi, M.L.; Cesàro, A.; Brady, J.W. Molecular dynamics simulation studies of caffeine aggregation in aqueous solution. J. Phys. Chem. B 2011, 115, 10957–10966. [Google Scholar] [CrossRef]
- Skarmoutsos, I.; Tzeli, D.; Petsalakis, I.D. Hydration structure and dynamics, ultraviolet–visible and fluorescence spectra of caffeine in ambient liquid water. A combined classical molecular dynamics and quantum chemical study. J. Mol. Liq. 2023, 391, 123220. [Google Scholar] [CrossRef]
- Gómez, S.; Ambrosetti, M.; Giovannini, T.; Cappelli, C. Close-Up Look at Electronic Spectroscopic Signatures of Common Pharmaceuticals in Solution. J. Phys. Chem. B 2024, 128, 2432–2446. [Google Scholar] [CrossRef]
- Edwards, H.G.; Lawson, E.; de Matas, M.; Shields, L.; York, P. Metamorphosis of caffeine hydrate and anhydrous caffeine. J. Chem. Soc. Perkin Trans. 1997, 2, 1985–1990. [Google Scholar] [CrossRef]
- Gómez, S.; Gómez, S.; David, J.; Guerra, D.; Cappelli, C.; Restrepo, A. Dissecting Bonding Interactions in Cysteine Dimers. Molecules 2022, 27, 8665. [Google Scholar] [CrossRef]
- Chen, J.; Kohler, B. Ultrafast nonradiative decay by hypoxanthine and several methylxanthines in aqueous and acetonitrile solution. Phys. Chem. Chem. Phys. 2012, 14, 10677–10682. [Google Scholar] [CrossRef]
- Agilent Technologies, Inc. Available online: https://www.agilent.com/cs/library/certificateofanalysis/8500-6917%20lot%20OC128158.pdf (accessed on 26 May 2024).
- Yisak, H.; Redi-Abshiro, M.; Chandravanshi, B.S. New fluorescence spectroscopic method for the simultaneous determination of alkaloids in aqueous extract of green coffee beans. Chem. Cent. J. 2018, 12, 59. [Google Scholar] [CrossRef]
- Gunasekaran, S.; Sankari, G.; Ponnusamy, S. Vibrational spectral investigation on xanthine and its derivatives—Theophylline, caffeine and theobromine. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005, 61, 117–127. [Google Scholar] [CrossRef]
- Rojalin, T.; Kurki, L.; Laaksonen, T.; Viitala, T.; Kostamovaara, J.; Gordon, K.C.; Galvis, L.; Wachsmann-Hogiu, S.; Strachan, C.J.; Yliperttula, M. Fluorescence-suppressed time-resolved Raman spectroscopy of pharmaceuticals using complementary metal-oxide semiconductor (CMOS) single-photon avalanche diode (SPAD) detector. Anal. Bioanal. Chem. 2016, 408, 761–774. [Google Scholar] [CrossRef]
- Xi, W.; Volkert, A.A.; Boller, M.C.; Haes, A.J. Vibrational frequency shifts for monitoring noncovalent interactions between molecular imprinted polymers and analgesics. J. Phys. Chem. C 2018, 122, 23068–23077. [Google Scholar] [CrossRef]
- Nolasco, M.M.; Amado, A.M.; Ribeiro-Claro, P.J. Computationally assisted approach to the vibrational spectra of molecular crystals: Study of hydrogen-bonding and pseudo-polymorphism. ChemPhysChem 2006, 7, 2150–2161. [Google Scholar]
- Rijal, R.; Sah, M.; Lamichhane, H.P.; Mallik, H.S. Quantum chemical calculations of nicotine and caffeine molecule in gas phase and solvent using DFT methods. Heliyon 2022, 8, e12494. [Google Scholar] [CrossRef]
- Lee, S.Y.; Heller, E.J. Time-dependent theory of Raman scattering. J. Chem. Phys. 1979, 71, 4777–4788. [Google Scholar] [CrossRef]
- Santoro, F.; Cappelli, C.; Barone, V. Effective time-independent calculations of vibrational resonance raman spectra of isolated and solvated molecules including duschinsky and herzberg–teller effects. J. Chem. Theory Comput. 2011, 7, 1824–1839. [Google Scholar] [CrossRef]
- Hoehn, R.D.; Carignano, M.A.; Kais, S.; Zhu, C.; Zhong, J.; Zeng, X.C.; Francisco, J.S.; Gladich, I. Hydrogen bonding and orientation effects on the accommodation of methylamine at the air-water interface. J. Chem. Phys. 2016, 144, 214701. [Google Scholar] [CrossRef]
- Macchiagodena, M.; Mancini, G.; Pagliai, M.; Barone, V. Accurate prediction of bulk properties in hydrogen bonded liquids: Amides as case studies. Phys. Chem. Chem. Phys. 2016, 18, 25342–25354. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, D.X.; Yang, Z.Z. Direct evaluation of individual hydrogen bond energy in situ in intra-and intermolecular multiple hydrogen bonds system. J. Comput. Chem. 2012, 33, 379–390. [Google Scholar] [CrossRef]
- Campetella, M.; De Mitri, N.; Prampolini, G. Automated parameterization of quantum-mechanically derived force-fields including explicit sigma holes: A pathway to energetic and structural features of halogen bonds in gas and condensed phase. J. Chem. Phys. 2020, 153, 044106. [Google Scholar] [CrossRef]
- Boys, S.F. Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another. Rev. Mod. Phys. 1960, 32, 296. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Brehm, M.; Kirchner, B. TRAVIS—A Free Analyzer and Visualizer for Monte Carlo and Molecular Dynamics Trajectories. J. Chem. Inf. Model 2011, 51, 2007–2023. [Google Scholar] [CrossRef]
- Brehm, M.; Thomas, M.; Gehrke, S.; Kirchner, B. TRAVIS—A free analyzer for trajectories from molecular simulation. J. Chem. Phys. 2020, 152, 164105. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Revision B.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Rick, S.W.; Stuart, S.J.; Berne, B.J. Dynamical fluctuating charge force fields: Application to liquid water. J. Chem. Phys. 1994, 101, 6141–6156. [Google Scholar] [CrossRef]
- Glendening, E.D.; Badenhoop, J.K.; Reed, A.E.; Carpenter, J.E.; Bohmann, J.A.; Morales, C.M.; Karafiloglou, P.; Landis, C.R.; Weinhold, F. NBO 7.0; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, USA, 2018. [Google Scholar]
- Giovannini, T.; Olszowka, M.; Egidi, F.; Cheeseman, J.R.; Scalmani, G.; Cappelli, C. Polarizable embedding approach for the analytical calculation of Raman and Raman optical activity spectra of solvated systems. J. Chem. Theory Comput. 2017, 13, 4421–4435. [Google Scholar] [CrossRef] [PubMed]
- Egidi, F.; Bloino, J.; Cappelli, C.; Barone, V. A robust and effective time-independent route to the calculation of resonance raman spectra of large molecules in condensed phases with the inclusion of Duschinsky, Herzberg–Teller, anharmonic, and environmental effects. J. Chem. Theory Comput. 2014, 10, 346–363. [Google Scholar] [CrossRef] [PubMed]
Vibration | Position | StdDev | Raman | RR | RR 1 | Enhancement Factor | |
---|---|---|---|---|---|---|---|
cm−1 | cm−1 | @1064 nm | @266 nm | @210 nm | @266 nm | @210 nm | |
1050/1049 | 5 | 5.07 × 10−10 | 0.0023 | 0.0084 | 4.54 × 106 | 1.66 × 107 | |
1101/1097 | 7 | 9.73 × 10−10 | 0.0026 | 0.0164 | 2.67 × 106 | 1.69 × 107 | |
1308/1313 | 6 | 2.13 × 10−9 | 0.0026 | 0.0120 | 1.22 × 106 | 5.63 × 106 | |
1360/1362 | 4 | 3.71 × 10−9 | 0.0011 | 0.0383 | 2.96 × 105 | 1.03 × 107 | |
1396/1394 | 4 | 4.15 × 10−9 | 0.0034 | 0.0074 | 8.19 × 105 | 1.78 × 106 | |
1455, 1469/1469 | 7 | 1.38 × 10−9 | 0.0014 | 0.0110 | 1.01 × 106 | 7.97 × 106 | |
1517, 1538/1536 | 10 | 1.58 × 10−9 | 0.0013 | 0.0104 | 8.23 × 105 | 6.58 × 106 | |
1583/1583 | 4 | 5.90 × 10−10 | 0.0002 | 0.0140 | 3.39 × 105 | 2.37 × 107 | |
+ | 1618/1624 | 6 | 2.12 × 10−9 | 0.0003 | 0.0265 | 1.42 × 105 | 1.25 × 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez, S.; Cappelli, C. The Role of Hydrogen Bonding in the Raman Spectral Signals of Caffeine in Aqueous Solution. Molecules 2024, 29, 3035. https://doi.org/10.3390/molecules29133035
Gómez S, Cappelli C. The Role of Hydrogen Bonding in the Raman Spectral Signals of Caffeine in Aqueous Solution. Molecules. 2024; 29(13):3035. https://doi.org/10.3390/molecules29133035
Chicago/Turabian StyleGómez, Sara, and Chiara Cappelli. 2024. "The Role of Hydrogen Bonding in the Raman Spectral Signals of Caffeine in Aqueous Solution" Molecules 29, no. 13: 3035. https://doi.org/10.3390/molecules29133035
APA StyleGómez, S., & Cappelli, C. (2024). The Role of Hydrogen Bonding in the Raman Spectral Signals of Caffeine in Aqueous Solution. Molecules, 29(13), 3035. https://doi.org/10.3390/molecules29133035