Reduced Graphene Oxide-Supported SrV4O9 Microflowers with Enhanced Electrochemical Performance for Sodium-Ion Batteries
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Materials
3.2. Synthesis of SrV4O9@rGO Composite and SrV4O9
3.3. Characterization
3.4. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, S.; Kong, J.; Fang, B. Comprehensive recycling of spent lithium-ion batteries cathodes and anodes via targeted electrochemical redox process. Green Chem. 2024, 26, 4484–4492. [Google Scholar] [CrossRef]
- Li, J.; Xie, Q.; Zhao, Y.; Zhao, P.; Zhang, S.; Huang, W. Unveiling morphology evolution and performance enhancement of tin-doped Co3O4 porous nanoarrays anchored on stainless-steel mesh for advanced lithium-ion battery anodes. J. Energy Storage 2024, 88, 111605. [Google Scholar] [CrossRef]
- Sun, R.; Qin, Z.; Li, Z.; Fan, H.; Lu, S. Binary zinc-cobalt metal-organic framework derived mesoporous ZnCo2O4@NC polyhedron as a high-performance lithium-ion battery anode. Dalton Trans. 2020, 49, 14237–14242. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, X.; Jin, S.; Xia, Q.; Chang, Y.; Wang, L.; Zhou, A. Synthesis of Mo2C MXene with high electrochemical performance by alkali hydrothermal etching. J. Adv. Ceram. 2023, 12, 1889–1901. [Google Scholar] [CrossRef]
- Fang, B.; Wang, Y.; Wang, H. Does an LaCl3-based lithium superionic conductor work well for anode-free lithium metal batteries? Matter 2023, 6, 2508–2510. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y.; Quan, K.; Wu, L.; Feng, X.; Wang, W. One-pot cocrystallization of mononuclear and 1D cobalt (II) complexes based on flexible triclopyr and 2, 2′-bipyridine coligands: Structural analyses, conformation comparison, non-covalent interactions and magnetic properties. J. Mol. Struct. 2024, 1297, 136830. [Google Scholar] [CrossRef]
- Song, M.; Liu, Y.; Hong, J.; Wang, X.; Huang, X. Boosting bidirectional conversion of polysulfide driven by the built-in electric field of MoS2/MoP Mott–Schottky heterostructures in lithium–sulfur batteries. J. Adv. Ceram. 2023, 12, 1872–1888. [Google Scholar] [CrossRef]
- Zheng, S.; Mo, L.; Chen, K.; Chen, A.-L.; Zhang, X.; Fan, X.; Lai, F.; Wei, Q.; Miao, Y.-E.; Liu, T.; et al. Precise Control of Li+ Directed Transport via Electronegative Polymer Brushes on Polyolefin Separators for Dendrite-Free Lithium Deposition. Adv. Funct. Mater. 2022, 32, 2201430. [Google Scholar] [CrossRef]
- Li, Z.; Sun, R.; Qin, Z.; Liu, X.; Wang, C.; Lu, S.; Zhang, Y.; Fan, H. Coupling of ReS2 nanosheet arrays with hollow NiCoS4 nanocubes enables ultrafast Na+ diffusion kinetics and super Na+ storage of a NiCoS4@ReS2 heterostructure. Mater. Chem. Front. 2021, 5, 7540–7547. [Google Scholar] [CrossRef]
- Zhu, J.; He, Q.; Liu, Y.; Key, J.; Nie, S.; Wu, M.; Shen, P.K. Three-dimensional, hetero-structured, Cu3P@C nanosheets with excellent cycling stability as Na-ion battery anode material. J. Mater. Chem. A 2019, 7, 16999–17007. [Google Scholar] [CrossRef]
- Zhu, J.; Wei, P.; Zeng, Q.; Wang, G.; Wu, K.; Ma, S.; Shen, P.K.; Wu, X.-L. MnS@N,S Co-Doped Carbon Core/Shell Nanocubes: Sulfur-Bridged Bonds Enhanced Na-Storage Properties Revealed by In Situ Raman Spectroscopy and Transmission Electron Microscopy. Small 2020, 16, 2003001. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiao, F.; Chen, X.; Xiong, P.; Lin, C.; Wang, H.-E.; Wei, M.; Qian, Q.; Chen, Q.; Zeng, L. Extraordinarily stable and wide-temperature range sodium/potassium-ion batteries based on 1D SnSe2-SePAN composite nanofibers. InfoMat 2023, 5, e12467. [Google Scholar] [CrossRef]
- Zhou, Y.; Yin, L.; Xiang, S.; Yu, S.; Johnson, H.M.; Wang, S.; Yin, J.; Zhao, J.; Luo, Y.; Chu, P.K. Unleashing the Potential of MXene-Based Flexible Materials for High-Performance Energy Storage Devices. Adv. Sci. 2024, 11, 2304874. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.-L.; Cheng, W.-N.; Bai, Y.-Z.; Hou, C.; Li, K.; Huang, Y.-A. Rise of flexible high-temperature electronics. Rare Met. 2023, 42, 1773–1777. [Google Scholar] [CrossRef]
- Lin, H.; Lin, C.; Xiao, F.; He, L.; Xiong, P.; Luo, Y.; Hu, X.; Qian, Q.; Chen, Q.; Wen, Z.; et al. High-Performance Wide-pH Zn-Based Batteries via Electrode Interface Regulation with Valine Additive. Adv. Funct. Mater. 2024, 34, 2310486. [Google Scholar] [CrossRef]
- Jia, Y.; Chen, S.; Shao, X.; Chen, J.; Fang, D.-L.; Li, S.; Mao, A.; Li, C. Synergetic effect of lattice distortion and oxygen vacancies on high-rate lithium-ion storage in high-entropy perovskite oxides. J. Adv. Ceram. 2023, 12, 1214–1227. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, S.; Yin, J.; Wang, J.; Manshaii, F.; Xiao, X.; Zhang, T.; Bao, H.; Jiang, S.; Chen, J. Flexible Metasurfaces for Multifunctional Interfaces. ACS Nano 2024, 18, 2685–2707. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; He, L.; Xiong, P.; Lin, H.; Lai, W.; Yang, X.; Xiao, F.; Sun, X.-L.; Qian, Q.; Liu, S.; et al. Adaptive Ionization-Induced Tunable Electric Double Layer for Practical Zn Metal Batteries over Wide pH and Temperature Ranges. ACS Nano 2023, 17, 23181–23193. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, M.; You, X.; Wang, J.; Feng, X. One-pot cocrystallization of 1D linear and zigzag cobalt (II) polymers assembled by triclopyr and 4, 4′-bipyridine: Structural comparison, conformational analysis, non-covalent interactions as well as the magnetic property of the latter. Polyhedron 2024, 249, 116791. [Google Scholar] [CrossRef]
- Chen, Y.; Li, F.; Guo, Z.; Song, Z.; Lin, Y.; Lin, W.; Zheng, L.; Huang, Z.; Hong, Z.; Titirici, M.-M. Sustainable and scalable fabrication of high-performance hard carbon anode for Na-ion battery. J. Power Sources 2023, 557, 232534. [Google Scholar] [CrossRef]
- Zhao, D.; Zhang, Z.; Ren, J.; Xu, Y.; Xu, X.; Zhou, J.; Gao, F.; Tang, H.; Liu, S.; Wang, Z.; et al. Fe2VO4 nanoparticles on rGO as anode material for high-rate and durable lithium and sodium ion batteries. Chem. Eng. J. 2023, 451, 138882. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Zhao, D.; Ren, J.; Liu, S.; Tang, H.; Xu, P.; Gao, F.; Yue, X.; Yang, H.; et al. Core–Shell Co2VO4/Carbon Composite Anode for Highly Stable and Fast-Charging Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 55020–55028. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhang, Y.; Du, Y.; Wang, Z.; Song, B.; Wang, X. SrV4O9 microflowers as high performance cathode for aqueous zinc-ion battery. Mater. Lett. 2023, 331, 133535. [Google Scholar] [CrossRef]
- Xia, P.; Li, S.; Yuan, L.; Jing, S.; Peng, X.; Lu, S.; Zhang, Y.; Fan, H. Encapsulating CoRu alloy nanocrystals into nitrogen-doped carbon nanotubes to synergistically modify lithium-sulfur batteries separator. J. Membr. Sci. 2024, 694, 122395. [Google Scholar] [CrossRef]
- Wu, S.; Yang, W.; Liu, Z.; Li, Y.; Fan, H.; Zhang, Y.; Zeng, L. Organic polymer coating induced multiple heteroatom-doped carbon framework confined Co1-xS@NPSC core-shell hexapod for advanced sodium/potassium ion batteries. J. Colloid Interface Sci. 2024, 660, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Yue, X.-A.; Xu, X.-Y.; Xu, P.; Zhang, F.; Fan, H.-S.; Wang, Z.-L.; Wu, Y.-T.; Liu, X.; Zhang, Y. A N/Co co-doped three-dimensional porous carbon as cathode host for advanced lithium–selenium batteries. Rare Met. 2023, 42, 2670–2678. [Google Scholar] [CrossRef]
- Xu, F.; Li, S.; Jing, S.; Peng, X.; Yuan, L.; Lu, S.; Zhang, Y.; Fan, H. Cobalt-vanadium sulfide yolk-shell nanocages from surface etching and ion-exchange of ZIF-67 for ultra-high rate-capability sodium ion battery. J. Colloid Interface Sci. 2024, 660, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yu, S.; Yin, Y.; Bi, L. Taking advantage of Li-evaporation in LiCoO2 as cathode for proton-conducting solid oxide fuel cells. J. Adv. Ceram. 2022, 11, 1849–1859. [Google Scholar] [CrossRef]
- Qu, Y.-P.; Zhou, Y.-L.; Luo, Y.; Liu, Y.; Ding, J.-F.; Chen, Y.-L.; Gong, X.; Yang, J.-L.; Peng, Q.; Qi, X.-S. Universal paradigm of ternary metacomposites with tunable epsilon-negative and epsilon-near-zero response for perfect electromagnetic shielding. Rare Met. 2024, 43, 796–809. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, W.; Wang, F.; Wu, H.; Zhong, S.; Li, B. Meliorative dielectric properties in core@double-shell structured Al@Al2O3@PDA/PVDF nanocomposites via decoupling the intra-particle polarization and inter-particle polarization. Mater. Today Energy 2024, 41, 101543. [Google Scholar] [CrossRef]
- Sun, G.; Yang, D.; Zhang, Z.; Wang, Y.; Lu, W.; Feng, M. Oxygen vacancy-rich MoO3 nanorods as photocatalysts for photo-assisted Li–O2 batteries. J. Adv. Ceram. 2023, 12, 747–759. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, W.; He, Y.; Lv, Y.; Wang, Y.; Wang, Z. Synergetic improvement of dielectric properties and thermal conductivity in Zn@ZnO/carbon fiber reinforced silicone rubber dielectric elastomers. Compos. Part A Appl. Sci. Manuf. 2024, 181, 108129. [Google Scholar] [CrossRef]
- Chen, J.; Yang, Y.; Yu, S.; Zhang, Y.; Hou, J.; Yu, N.; Fang, B. MOF-Derived Nitrogen-Doped Porous Carbon Polyhedrons/Carbon Nanotubes Nanocomposite for High-Performance Lithium–Sulfur Batteries. Nanomaterials 2023, 13, 2416. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.; He, Y.; Wang, H.; Fang, B.; Tsubaki, N.; Li, C. Carbon neutrality enabled by structure-tailored zeolite-based nanomaterials. Device 2023, 1, 100173. [Google Scholar] [CrossRef]
- Fang, B.; Daniel, L.; Bonakdarpour, A.; Govindarajan, R.; Sharman, J.; Wilkinson, D.P. Dense Pt Nanowire Electrocatal. Improv. Fuel Cell Perform. Using A Graph. Carbon Nitride-Decor. Hierarchical Nanocarbon Support. Small 2021, 17, 2102288. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, W.; Peng, W.; Yao, T.; Zhang, Y.; Wang, B.; Cai, H.; Li, B. Core@Double–Shell Engineering of Zn Particles toward Elevated Dielectric Properties: Multiple Polarization Mechanisms in Zn@Znch@PS/PVDF Composites. Macromol. Rapid Commun. 2024, 45, 2300585. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Kim, J.H.; Kim, M.-S.; Yu, J.-S. Hierarchical Nanostructured Carbons with Meso–Macroporosity: Design, Characterization, and Applications. Acc. Chem. Res. 2013, 46, 1397–1406. [Google Scholar] [CrossRef]
- Zhang, F.; Tang, N.; Jiang, Q.; Qi, K.; Zhu, X.; Luo, Z.; Kong, X.; Zang, D.; Liu, H.; Fang, B. Progress in polyacrylate-based electrically conductive adhesives: Featured properties, preparation, applications, and perspectives. Polym. Compos. 2024, 45, 5781–5803. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, J.; Zhou, X.; Wang, C.; Pan, Z.; Xu, X.; Liu, X.; Wang, Z.; Wu, Y.; Jiang, S.; et al. Graphene oxide-supported MnV2O6 nanoribbons with enhanced electrochemical performance for sodium-ion batteries. J. Power Sources 2024, 597, 234117. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Yu, S.; Johnson, H.M.; Zhao, D.-C.; Tan, S.-C.; Pan, Z.-D.; Wang, Z.-L.; Wu, Y.-T.; Liu, X. Three-dimensional nanostructured Co2VO4-decorated carbon nanotubes for sodium-ion battery anode materials. Rare Met. 2023, 42, 4060–4069. [Google Scholar] [CrossRef]
- Jiang, X.; Li, X.; Kong, Y.; Deng, C.; Li, X.; Hu, Q.; Yang, H.; He, C. A hierarchically structured tin-cobalt composite with an enhanced electronic effect for high-performance CO2 electroreduction in a wide potential range. J. Energy Chem. 2023, 76, 462–469. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Zhao, H.; Yang, X.; Xiao, S.; Liu, N.; Zhao, N.; Cao, Y.; Yu, X.; Li, X. Dual-Phase engineering of Ni3S2/NiCo-MOF nanocomposites for enhanced ion storage and electron migration. Chem. Eng. J. 2024, 489, 151069. [Google Scholar] [CrossRef]
- Ding, S.; An, J.; Gao, Y.; Ding, D.; Lu, X.; Zhao, L. Electrochemical performance of all-solid-state asymmetric supercapacitors based on Cu/Ni-Co (OH)2/Co4S3 self-supported electrodes. Chem. Eng. J. 2023, 453, 139714. [Google Scholar] [CrossRef]
- Senokos, E.; Anthony, D.B.; Rubio, N.; Ribadeneyra, M.C.; Greenhalgh, E.S.; Shaffer, M.S. Robust single-walled carbon nanotube-infiltrated carbon fiber electrodes for structural supercapacitors: From reductive dissolution to high performance devices. Adv. Funct. Mater. 2023, 33, 2212697. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Li, Y.; Zhang, Y.; Lei, S.; Hou, J.; Lu, H.; Fang, B. Reduced Graphene Oxide-Supported SrV4O9 Microflowers with Enhanced Electrochemical Performance for Sodium-Ion Batteries. Molecules 2024, 29, 2704. https://doi.org/10.3390/molecules29112704
Li G, Li Y, Zhang Y, Lei S, Hou J, Lu H, Fang B. Reduced Graphene Oxide-Supported SrV4O9 Microflowers with Enhanced Electrochemical Performance for Sodium-Ion Batteries. Molecules. 2024; 29(11):2704. https://doi.org/10.3390/molecules29112704
Chicago/Turabian StyleLi, Guangming, Yifan Li, Yi Zhang, Shuguo Lei, Jiwei Hou, Huiling Lu, and Baizeng Fang. 2024. "Reduced Graphene Oxide-Supported SrV4O9 Microflowers with Enhanced Electrochemical Performance for Sodium-Ion Batteries" Molecules 29, no. 11: 2704. https://doi.org/10.3390/molecules29112704
APA StyleLi, G., Li, Y., Zhang, Y., Lei, S., Hou, J., Lu, H., & Fang, B. (2024). Reduced Graphene Oxide-Supported SrV4O9 Microflowers with Enhanced Electrochemical Performance for Sodium-Ion Batteries. Molecules, 29(11), 2704. https://doi.org/10.3390/molecules29112704