Accurate Boron Determination in Tourmaline by Inductively Coupled Plasma Mass Spectrometry: An Insight into the Boron–Mannitol Complex-Based Wet Acid Digestion Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. Digestion Method Based on HF-HNO3–Mannitol for Tourmaline Sample
2.1.1. Digestion Temperature and Measurement Properties of 10B and 11B
2.1.2. Effect of Insoluble Fluorides on B Quantification of Tourmaline
2.1.3. Stability of B–Mannitol Complex under High Temperature
2.2. Accuracy of the Proposed HF-HNO3–Mannitol-Based Digestion Method
2.3. Application of Proposed Method for B and Trace Element Quantification in Tourmaline
3. Materials and Methods
3.1. Chemical Reagents and Instrumental Apparatus
3.2. Reagents Preparation
3.3. Sample Handling Description
3.4. Operating Conditions of ICP-MS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- London, D.; Ertl, A.; Hughes, J.M.; Morgan VI, G.B.; Fritz, E.A.; Harms, B.S. Synthetic Ag-rich tourmaline: Structure and chemistry. Am. Mineral. 2006, 91, 680–684. [Google Scholar]
- Bosi, F. Tourmaline crystal chemistry. Am. Mineral. 2018, 103, 298–306. [Google Scholar] [CrossRef]
- Ferdinando, B.; Lucchesi, S. Crystal chemical relationships in the tourmaline group: Structural constraints on chemical variability. Am. Mineral. 2007, 92, 1054–1063. [Google Scholar]
- Henry, D.J.; Novák, M.; Hawthorne, F.C.; Ertl, A.; Dutrow, B.L.; Uher, P.; Pezzotta, F. Nomenclature of the tourmaline-group minerals. Am. Mineral. 2011, 96, 895–913. [Google Scholar] [CrossRef]
- Dutrow, B.L.; Henry, D.J. Tourmaline: A geologic DVD. Elements 2011, 7, 301–306. [Google Scholar]
- Zheng, B.Q.; Chen, M.H.; Zhang, Y.Y. Chemical and boron isotope composition of tourmaline from Koktokay pegmatite, Altay Orogenic Belt, Northwest China: Implications for metallogenic mechanism and prospecting indicator for rare-metal pegmatites. Geochemistry 2024, 84, 126071. [Google Scholar] [CrossRef]
- Vincent, V.I.; Li, H.; Girei, M.B.; Förster, M.W.; Kamaunji, V.D. Tourmaline and zircon trace the nature and timing of magmatic-hydrothermal episodes in granite-related Sn mineralization: Insights from the Libata Sn ore field. Am. Mineral. 2023, 108, 552–571. [Google Scholar] [CrossRef]
- van Hinsberg, V.J. Preliminary experimental data on trace-element partitioning between tourmaline and silicate melt. Can. Mineral. 2011, 49, 153–163. [Google Scholar] [CrossRef]
- London, D. Experimental synthesis and stability of tourmaline: A historical overview. Can. Mineral. 2011, 49, 117–136. [Google Scholar] [CrossRef]
- van Hinsberg, V.J.; Henry, D.J.; Marschall, H.R. Tourmaline: An ideal indicator of its host environment. Can. Mineral. 2011, 49, 1–16. [Google Scholar] [CrossRef]
- van Hinsberg, V.J.; Henry, D.J.; Dutrow, B.L. Tourmaline as a petrologic forensic mineral: A unique recorder of its geologic past. Elements 2011, 7, 327–332. [Google Scholar] [CrossRef]
- London, D. Reading pegmatites—Part 2: What tourmaline says. Rock. Mineral. 2016, 91, 132–149. [Google Scholar] [CrossRef]
- Slack, J.F.; Trumbull, R.B. Tourmaline as a recorder of ore-forming Processes. Elements 2011, 7, 321–326. [Google Scholar] [CrossRef]
- Bai, Y.X.; Shen, P.; Cao, C.; Li, C.H.; Feng, H.H.; Luo, Y.Q.; Pan, H.D.; Suo, Q.Y. In-situ elemental and boron isotopic variations of tourmaline from the Koktokay pegmatitic rare-metal deposit, China: Insights into external contamination and the source of the granitic pegmatite. Ore Geol. Rev. 2023, 162, 105683. [Google Scholar] [CrossRef]
- Marks, M.A.W.; Marschall, H.R.; Schühle, P.; Guth, A.; Wenzel, T.; Jacob, D.E.; Barth, M.; Markl, G. Trace element systematics of tourmaline in pegmatitic and hydrothermal systems from the Variscan Schwarzwald (Germany): The importance of major element composition, sector zoning, and fluid or melt composition. Chem. Geol. 2013, 344, 73–90. [Google Scholar] [CrossRef]
- Feng, Y.G.; Liang, T.; Wang, M.X.; Zhang, Z.; Hao, Y.Y.; Cen, J.B.; Dong, Z.A. Geochemistry of tourmaline from granitic pegmatites in East Qinling and its implications for mineralization. Acta Petrol. Sin. 2022, 38, 428–444. [Google Scholar]
- Zhang, X.Y.; Wang, H.; Bai, H.Y.; Wang, K.Y.; Huang, L. Tourmaline geochemical and boron isotopic compositions of the Bailongshan rare-metal pegmatite deposit: Implications for magmatic-hydrothermal evolution of the West Kunlun Orogen (NW China). Ore Geol. Rev. 2024, 166, 105894. [Google Scholar] [CrossRef]
- Palmer, M.R.; Swihart, G.H. Boron isotope geochemistry: An overview. Rev. Mineral. Geochem. 1996, 33, 709–740. [Google Scholar]
- Xiao, J.; Xiao, Y.K.; Jin, Z.D.; He, M.Y.; Liu, C.Q. Boron isotope variations and its geochemical application in nature. Aust. J. Earth Sci. 2013, 60, 431–447. [Google Scholar] [CrossRef]
- Ota, T.; Kobayashi, K.; Katsura, T.; Nakamura, E. Tourmaline breakdown in a pelitic system: Implications for boron cycling through subduction zones. Contrib. Mineral. Petrol. 2008, 155, 19–32. [Google Scholar] [CrossRef]
- Ertl, A.; Henry, D.J.; Tillmanns, E. Tetrahedral substitutions in tourmaline: A review. Eur. J. Mineral. 2018, 30, 465–470. [Google Scholar] [CrossRef]
- London, D.; Manning, D.A.C. Chemical variation and significance of tourmaline from Southwest England. Econ. Geol. 1995, 90, 495–519. [Google Scholar] [CrossRef]
- Raith, J.G.; née Schöner, R.N.; Meisel, T. Boron metasomatism and behaviour of rare earth elements during formation of tourmaline rocks in the eastern Arunta Inlier, central Australia. Contrib. Mineral. Petrol. 2004, 147, 91–109. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock-Forming Minerals; The Mineralogical Society: London, UK, 2013; pp. 86–92. [Google Scholar]
- Qureshi, A.A.; Akram, M.; Khan, M.A.; Khattak, N.U.; Qureshi, I.E.; Khan, H.A. Boron determination in tourmaline by neutron induced radiography. Radiat. Meas. 2001, 34, 345–348. [Google Scholar] [CrossRef]
- Jakšić, L. The spectrophotometric determination of boron in tourmalines. J. Serb. Chem. Soc. 2005, 70, 255–260. [Google Scholar] [CrossRef]
- Walsh, J.N. Determination of boron at trace levels in rocks by inductively coupled plasma spectrometry. Analyst 1985, 110, 959–962. [Google Scholar] [CrossRef]
- Lihareva, N.; Kosturkova, P.; Vakarelska, T. Application of sodium carbonate-zinc oxide decomposition mixture on ICP-AES determination of boron in tourmaline. Fresenius J. Anal. Chem. 2000, 367, 84–86. [Google Scholar] [CrossRef]
- Hu, Z.C.; Qi, L. Sample Digestion Methods. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; Volume 15, pp. 87–109. [Google Scholar]
- Matusiewicz, H. Wet Digestion Methods. Compr. Anal. Chem. 2003, 41, 193–233. [Google Scholar]
- Banks, R.E. Isolation of flourine by Moissan: Setting the scene. J. Fluorine Chem. 1986, 33, 3–26. [Google Scholar] [CrossRef]
- Makishima, A. Thermal Ionization Mass Spectrometry (TIMS): Silicate Digestion, Separation, and Measurement; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2016. [Google Scholar]
- Woods, W.G. An introduction to boron: History, sources, uses, and chemistry. Environ. Health Persp. 1994, 102, 5–11. [Google Scholar]
- Ishikawa, T.; Nakamura, E. Formation of boron-mannitol complex in the hydrofluoric acid solution and a possibility of the use of acids in the separation of boron from the natural rock samples. Proc. Japan Acad. Ser. B 1990, 66, 91–95. [Google Scholar] [CrossRef]
- Chen, C.; Lan, L.D.; Wang, F.; Luo, Q.L. Determination of B2O3 in tourmaline by inductively coupled plasma-optical emission spectrometry (ICP-OES). Chin. J. Inorg. Anal. Chem. 2017, 7, 89–92. [Google Scholar]
- May, T.W.; Wiedmeyer, R.H. A table of polyatomic interferences in ICP-MS. Atom. Spectrosc. 1998, 19, 150–155. [Google Scholar]
- Liu, Y.H.; Huang, K.F.; Lee, D.C. Precise and accurate boron and lithium isotopic determinations for small sample-size geological materials by MC-ICP-MS. J. Anal. At. Spectrom. 2018, 33, 846–855. [Google Scholar] [CrossRef]
- Tan, X.J.; Zhou, R.L.; Feng, Y.G.; Liang, T. In-depth method investigation for determination of boron in silicate samples using an improved boron–mannitol complex digestion method by inductively coupled plasma mass spectrometry. Molecules 2023, 28, 441. [Google Scholar] [CrossRef]
- Liu, X.W.; Yu, C.Q.; Yang, W.Q.; Xie, L.; Liang, S. Thermal decomposition kinetics of Fe-rich tourmaline. Eur. J. Mineral. 2019, 31, 918–928. [Google Scholar] [CrossRef]
- Tan, X.J.; Wang, Z.M. General high-pressure closed acidic decomposition method of rock samples for trace element determination using inductively coupled plasma mass spectrometry. J. Anal. Chem. 2020, 75, 1295–1303. [Google Scholar]
- Clark, C.M. Tourmaline: Structural formula calculations. Can. Mineral. 2007, 45, 229–237. [Google Scholar] [CrossRef]
- Wei, W.C.; Chen, C.J.; Yang, M.H. Determination of boron using mannitol-assisted electrothermal vaporization for sample introduction in inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 1995, 10, 955–961. [Google Scholar] [CrossRef]
- Povondra, P.; Hejl, V. Volumetric determination of boron in natural borosilicates. Collect. Czech. Chem. Commun. 1976, 41, 1343–1347. [Google Scholar] [CrossRef]
- Zhou, Y.Q.; Xu, S.; Fang, Y.; Fang, C.H.; Zhu, F.Y. Structure of aqueous lithium tetraborate solution. J. Clust. Sci. 2016, 27, 1131–1145. [Google Scholar] [CrossRef]
- Lavanya, G.; Magesh, C.J.; Venkatapathy, K. First, in situ generated mannitol-boron or sorbitol-boron chelate complex as a novel, recyclable catalyst for the highly efficient synthesis of bis (indolyl) methanes, tris (indolyl) methanes and diindolyl (carbazolyl) methanes. Chem. Data Collec. 2020, 25, 100342. [Google Scholar] [CrossRef]
- Ishikawa, T.; Nakamura, E. Suppression of boron volatilization from a hydrofluoric acid solution using a boron-mannitol complex. Anal. Chem. 1990, 62, 2612–2616. [Google Scholar] [CrossRef]
Method | Sample | 10B | 11B | Method | Sample | 10B | 11B | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Content | RSD% | Content | RSD% | Content | RSD% | Content | RSD% | ||||
MTour-1 | NYS2-1 | 3.09 | 0.69 | 3.13 | 0.65 | MTour-2 | NYS2-27 | 3.38 | 0.57 | 3.40 | 0.75 |
NYS2-2 | 3.01 | 0.34 | 3.04 | 1.18 | NYS2-28 | 3.32 | 0.28 | 3.35 | 0.39 | ||
NYS2-3 | 2.94 | 0.74 | 2.97 | 0.22 | NYS2-29 | 3.52 | 0.73 | 3.55 | 0.55 | ||
NYS2-4 | 2.92 | 1.32 | 2.96 | 1.38 | NYS2-30 | 3.20 | 0.69 | 3.21 | 1.07 | ||
NYS2-5 | 3.20 | 0.76 | 3.27 | 0.95 | NYS2-31 | 3.44 | 2.44 | 3.43 | 2.81 | ||
NYS2-6 | 3.22 | 0.36 | 3.50 | 0.61 | NYS2-32 | 3.29 | 1.14 | 3.29 | 0.77 | ||
NYS2-7 | 2.81 | 0.73 | 3.04 | 0.76 | NYS2-33 | 3.26 | 1.10 | 3.31 | 0.78 | ||
NYS2-8 | 3.24 | 0.17 | 3.51 | 0.25 | NYS2-34 | 3.32 | 0.60 | 3.36 | 0.50 | ||
NYS2-9 | 2.85 | 0.72 | 3.09 | 0.59 | NYS2-35 | 3.21 | 1.01 | 3.18 | 0.78 | ||
NYS2-10 | 2.84 | 0.51 | 3.09 | 0.63 | NYS2-36 | 3.33 | 1.04 | 3.34 | 0.93 | ||
NYS2-11 | 2.97 | 0.68 | 3.22 | 0.26 | Min | 3.20 | 3.18 | ||||
NYS2-12 | 2.95 | 0.53 | 3.20 | 0.47 | Max | 3.52 | 3.55 | ||||
NYS2-13 | 2.99 | 0.72 | 3.25 | 0.44 | Average | 3.33 | 3.34 | ||||
NYS2-14 | 3.00 | 0.51 | 3.26 | 0.61 | 2σ | 0.06 | 0.07 | ||||
NYS2-15 | 3.31 | 1.02 | 3.57 | 0.72 | Method | Sample | 10B | 11B | |||
NYS2-16 | 3.07 | 0.45 | 3.32 | 0.78 | Content | RSD% | Content | RSD% | |||
NYS2-17 | 3.10 | 0.71 | 3.34 | 0.31 | MTour-3 | NYS2-37 | 1.20 | 0.63 | 1.20 | 1.54 | |
NYS2-18 | 2.96 | 0.73 | 3.22 | 0.80 | NYS2-38 | 1.26 | 0.67 | 1.27 | 0.83 | ||
NYS2-19 | 3.09 | 0.77 | 3.34 | 0.34 | NYS2-39 | 1.22 | 0.83 | 1.24 | 0.74 | ||
NYS2-20 | 3.07 | 0.68 | 3.34 | 0.58 | NYS2-40 | 1.28 | 1.04 | 1.29 | 0.77 | ||
NYS2-21 | 3.03 | 0.72 | 3.04 | 1.09 | NYS2-41 | 1.22 | 0.31 | 1.23 | 0.79 | ||
NYS2-22 | 2.99 | 0.52 | 2.99 | 0.46 | NYS2-42 | 1.46 | 1.12 | 1.48 | 1.61 | ||
NYS2-23 | 2.90 | 3.47 | 2.91 | 3.15 | NYS2-43 | 1.21 | 0.92 | 1.23 | 1.28 | ||
NYS2-24 | 2.55 | 0.45 | 2.58 | 0.93 | NYS2-44 | 1.56 | 0.78 | 1.57 | 1.14 | ||
NYS2-25 | 2.25 | 1.30 | 2.27 | 1.02 | NYS2-45 | 1.23 | 0.92 | 1.24 | 0.86 | ||
NYS2-26 | 3.16 | 0.86 | 3.18 | 1.10 | NYS2-46 | 1.23 | 0.42 | 1.24 | 1.11 | ||
Min | 2.25 | 2.27 | Min | 1.20 | 1.20 | ||||||
Max | 3.31 | 3.57 | Max | 1.56 | 1.57 | ||||||
Average | 2.98 | 3.14 | Average | 1.29 | 1.30 | ||||||
2σ | 0.08 | 0.11 | 2σ | 0.08 | 0.08 |
Method | Sample | 10B | 11B | ||||
---|---|---|---|---|---|---|---|
Content | RSD% | Recovery | Content | RSD% | Recovery | ||
MLT-1 | Li2B4O7-1 | 25.00 | 0.57 | 96.59 | 25.59 | 0.68 | 98.86 |
Li2B4O7-2 | 25.04 | 0.57 | 96.76 | 25.55 | 0.64 | 98.70 | |
Li2B4O7-3 | 25.20 | 0.31 | 97.36 | 25.69 | 0.57 | 99.27 | |
Li2B4O7-4 | 25.43 | 0.39 | 98.26 | 26.09 | 0.37 | 100.82 | |
Li2B4O7-5 | 25.71 | 0.89 | 99.35 | 26.34 | 0.75 | 101.76 | |
Min | 25.00 | 96.59 | 25.55 | 98.70 | |||
Max | 25.71 | 99.35 | 26.34 | 101.76 | |||
Average | 25.28 | 97.66 | 25.85 | 99.88 | |||
2σ | 0.27 | 1.03 | 0.31 | 1.20 | |||
MLT-2 | Li2B4O7-6 | 25.30 | 0.26 | 97.74 | 26.00 | 0.29 | 100.47 |
Li2B4O7-7 | 25.36 | 0.31 | 97.99 | 25.95 | 0.59 | 100.25 | |
Li2B4O7-8 | 25.42 | 0.52 | 98.20 | 26.01 | 0.95 | 100.49 | |
Li2B4O7-9 | 25.83 | 0.71 | 99.80 | 26.43 | 0.67 | 102.12 | |
Li2B4O7-10 | 25.09 | 0.60 | 96.96 | 25.78 | 0.27 | 99.62 | |
Min | 25.09 | 96.96 | 25.78 | 99.62 | |||
Max | 25.83 | 99.80 | 26.43 | 102.12 | |||
Average | 25.40 | 98.14 | 26.03 | 100.59 | |||
2σ | 0.24 | 0.93 | 0.21 | 0.83 |
Element | NYS2 | NYS8-4 | XHST | |||
---|---|---|---|---|---|---|
Content | 2σ | Content | 2σ | Content | 2σ | |
B | 3.33% | 0.06% | 2.79% | 0.03% | 3.04% | 0.21% |
Li | 9107 | 193 | 2802 | 42 | 6753 | 199 |
Be | 14.35 | 0.28 | 96.32 | 0.64 | 9.81 | 0.48 |
Sc | 0.16 | 0.01 | 0.31 | 0.001 | 0.43 | 0.004 |
V | 0.03 | 0.01 | 0.34 | 0.01 | 14.93 | 0.01 |
Cr | 0.30 | 0.11 | 0.10 | 0.004 | 0.59 | 0.02 |
Co | 0.005 | 0.001 | 1.37 | 0.004 | 1.21 | 0.02 |
Ni | 0.54 | 0.12 | 0.42 | 0.03 | 0.58 | 0.06 |
Cu | 1.29 | 0.15 | 0.53 | 0.02 | 7.23 | 0.11 |
Zn | 3.45 | 0.17 | 3360 | 11 | 264 | 2.38 |
Ga | 62.85 | 3.55 | 40.14 | 0.52 | 41.39 | 0.03 |
Rb | 102.3 | 1.60 | 3.14 | 0.10 | 2.39 | 0.13 |
Sr | 19.78 | 0.26 | 8.21 | 0.11 | 26.26 | 0.14 |
Zr | 0.24 | 0.03 | 10.44 | 4.07 | 0.22 | 0.00 |
Nb | 7.52 | 0.07 | 115 | 25.78 | 4 | 0.09 |
Cd | 0.54 | 0.01 | 0.15 | 0.001 | 0.18 | 0.003 |
Cs | 34.69 | 0.60 | 8.08 | 0.30 | 1.97 | 0.07 |
Ba | 0.12 | 0.03 | 0.44 | 0.09 | 0.31 | 0.12 |
Hf | 0.13 | 0.012 | 2.33 | 0.73 | 0.03 | 0.00 |
Ta | 10.97 | 0.37 | 293.0 | 64.2 | 1.7 | 0.17 |
Pb | 105.38 | 1.08 | 5.35 | 0.002 | 126.39 | 2.27 |
Bi | 13.38 | 0.11 | 0.57 | 0.005 | 333.26 | 4.61 |
Th | 0.24 | 0.01 | 1.10 | 0.18 | 0.06 | 0.002 |
U | 0.018 | 0.004 | 16.61 | 6.22 | 0.08 | 0.01 |
Instrumental Parameter | Operating Condition |
---|---|
RF power | 1550 W |
Temperature of spray chamber | 2 °C |
Plasma gas (Ar) | 15 L/min |
Auxiliary gas (Ar) | 1.0 L/min |
Nebulizer gas (Ar) * | 1.05 L/min |
Sampling depth * | 9.0 mm |
Dwell time | 300 ms |
Settling time | 0.2 ms |
Collision and reaction cell mode | No gas |
Detector mode | Dual (pulse and analog double mode) |
Data-collecting mode | Peak jumping/hopping |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, X.; Feng, Y.; Zhou, R.; Wang, D.; Liang, T.; Wang, Y. Accurate Boron Determination in Tourmaline by Inductively Coupled Plasma Mass Spectrometry: An Insight into the Boron–Mannitol Complex-Based Wet Acid Digestion Method. Molecules 2024, 29, 2701. https://doi.org/10.3390/molecules29112701
Tan X, Feng Y, Zhou R, Wang D, Liang T, Wang Y. Accurate Boron Determination in Tourmaline by Inductively Coupled Plasma Mass Spectrometry: An Insight into the Boron–Mannitol Complex-Based Wet Acid Digestion Method. Molecules. 2024; 29(11):2701. https://doi.org/10.3390/molecules29112701
Chicago/Turabian StyleTan, Xijuan, Yonggang Feng, Ruili Zhou, Denghong Wang, Ting Liang, and Yan Wang. 2024. "Accurate Boron Determination in Tourmaline by Inductively Coupled Plasma Mass Spectrometry: An Insight into the Boron–Mannitol Complex-Based Wet Acid Digestion Method" Molecules 29, no. 11: 2701. https://doi.org/10.3390/molecules29112701
APA StyleTan, X., Feng, Y., Zhou, R., Wang, D., Liang, T., & Wang, Y. (2024). Accurate Boron Determination in Tourmaline by Inductively Coupled Plasma Mass Spectrometry: An Insight into the Boron–Mannitol Complex-Based Wet Acid Digestion Method. Molecules, 29(11), 2701. https://doi.org/10.3390/molecules29112701