Chemical and Bioactive Properties of Red Rice with Potential Pharmaceutical Use
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nutritional and Chemical Composition of Red Rice
2.2. Phenolic Profile
2.3. Bioactive Properties
3. Materials and Methods
3.1. Samples
3.2. Extract Formulation
3.3. Basic Nutritional Value
3.4. Chemical Characterization
3.4.1. Free Sugars
3.4.2. Organic Acids
3.4.3. Fatty Acids
3.4.4. Tocopherols
3.4.5. Phenolic Compounds
3.5. Bioactive Properties
3.5.1. Antioxidant Activity
3.5.2. Antiproliferative and Cytotoxic Activity
3.5.3. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verma, D.K.; Srivastav, P.P.; Mohan, M.U.K.E.S.H. Nutritional Quality Evaluation of Different Rice Cultivars. In Agronomic Rice Practices and Postharvest Processing; Apple Academic Press: Cambridge, MA, USA, 2018; pp. 331–394. [Google Scholar]
- Verma, D.K.; Srivastav, P.P. Proximate Composition, Mineral Content and Fatty Acids Analyses of Aromatic and Non-Aromatic Indian Rice. Rice Sci. 2017, 24, 21–31. [Google Scholar] [CrossRef]
- Mohidem, N.A.; Hashim, N.; Shamsudin, R.; Che Man, H. Rice for Food Security: Revisiting Its Production, Diversity, Rice Milling Process and Nutrient Content. Agriculture 2022, 12, 741. [Google Scholar] [CrossRef]
- Tiozon, R.N., Jr.; Sartagoda, K.J.D.; Fernie, A.R.; Sreenivasulu, N. The Nutritional Profile and Human Health Benefit of Pigmented Rice and the Impact of Post-Harvest Processes and Product Development on the Nutritional Components: A Review. Crit. Rev. Food Sci. Nutr. 2023, 63, 3867–3894. [Google Scholar] [CrossRef] [PubMed]
- Mbanjo, E.G.N.; Kretzschmar, T.; Jones, H.; Ereful, N.; Blanchard, C.; Boyd, L.A.; Sreenivasulu, N. The Genetic Basis and Nutritional Benefits of Pigmented Rice Grain. Front. Genet. 2020, 11, 473353. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Xie, L.; Wang, G.; Jiao, J.; Zhao, J.; Yu, Q.; Chen, Y.; Shen, M.; Wen, H.; Ou, X.; et al. Anthocyanins-Natural Pigment of Colored Rice Bran: Composition and Biological Activities. Food Res. Int. 2024, 175, 113722. [Google Scholar] [CrossRef] [PubMed]
- Pakuwal, E.; Manandhar, P. Comparative Study of Nutritional Profile of Rice Varieties in Nepal. Nepal J. Biotechnol. 2021, 9, 42–49. [Google Scholar] [CrossRef]
- Thitipramote, N.; Imsonpang, S.; Sukphopetch, P.; Pradmeeteekul, P.; Nimkamnerd, J.; Nantitanon, W.; Chaiyana, W. Health Benefits and Safety of Red Pigmented Rice (Oryza sativa L.): In Vitro, Cellular, and In Vivo Activities for Hair Growth Promoting Treatment. Cosmetics 2022, 9, 111. [Google Scholar] [CrossRef]
- Das, A.B.; Bhattacharya, S. Characterization of the Batter and Gluten-Free Cake from Extruded Red Rice Flour. LWT 2019, 102, 197–204. [Google Scholar] [CrossRef]
- Santos, N.C.; da Silva, W.P.; Barros, S.L.; Almeida, R.L.J.; de Brito Araújo, A.J.; da Silva Nascimento, A.P. Red Rice (Oryza sativa L.) Use in Flour Production: Convective Drying and Bioactive Quality. J. Food Process Eng. 2020, 43, e13490. [Google Scholar] [CrossRef]
- Masni, Z.; Wasli, M.E. Yield Performance and Nutrient Uptake of Red Rice Variety (MRM 16) at Different NPK Fertilizer Rates. Int. J. Agron. 2019, 2019, 5134358. [Google Scholar] [CrossRef]
- Hirawan, R.; Diehl-Jones, W.; Beta, T. Comparative Evaluation of the Antioxidant Potential of Infant Cereals Produced from Purple Wheat and Red Rice Grains and LC-MS Analysis of Their Anthocyanins. J. Agric. Food Chem. 2011, 59, 12330–12341. [Google Scholar] [CrossRef] [PubMed]
- Van Hung, P.; Binh, V.T.; Nhi, P.H.Y.; Phi, N.T.L. Effect of Heat-Moisture Treatment of Unpolished Red Rice on Its Starch Properties and in Vitro and in Vivo Digestibility. Int. J. Biol. Macromol. 2020, 154, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Vargas, C.G.; Costa, T.M.H.; Rios, A.D.O.; Flôres, S.H. Comparative Study on the Properties of Films Based on Red Rice (Oryza glaberrima) Flour and Starch. Food Hydrocoll. 2017, 65, 96–106. [Google Scholar] [CrossRef]
- Sompong, R.; Siebenhandl-Ehn, S.; Linsberger-Martin, G.; Berghofer, E. Physicochemical and Antioxidative Properties of Red and Black Rice Varieties from Thailand, China and Sri Lanka. Food Chem. 2011, 124, 132–140. [Google Scholar] [CrossRef]
- Somaratne, G.M.; Prasantha, B.D.R.; Dunuwila, G.R.; Chandrasekara, A.; Wijesinghe, D.G.N.G.; Gunasekara, D.C.S. Effect of Polishing on Glycemic Index and Antioxidant Properties of Red and White Basmati Rice. Food Chem. 2017, 237, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, R.V.C.; Fernandes, Â.; Heleno, S.A.; Rodrigues, P.; Gonzaléz-Paramás, A.M.; Barros, L.; Ferreira, I.C.F.R. Physicochemical Characterization and Microbiology of Wheat and Rye Flours. Food Chem. 2019, 280, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, B.; Kapoor, D.; Gautam, S.; Singh, R.; Bhardwaj, S. Dietary Polyunsaturated Fatty Acids (PUFAs): Uses and Potential Health Benefits. Curr. Nutr. Rep. 2021, 10, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Li, G.; Li, M.; Xu, F.; Beta, T.; Bao, J. Genotypic Variation in Phenolic Acids, Vitamin E and Fatty Acids in Whole Grain Rice. Food Chem. 2016, 197, 776–782. [Google Scholar] [CrossRef]
- Shen, S.; Wang, Y.; Li, M.; Xu, F.; Chai, L.; Bao, J. The Effect of Anaerobic Treatment on Polyphenols, Antioxidant Properties, Tocols and Free Amino Acids in White, Red, and Black Germinated Rice (Oryza sativa L.). J. Funct. Foods 2015, 19, 641–648. [Google Scholar] [CrossRef]
- Clifford, M.N.; Knight, S.; Kuhnert, N. Discriminating between the Six Isomers of Dicaffeoylquinic Acid by LC-MSn. J. Agric. Food Chem. 2005, 53, 3821–3832. [Google Scholar] [CrossRef]
- Zaupa, M.; Calani, L.; Del Rio, D.; Brighenti, F.; Pellegrini, N. Characterization of Total Antioxidant Capacity and (Poly)Phenolic Compounds of Differently Pigmented Rice Varieties and Their Changes during Domestic Cooking. Food Chem. 2015, 187, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Pacifico, S.; Piccolella, S.; Galasso, S.; Fiorentino, A.; Kretschmer, N.; Pan, S.P.; Bauer, R.; Monaco, P. Influence of Harvest Season on Chemical Composition and Bioactivity of Wild Rue Plant Hydroalcoholic Extracts. Food Chem. Toxicol. 2016, 90, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xu, H.; Sui, Y.; Mei, X.; Shi, J.; Cai, S.; Xiong, T.; Carrillo, C.; Castagnini, J.M.; Zhu, Z.; et al. Comparing the LC-MS Phenolic Acids Profiles of Seven Different Varieties of Brown Rice (Oryza sativa L.). Foods 2022, 11, 1552. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Kelm, M.A.; Hammerstone, J.F.; Beecher, G.; Holden, J.; Haytowitz, D.; Prior, R.L. Screening of Foods Containing Proanthocyanidins and Their Structural Characterization Using LC-MS/MS and Thiolytic Degradation. J. Agric. Food Chem. 2003, 51, 7513–7521. [Google Scholar] [CrossRef]
- Lang, G.H.; Kringel, D.H.; Acunha, T.D.S.; Ferreira, C.D.; Dias, Á.R.G.; Zavareze, E.D.R.; de Oliveira, M. Cake of Brown, Black and Red Rice: Influence of Transglutaminase on Technological Properties, in Vitro Starch Digestibility and Phenolic Compounds. Food Chem. 2020, 318, 126480. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, V.; Ferreira, C.D.; Hoffmann, J.F.; Chaves, F.C.; Vanier, N.L.; de Oliveira, M.; Elias, M.C. Cooking Quality Properties and Free and Bound Phenolics Content of Brown, Black, and Red Rice Grains Stored at Different Temperatures for Six Months. Food Chem. 2018, 242, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Pintha, K.; Yodkeeree, S.; Pitchakarn, P.; Limtrakul, P. Anti-Invasive Activity against Cancer Cells of Phytochemicals in Red Jasmine Rice (Oryza sativa L.). Asian Pac. J. Cancer Prev. 2014, 15, 4601–4607. [Google Scholar] [CrossRef]
- Bhat, F.M.; Sommano, S.R.; Riar, C.S.; Seesuriyachan, P.; Chaiyaso, T.; Prom-u-Thai, C. Status of Bioactive Compounds from Bran of Pigmented Traditional Rice Varieties and Their Scope in Production of Medicinal Food with Nutraceutical Importance. Agronomy 2020, 10, 1817. [Google Scholar] [CrossRef]
- Samyor, D.; Das, A.B.; Deka, S.C. Pigmented Rice a Potential Source of Bioactive Compounds: A Review. Int. J. Food Sci. Technol. 2017, 52, 1073–1081. [Google Scholar] [CrossRef]
- Agustin, A.T.; Safitri, A.; Fatchiyah, F. Java Red Rice (Oryza sativa L.) Nutritional Value and Anthocyanin Profiles and Its Potential Role as Antioxidant and Anti-Diabetic. Indones. J. Chem. 2021, 21, 968. [Google Scholar] [CrossRef]
- Yu, X.; Yang, T.; Qi, Q.; Du, Y.; Shi, J.; Liu, X.; Liu, Y.; Zhang, H.; Zhang, Z.; Yan, N. Comparison of the Contents of Phenolic Compounds Including Flavonoids and Antioxidant Activity of Rice (Oryza sativa) and Chinese Wild Rice (Zizania latifolia). Food Chem. 2021, 344, 128600. [Google Scholar] [CrossRef]
- Kasote, D.; Tiozon, R.N.; Sartagoda, K.J.D.; Itagi, H.; Roy, P.; Kohli, A.; Regina, A.; Sreenivasulu, N. Food Processing Technologies to Develop Functional Foods With Enriched Bioactive Phenolic Compounds in Cereals. Front. Plant Sci. 2021, 12, 771276. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, Y.; Yang, X.; Zhu, G.; Lu, X.; Jia, F.; Diao, B.; Yu, S.; Ali, A.; Zhang, H.; et al. Investigation of Flavonoid Components and Their Associated Antioxidant Capacity in Different Pigmented Rice Varieties. Food Res. Int. 2022, 161, 111726. [Google Scholar] [CrossRef] [PubMed]
- Banjerdpongchai, R.; Wudtiwai, B.; Sringarm, K. Cytotoxic and Apoptotic-Inducing Effects of Purple Rice Extracts and Chemotherapeutic Drugs on Human Cancer Cell Lines. Asian Pac. J. Cancer Prev. 2013, 14, 6541–6548. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Punvittayagul, C.; Vachiraarunwong, A.; Phannasorn, W.; Wongpoomchai, R. Cancer Chemopreventive Potential of Cooked Glutinous Purple Rice on the Early Stages of Hepatocarcinogenesis in Rats. Front. Nutr. 2022, 9, 1032771. [Google Scholar] [CrossRef] [PubMed]
- Suwannakul, N.; Punvittayagul, C.; Jarukamjorn, K.; Wongpoomchai, R. Purple Rice Bran Extract Attenuates the Aflatoxin B1-Induced Initiation Stage of Hepatocarcinogenesis by Alteration of Xenobiotic Metabolizing Enzymes. Asian Pac. J. Cancer Prev. 2015, 16, 3371–3376. [Google Scholar] [CrossRef] [PubMed]
- Pinela, J.; Omarini, A.B.; Stojković, D.; Barros, L.; Postemsky, P.D.; Calhelha, R.C.; Breccia, J.; Fernández-Lahore, M.; Soković, M.; Ferreira, I.C.F.R. Biotransformation of Rice and Sunflower Side-Streams by Dikaryotic and Monokaryotic Strains of Pleurotus Sapidus: Impact on Phenolic Profiles and Bioactive Properties. Food Res. Int. 2020, 132, 109094. [Google Scholar] [CrossRef] [PubMed]
- Călinoiu, L.F.; Vodnar, D.C. Thermal Processing for the Release of Phenolic Compounds from Wheat and Oat Bran. Biomolecules 2020, 10, 21. [Google Scholar] [CrossRef]
- Barros, L.; Pereira, E.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Bioactivity and Chemical Characterization in Hydrophilic and Lipophilic Compounds of Chenopodium ambrosioides L. J. Funct. Foods 2013, 5, 1732–1740. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 20th ed.; AOAC: Gaithersburg, MD, USA, 2016. [Google Scholar]
- Barros, L.; Pereira, C.; Ferreira, I.C.F.R. Optimized Analysis of Organic Acids in Edible Mushrooms from Portugal by Ultra Fast Liquid Chromatography and Photodiode Array Detection. Food Anal. Methods 2013, 6, 309–316. [Google Scholar] [CrossRef]
- Spréa, R.M.; Fernandes, Â.; Calhelha, R.C.; Pereira, C.; Pires, T.C.S.P.; Alves, M.J.; Canan, C.; Barros, L.; Amaral, J.S.; Ferreira, I.C.F.R. Chemical and Bioactive Characterization of the Aromatic Plant: Levisticum Officinale W.D.J. Koch: A Comprehensive Study. Food Funct. 2020, 11, 1292–1303. [Google Scholar] [CrossRef] [PubMed]
- Bessada, S.M.F.; Barreira, J.C.M.; Barros, L.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Phenolic Profile and Antioxidant Activity of Coleostephus myconis (L.) Rchb.f.: An Underexploited and Highly Disseminated Species. Ind. Crops Prod. 2016, 89, 45–51. [Google Scholar] [CrossRef]
- Lockowandt, L.; Pinela, J.; Roriz, C.L.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Bredol, M.; Ferreira, I.C.F.R. Chemical Features and Bioactivities of Cornflower (Centaurea cyanus L.) Capitula: The Blue Flowers and the Unexplored Non-Edible Part. Ind. Crops Prod. 2019, 128, 496–503. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Antioxidant and Antimicrobial Properties of Dried Portuguese Apple Variety (Malus domestica Borkh. Cv Bravo de Esmolfe). Food Chem. 2018, 240, 701–706. [Google Scholar] [CrossRef]
Nutritional Value (g/100 g dw) | Red Rice |
---|---|
Fat | 2.6 ± 0.1 |
Proteins | 9.1 ± 0.1 |
Ash | 1.1 ± 0.1 |
Carbohydrates | 87.2 ± 0.2 |
Energy value (kcal/100 g dw) | 408.6 ± 0.1 |
Hydrophilic compounds | |
Free sugars (g/100 g dw) | |
Sucrose | 0.740 ± 0.002 |
Raffinose | 0.38 ± 0.02 |
Total sugars | 1.12 ± 0.03 |
Organic acids (g/100 g dw) | |
Oxalic acid | tr |
Citric acid | tr |
Fumaric acid | tr |
Lipophilic compounds | |
Fatty acids (%) | |
C14:0 | 0.34 ± 0.01 |
C15:0 | 0.122 ± 0.004 |
C16:0 | 22 ± 1 |
C16:1 | 0.142 ± 0.004 |
C18:0 | 3.0 ± 0.1 |
C18:1n9c | 39.9 ± 0.2 |
C18:2n6c | 29.4 ± 0.5 |
C18:3n3 | 1.2 ± 0.1 |
C20:0 | 1.1 ± 0.1 |
C20:1 | 0.58 ± 0.03 |
C22:0 | 0.911 ± 0.001 |
C20:5n3 | 0.25 ± 0.01 |
C24:0 | 1.03 ± 0.02 |
SFA | 28.4 ± 0.4 |
MUFA | 40.7 ± 0.1 |
PUFA | 31 ± 1 |
Tocopherols (mg/100 g dw) | |
α-Tocopherol | 0.23 ± 0.01 |
γ-Tocopherol | 0.67 ± 0.03 |
Total tocopherols | 0.89 ± 0.04 |
Peak | Rt (min) | λmax (nm) | [M-H]− (m/z) | MS2 (m/z) | Tentative Identification | Quantification (mg/g Extract) |
---|---|---|---|---|---|---|
1 | 4.91 | 311 | 341 | 179(100), 161(15), 135(5) | Caffeic acid hexoside | 0.01562 ± 0.00002 |
2 | 6.24 | 280 | 577 | 451(29), 425(100), 407(30), 289(15) | Type B (epi)catechin dimer | 2.22 ± 0.04 |
3 | 7.48 | 280 | 1153 | 865(15), 577(20), 289(100) | Type B (epi)catechin tetramer | 0.83 ± 0.02 |
4 | 9.88 | 322 | 517 | 355(55), 193(100) | Ferulic acid dihexoside | 0.093 ± 0.001 |
5 | 10.89 | 280 | 865 | 577(50), 451(30), 425(100), 407(38), 289(20) | Type B (epi) catechin trimer | 0.40 ± 0.01 |
6 | 12.05 | 280 | 865 | 577(48), 451(28), 425(100), 407(28), 289(15) | Type B (epi) catechin trimer | 1.03 ± 0.03 |
7 | 13.93 | 280 | 1153 | 865(15), 577(20), 289(100) | Type B (epi) catechin tetramer | 0.188 ± 0.001 |
8 | 15.23 | 280 | 865 | 577(52), 451(29), 425(100), 407(37), 289(15) | Type B (epi) catechin trimer | 0.42 ± 0.01 |
9 | 23.42 | 322 | 723 | 517(34), 355(39), 337(81), 295(34), 193(100), 175(52), 161(5) | Sinapoyl feruloyl dihexoside | 0.061 ± 0.001 |
Total phenolic acids | 0.1691 ± 0.0004 | |||||
Total flavan-3-ols | 5.1 ± 0.1 | |||||
Total phenolic compounds | 5.2 ± 0.1 |
Antioxidant activity | (EC50 mg/mL) | Trolox (μg/mL) |
TBARS | 0.51 ± 0.01 | 19.6 ± 0.1 |
Antitumor activity | (GI50 μg/mL) | Ellipticine (μg/mL) |
HeLa (cervical carcinoma) | 343 ± 7 | 0.9 ± 0.1 |
NCI H460 (lung carcinoma) | 205 ± 11 | 1.03 ± 0.09 |
MCF7 (breast carcinoma) | 322 ± 11 | 1.21 ± 0.02 |
HepG2 (liver carcinoma) | 291 ± 10 | 1.10 ± 0.09 |
Hepatotoxicity | (GI50 µg/mL) | Ellipticine (μg/mL) |
PLP2 | >400 | 2.3 ± 0.2 |
Red Rice | Ampicillin | Imipenem | Vancomycin | |||||
---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
Gram-negative bacteria | ||||||||
Escherichia coli | 20 | >20 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. |
Klebsiella pneumoniae | 20 | >20 | 10 | 20 | <0.0078 | <0.0078 | n.t. | n.t. |
Morganella morganii | 20 | >20 | 20 | >20 | <0.0078 | <0.0078 | n.t. | n.t. |
Proteus mirabilis | >20 | >20 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. |
Pseudomonas aeruginosa | >20 | >20 | >20 | >20 | 0.5 | 1 | n.t. | n.t. |
Gram-positive bacteria | ||||||||
Enterococcus faecalis | 10 | >20 | <0.15 | <0.15 | n.t. | n.t. | <0.0078 | <0.0078 |
Listeria monocytogenes | 10 | >20 | <0.15 | <0.15 | <0.0078 | <0.0078 | n.t. | n.t. |
MRSA | 10 | >20 | <0.15 | <0.15 | n.t. | n.t. | 0.25 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baptista, E.; Liberal, Â.; Cardoso, R.V.C.; Fernandes, Â.; Dias, M.I.; Pires, T.C.S.P.; Calhelha, R.C.; García, P.A.; Ferreira, I.C.F.R.; Barreira, J.C.M. Chemical and Bioactive Properties of Red Rice with Potential Pharmaceutical Use. Molecules 2024, 29, 2265. https://doi.org/10.3390/molecules29102265
Baptista E, Liberal Â, Cardoso RVC, Fernandes Â, Dias MI, Pires TCSP, Calhelha RC, García PA, Ferreira ICFR, Barreira JCM. Chemical and Bioactive Properties of Red Rice with Potential Pharmaceutical Use. Molecules. 2024; 29(10):2265. https://doi.org/10.3390/molecules29102265
Chicago/Turabian StyleBaptista, Eugénia, Ângela Liberal, Rossana V. C. Cardoso, Ângela Fernandes, Maria Inês Dias, Tânia C.S.P. Pires, Ricardo C. Calhelha, Pablo A. García, Isabel C.F.R. Ferreira, and João C.M. Barreira. 2024. "Chemical and Bioactive Properties of Red Rice with Potential Pharmaceutical Use" Molecules 29, no. 10: 2265. https://doi.org/10.3390/molecules29102265
APA StyleBaptista, E., Liberal, Â., Cardoso, R. V. C., Fernandes, Â., Dias, M. I., Pires, T. C. S. P., Calhelha, R. C., García, P. A., Ferreira, I. C. F. R., & Barreira, J. C. M. (2024). Chemical and Bioactive Properties of Red Rice with Potential Pharmaceutical Use. Molecules, 29(10), 2265. https://doi.org/10.3390/molecules29102265