A New Culture Medium Rich in Phenols Used for Screening Bitter Degrading Strains of Lactic Acid Bacteria to Employ in Table Olive Production
Abstract
:1. Introduction
2. Results
3. Discussion
- A high content of organic matter;
- A high oil content (>7%) whose fatty acid composition is very close to that of extra virgin olive oils that are extraordinarily rich in oleic acid and with a good percentage of linoleic acid;
- A high content of phenolic compounds, which are mainly represented by secoiridoids and verbascoside.
4. Materials and Methods
4.1. Olive Pâté Sampling
4.2. Characterization of Fresh DMF Pâté
4.2.1. pH, Titratable Acidity, Moisture, Ash, and Oil
4.2.2. Fatty Acid Composition
4.2.3. Activity Water (aw)
4.2.4. Color
4.3. Preparation of the Olive Juice Broth (OJB)
4.4. Test of Microorganisms’ Survival in OJB
4.5. Test of Microorganism’s Phenolic Degradation in OJB
4.6. Spontaneous and Controlled Lab-Scale Fermentation Tests
4.7. Monitoring of Fermentation Process
4.8. Oil Extraction and Pulp Recovery from Fresh Olive Fruits
4.9. Biophenols
4.10. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lanza, B.; Cellini, M.; Di Marco, S.; D’Amico, E.; Simone, N.; Giansante, L.; Pompilio, A.; Di Loreto, G.; Bacceli, M.; Del Re, P.; et al. Olive pâté by multi-phase decanter as potential source of bioactive compounds of both nutraceutical and anticancer effects. Molecules 2020, 25, 5967. [Google Scholar] [CrossRef] [PubMed]
- Cucci, G.; Lacolla, G.; Caranfa, L. Improvement of soil properties by application of olive oil waste. Agron. Sustain. Dev. 2008, 28, 521–526. [Google Scholar] [CrossRef]
- Castellani, F.; Vitali, A.; Bernardi, N.; Marone, E.; Grotta, L.; Martino, G. Lipolytic volatile compounds in dairy products derived from cows fed with dried olive pomace. Eur. Food Res. Technol. 2018, 245, 159–166. [Google Scholar] [CrossRef]
- Valenti, F.; Arcidiacono, C.; Chinnici, G.; Cascone, G.; Porto, S.M.C. Quantification of olive pomace availability for biogas production by using a GIS-based model. Biofuel Bioprod. Biorefin. 2017, 11, 784–797. [Google Scholar] [CrossRef]
- Lozano-Sánchez, J.; Bendini, A.; Di Lecce, G.; Valli, E.; Toschi, T.; Segura-Carretero, A. Macro and microfunctional components of a spreadable olive by-product (pâté) generated by the new concept of the two-phase decanter. Eur. J. Lipid Sci. Technol. 2017, 119, 1600096. [Google Scholar] [CrossRef]
- Cecchi, L.; Bellumori, M.; Cipriani, C.; Mocali, A.; Innocenti, M.; Mulinacci, N.; Giovannelli, L. A two-phase olive mill by-product (pâté) as a convenient source of phenolic compound: Content, stability, and antiaging properties in cultured human fibroblast. J. Funct. Foods 2018, 40, 751–759. [Google Scholar] [CrossRef]
- Nunes, M.A.; Costa, A.S.G.; Bessada, S.; Santos, J.; Puga, H.; Alves, R.C.; Freitas, V.; Oliveira, M.B.P.P. Olive pomace as a valuable source of bioactive compounds: A study regarding its lipid- and water-soluble components. Sci. Total Environ. 2018, 644, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Tufariello, M.; Durante, M.; Veneziani, G.; Taticchi, A.; Servili, M.; Bleve, G.; Mita, G. Pâté olive cake: Possible exploitation of a by-product for food applications. Front. Nutr. 2019, 6, 3. [Google Scholar] [CrossRef]
- Rufino-Palomares, E.E.; Perez-Jimenez, A.; Reyez-Zurita, F.J.; Garcia-Salguero, L.; Mokhtari, K.; Herrera-Merchan, A.; Medina, P.P.; Peragón, J.; Lupiáñez, J.A. Anti-cancer and anti-angiogenic properties of various natural pentacyclic triterpenoids and some of their chemical derivatives. Curr. Org. Chem. 2015, 19, 919–947. [Google Scholar] [CrossRef]
- Attia, Y.M.; El- Kersh, D.M.; Wagdy, H.A.; Elmazar, M.M. Verbascoside: Identification, quantification, and potential sensitization of colorectal cancer cells to 5-FU by targeting PI3K/AKT pathway. Sci. Rep. 2018, 8, 16939. [Google Scholar] [CrossRef]
- Martín-Peláez, S.; Covas, M.I.; Fitó, M.; Kušar, A.; Pravst, I. Health effects of olive oil polyphenols: Recent advances and possibilities for the use of health claims. Mol. Nutr. Food Res. 2013, 57, 760–771. [Google Scholar] [CrossRef] [PubMed]
- Covas, M.I.; Nyyssönen, K.; Poulsen, H.E.; Kaikkonen, J.; Zunft, H.J.; Kiesewetter, H.; Gaddi, A.; de la Torre, R.; Mursu, J.; Bäumler, H.; et al. The effect of polyphenols in olive oil on heart disease risk factors: A randomized trial. Ann. Intern. Med. 2006, 145, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Martinez-Gonzalez, M.A.; Corella, D.; Salas-Salvado, J.; Ruiz-Gutierrez, V.; Covas, M.I.; Fiol, M.; Gómez-Garcia, E.; López-Sabater, M.C.; Vinyoles, E.; et al. Effects of a Mediterranean-style diet on cardiovascular risk factors: A randomized trial. Ann. Intern. Med. 2006, 145, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Vilaplana-Pérez, C.; Auñón, D.; García-Flores, L.A.; Gil-Izquierdo, A. Hydroxytyrosol and potential uses in cardiovascular diseases, cancer, and AIDS. Front. Nutr. 2014, 1, 18. [Google Scholar] [PubMed]
- Termopoli, V.; Piergiovanni, M.; Cappiello, A.; Palma, P.; Famiglini, G. Tyrosol and hydroxytyrosol determination in extra virgin olive oil with direct liquid electron ionization-tandem mass spectrometry. Separations 2021, 8, 173. [Google Scholar] [CrossRef]
- Beauchamp, G.K.; Keast, R.S.J.; Morel, D.; Lin, J.M.; Pika, J.; Han, Q.; Lee, C.H.; Smith, A.B.; Breslin, P.A.S. Ibuprofen-like activity in extra-virgin olive oil. Nature 2005, 437, 45–46. [Google Scholar] [CrossRef] [PubMed]
- Andrewes, P.; Busch, J.H.C.; de Joode, T.; Groenewegen, A.; Alexandre, H. Sensory properties of virgin olive oil polyphenols: Identification of deacetoxy-ligstroside aglycon as a key contributor to pungency. J. Agric. Food Chem. 2003, 51, 1415–1420. [Google Scholar] [CrossRef] [PubMed]
- Siliani, S.; Mattei, A.; Benevieri Innocenti, L.; Zanoni, B. Bitter taste and phenolic compounds in extra virgin olive oil: An empirical relationship. J. Food Qual. 2006, 29, 431–441. [Google Scholar] [CrossRef]
- Santos, M.M.; Piccirillo, C.; Castro, P.M.L.; Kalogerakis, N.; Pintado, M.E. Bioconversion of oleuropein to hydroxytyrosol by lactic acid bacteria. World J. Microbiol. Biotechnol. 2012, 28, 2435–2440. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, E.; Brenes, M.; De Castro, A.; Romero, C.; Medina, E. Oleuropein hydrolysis by lactic acid bacteria in natural green olives. Food Sci. Technol. 2016, 78, 165–171. [Google Scholar] [CrossRef]
- Lanza, B.; Zago, M.; Di Marco, S.; Di Loreto, G.; Cellini, M.; Tidona, F.; Bonvini, B.; Bacceli, M.; Simone, N. Single and multiple inoculum of Lactiplantibacillus plantarum strains in table olive lab-scale fermentations. Fermentation 2020, 6, 126. [Google Scholar] [CrossRef]
- Papanikolaou, C.; Eleni Melliou, E.; Magiatis, P. Olive oil phenols. In Functional Foods; Lagouri, V., Ed.; Intechopen: London, UK, 2019. [Google Scholar]
- Ferro, M.D.; Santos, S.A.O.; Silvestre, A.J.D.; Duarte, M.F. Chromatographic separation of phenolic compounds from extra virgin olive oil: Development and validation of a new method based on a biphenyl HPLC column. J. Mol. Sci. 2019, 20, 201. [Google Scholar] [CrossRef] [PubMed]
- Tsimidou, M.Z. Analytical methodologies: Phenolic compounds related to olive oil taste issues. In Handbook of Olive Oil Analysis and Properties; Aparicio, R., Harwood, J., Eds.; Springer: New York, NY, USA, 2013; pp. 311–333. [Google Scholar]
- Paramithiotis, S.; Das, G.; Shin, H.-S.; Patra, J.K. Fate of bioactive compounds during lactic acid fermentation of fruits and vegetables. Foods 2022, 11, 733. [Google Scholar] [CrossRef] [PubMed]
- Flamminii, F.; Marone, E.; Neri, L.; Pollastri, L.; Cichelli, A.; Di Mattia, C.D. The effect of harvesting time on olive fruits and oils quality parameters of Tortiglione and Dritta olive cultivars. Eur. J. Lipid Sci. Technol. 2021, 123, 2000382. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive compounds and quality of extra virgin olive oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef] [PubMed]
- Chiozzi, V.; Agriopoulou, S.; Varzakas, T. Advances, applications, and comparison of thermal (pasteurization, sterilization, and aseptic packaging) against non-thermal (ultrasounds, UV Radiation, ozonation, high hydrostatic pressure) technologies in food processing. Appl. Sci. 2022, 12, 2202. [Google Scholar] [CrossRef]
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G. Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef] [PubMed]
- Lanza, B.; Zago, M.; Carminati, D.; Rossetti, L.; Meucci, A.; Marfisi, P.; Russi, F.; Iannucci, E.; Di Serio, M.G.; Giraffa, G. Isolation and preliminary characterization of Lactobacillus plantarum bacteriophages from table olive fermentation. Ann. Microbiol. 2012, 62, 1467–1472. [Google Scholar] [CrossRef]
- Zago, M.; Lanza, B.; Rossetti, L.; Muzzalupo, I.; Carminati, D.; Giraffa, G. Selection of Lactobacillus plantarum strains to use as starters in fermented table olives: Oleuropeinase activity and phage sensitivity. Food Microbiol. 2013, 34, 81–87. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
pH | 4.56 ± 0.03 |
Titratable acidity (citric acid g/100 g fresh pâté) | 0.716 ± 0.015 |
Activity water (aw) | 0.9883 ± 0.0025 |
Moisture (%) | 80.89 ± 0.03 |
Ash (g/100 g fresh pâté) | 1.10 ± 0.05 |
DM (g/100 g fresh pâté) | 19.11 |
OM (g/100 g fresh pâté) | 18.01 |
OC (g/100 g fresh pâté) | 10.45 |
Oil content (g/100 g fresh pâté) | 7.30 ± 0.10 |
Color | |
L* | 29.73 ± 4.94 |
a* | 9.74 ± 2.28 |
b* | 26.55 ± 9.16 |
CHROMA | 28.29 ± 9.38 |
Figure 1 | DMF Pâté | MEVOO Dritta cv. 1 | MEVOO Dritta cv. 2 |
---|---|---|---|
C14:0 (Myristic acid) | 0.06 ± 0.01 | ||
C16:0 (Palmitic acid) | 12.98 ± 0.07 | 13.75 ± 1.36 | 13.11 ± 0.35 |
C16:1 (Palmitoleic acid) | 0.89 ± 0.05 | 0.96 ± 0.20 | 1.26 ± 0.07 |
C17:0 (Heptadecanoic acid) | 0.05 ± 0.01 | 0.07 ± 0.02 | |
C17:1 (Heptadecenoic acid) | 0.07 ± 0.01 | 0.08 ± 0.02 | |
C18:0 (Stearic acid) | 2.98 ± 0.07 | 2.65 ± 0.46 | 1.85 ± 0.01 |
C18:1 ω9 (Oleic acid) | 72.18 ± 0.13 | 72.83 ± 2.58 | 74.77 ± 0.74 |
C18:2 ω6 (Linoleic acid) | 9.33 ± 0.05 | 8.23 ± 1.35 | 8.02 ± 0.12 |
C20:0 (Arachidic acid) | 0.43 ± 0.00 | 0.43 ± 0.07 | 0.18 ± 0.02 |
C18:3 ω3 (α-Linolenic acid) | 0.65 ± 0.01 | 0.67 ± 0.08 | 0.71 ± 0.02 |
C20:1 (Eicosenoic acid) | 0.22 ± 0.00 | 0.25 ± 0.07 | |
C22:0 (Behenic acid) | 0.13 ± 0.00 | ||
C24:0 (Lignoceric acid) | 0.03 ± 0.01 | ||
SFA | 16.66 | 16.90 | 15.14 |
MUFA | 73.36 | 74.12 | 76.03 |
PUFA | 9.98 | 8.90 | 8.73 |
Oleic acid/Linoleic acid | 7.74 | 8.85 | 9.32 |
Oleic acid/Palmitic acid | 5.56 | 5.30 | 5.7 |
Linoleic acid/Palmitic acid | 0.72 | 0.60 | 0.61 |
MUFA/SFA | 4.40 | 4.39 | 5.02 |
PUFA+MUFA/SFA | 5.00 | 4.91 | 5.59 |
PUFA/SFA | 0.60 | 0.53 | 0.57 |
omega6/omega3 | 14.35 | 12.28 | 11.29 |
Phenolic Compound (mg/kg) | Olive Juice Pre-UV | Olive Juice Post-UV |
---|---|---|
3,4-DHPEA (Hydroxytyrosol) | 127.5 ± 22.2 | 138.0 ± 19.5 |
p-HPEA (Tyrosol) | 14.6 ± 2.8 | 15.6 ± 2.5 |
p-Hydroxybenzoic acid | 61.5 ± 11.2 | 63.4 ± 6.3 |
Vanillic acid | 48.1 ± 10.7 | 34.4 ± 3.5 |
Caffeic acid | 17.8 ± 5.8 | 17.4 ± 4.4 |
Vanillin | 10.3 ± 3.8 | 17.4 ± 2.5 |
p-Coumaric acid | 12.6 ± 4.9 | 25.2 ± 7.0 |
Hydroxytyrosyl acetate | 11.9 ± 4.3 | 10.6 ± 1.4 |
Ferulic acid | 18.7 ± 5.8 | 65.8 ± 5.4 |
Verbascoside | 47.8 ± 5.2 | 47.5 ± 4.9 |
o-Coumaric acid | 60.3 ± 7.0 | 37.8 ± 6.8 |
3,4-DHPEA-EDA (Oleacein) | 29.6 ± 8.5 | 38.6 ± 6.6 |
Oleuropein | 17.8 ± 1.7 | 9.1 ± 3.1 |
3,4-DHPEA-EA (Oleuropein aglycone) | 12.1 ± 1.2 | 26.2 ± 2.5 |
Tyrosyl acetate | 15.1 ± 1.3 | 37.4 ± 2.2 |
Rutin | 49.5 ± 7.5 | 48.7 ± 12.1 |
p-HPEA-EDA (Oleocanthal) | 25.0 ± 9.9 | 39.4 ± 5.2 |
Pinoresinol, 1-Acetoxypinoresinol | 4.8 ± 1.3 | 4.0 ± 0.2 |
Cinnamic acid | 0.9 ± 0.1 | 0.8 ± 0.1 |
p-HPEA-EA (Ligstroside aglycone) | 2.8 ± 0.9 | 4.4 ± 0.9 |
Luteolin | 5.5 ± 1.7 | 5.4 ± 0.5 |
3,4-DHPEA,-EA,H | 8.5 ± 1.6 | 6.2 ± 0.7 |
Apigenin | 0.0 | 0.0 |
7-O-Methyl-luteolin | 0.0 | 0.0 |
p-HPEA,-EA,H | 0.9 ± 0.2 | 2.0 ± 0.1 |
Total Phenol Content (TPC) | 554 | 349 |
% Survival | TPC Residual (mg/kg) | % TPC Degradation | |
---|---|---|---|
B31 | 59 | 256 | 27 |
B137 | 54 | 262 | 25 |
B28 | 53 | 247 | 29 |
B39 | 52 | 250 | 28 |
B124 | 51 | 241 | 31 |
B130 | 51 | 234 | 33 |
B51 | 51 | 260 | 26 |
B138 | 48 | 261 | 25 |
B162 | 47 | 281 | 19 |
B136 | 47 | 250 | 28 |
B8 | 46 | 329 | 6 |
B2 | 45 | 318 | 9 |
B15 | 44 | 302 | 13 |
B10 | 44 | 330 | 5 |
B53 | 44 | 226 | 35 |
B1 | 43 | 331 | 5 |
B7 | 43 | 330 | 5 |
B160 | 43 | 254 | 27 |
B4 | 42 | 325 | 7 |
B25 | 41 | 227 | 35 |
B17 | 41 | 290 | 17 |
B13 | 41 | 341 | 2 |
B3 | 40 | 320 | 8 |
B21 | 39 | 224 | 36 |
B158 | 38 | 226 | 35 |
B14 | 38 | 303 | 13 |
B146 | 36 | 272 | 22 |
B23 | 36 | 225 | 36 |
B142 | 36 | 277 | 21 |
B165 | 36 | 262 | 25 |
B44 | 34 | 255 | 27 |
B19 | 34 | 320 | 8 |
B12 | 34 | 318 | 9 |
B27 | 32 | 243 | 30 |
B126 | 11 | 240 | 31 |
PC | Eigenvalue | % Variance | Cumulative Variance |
---|---|---|---|
1 | 1585.570 | 95.620 | 95.620 |
2 | 72.558 | 4.370 | 99.990 |
3 | 0.068 | 0.010 | 100.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lanza, B.; Bacceli, M.; Di Marco, S.; Simone, N.; Di Loreto, G.; Flamminii, F.; Mollica, A.; Cichelli, A. A New Culture Medium Rich in Phenols Used for Screening Bitter Degrading Strains of Lactic Acid Bacteria to Employ in Table Olive Production. Molecules 2024, 29, 2236. https://doi.org/10.3390/molecules29102236
Lanza B, Bacceli M, Di Marco S, Simone N, Di Loreto G, Flamminii F, Mollica A, Cichelli A. A New Culture Medium Rich in Phenols Used for Screening Bitter Degrading Strains of Lactic Acid Bacteria to Employ in Table Olive Production. Molecules. 2024; 29(10):2236. https://doi.org/10.3390/molecules29102236
Chicago/Turabian StyleLanza, Barbara, Martina Bacceli, Sara Di Marco, Nicola Simone, Giuseppina Di Loreto, Federica Flamminii, Adriano Mollica, and Angelo Cichelli. 2024. "A New Culture Medium Rich in Phenols Used for Screening Bitter Degrading Strains of Lactic Acid Bacteria to Employ in Table Olive Production" Molecules 29, no. 10: 2236. https://doi.org/10.3390/molecules29102236
APA StyleLanza, B., Bacceli, M., Di Marco, S., Simone, N., Di Loreto, G., Flamminii, F., Mollica, A., & Cichelli, A. (2024). A New Culture Medium Rich in Phenols Used for Screening Bitter Degrading Strains of Lactic Acid Bacteria to Employ in Table Olive Production. Molecules, 29(10), 2236. https://doi.org/10.3390/molecules29102236